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Abstract— In this paper, we present a new linear matrix
inequality (LMI) approach to design of Takagi–Sugeno (T–S)
fuzzy classifier. In this paper, we present a novel approach to
design of Takagi–Sugeno (T–S) fuzzy classifier. In order to design
the T–S fuzzy classifier, we set up two sub design problems: the
antecedent and consequent part design problem. The main idea
is that the sub design problem is viewed as a LMI optimization
problem. Finally, the performance of the T–S fuzzy classifier is
evaluated by computer simulations and compared to other fuzzy
classifier.

I. I NTRODUCTION

We focus on the problems of designing a fuzzy rule-based
classifier form observation data. Frequently, in data-driven
fuzzy classification approaches, the T–S type fuzzy model is
used [1]. The typical identification of the T–S fuzzy classifier
is done in two steps. First, the fuzzy rule antecedents are
determined; then, consequent parameters are identified by
using optimization techniques.

Many methods have been proposed to determine antecedent
part and consequent part of the T–S fuzzy classifier: ge-
netic algorithm (GA), neural network (NN), and statistical
approaches [2]- [9], [12]. The conventional design method
has been successfully applied to T–S fuzzy classifier, however,
there are some weak points. GA can be used widely to design
the T–S fuzzy classifier, but, GA can guarantee the optimality
and unique of obtained T–S fuzzy classifier and spend much
time to get solution. In NN case, because NN require a lot of
data to get good confidence in the result, NN is not suitable
to problems which have small size data set. Differ form GA,
statistical approach gives uniquely optimal solution for given
problems, however, it need prior probability information.

In order to solve these disadvantages, we use LMI optimiza-
tion technique. LMI optimization technique has following main
advantages: LMI optimization technique has uniquely optimal
solution, and is derivative-free optimization method, andcan
be formulated by using only inequality relationship, and is

solved efficiently [18]. These advantages help to get over the
disadvantages from conventional methods.

In this paper, we present a new LMI approach to T–S
fuzzy classifier design. Similar to typical identification method,
two-step procedure is proposed. First, antecedent part of T–S
fuzzy classifier is determined. By formulating and solving LMI
optimization problem, the center and width of membership
function are identified. In the second, consequent part of the
T–S fuzzy classifier is determined. The consequent parameters
of the T–S fuzzy classifier are also determined by formulating
LMI optimization problems and solving it.

The organization of this paper is as follows. After the
introduction, the basic definitions and the structure of fuzzy
classifier are presented in Section 2. Section 3 presents theba-
sic approach to classifier design by LMI including the classifier
problem statement. Simulation results testify to the classifier’s
performances and the utilities of the proposed method are
discussed in Section 4 including two design examples: iris,
Wisconsin breast cancer diagnostic (WBCD).

II. PRELIMINARIES

Pattern classification problems are summarized by assign-
ing a classCi from a predefined class category setC =
{C1, C2, .., Cn} to an object described as a point in a certain
feature spacex ∈ R

m.
The fuzzy classifier implements these proper mappings by

using fuzzy sets and IF-THEN rules. One of them, the T–
S fuzzy classifier is considered in this paper. The T–S fuzzy
classifier has following fuzzy rules [12]:

Ri : IF x1 is Mi1 AND ... AND xm is Mim (1)

THEN yi(x) = ai1x1 + . . . + aimxm + bi

Here xi ∈ R is the ith feature input,Mi1, . . . ,Mim are the
antecedent fuzzy sets,yi(x) is the consequent output of the
ith rule, x = [x1 . . . xm]T ∈ F ⊂ R

m is input feature
vector, andF is the feature vector set containing all feature



vector, andaij and bi are consequent parameters. In this
paper, we consider only gaussian membership function as the
membership function of the T–S fuzzy classifier.

The final output of the T–S fuzzy classifier is inferred by
following equations.

Y (x) =

∑l
i=1 hi(x)(

∑m
j=1 aijxj + bi)

∑l

i=1 hi(x)
(2)

hi(x) =

m
∏

j=1

µMij
(xj) (3)

wherehi(x) is the firing strength of theith rule, µMij
(xj) ∈

R[0, 1] is the membership degree of thejth feature of theith
rule. For computational convenience, the final output of the
T–S fuzzy classifier can be represented as following matrix
equation:

Y (x) = HT (Ax + B) (4)

where
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. (5)

After the final results of the T–S fuzzy classifier is calcu-
lated, the class label ofx is determined. The classification
mapping result should have one of the class label corre-
sponding tox. To determine the class label, the T–S fuzzy
classifier is designed to have the final output which is equal
to corresponding class label. For example, ifx belongs to
classCi, the final output should be equivalent toCi. For this
reason, the class label is determined by computing the errors
betweenY (x) and Ci. The class label that has the smallest
error becomes the final classC,

C = argi min{|i − Y (x)|}, i ∈ [1, . . . , n]. (6)

III. F UZZY CLASSIFIER DESIGN VIA L INEAR MATRIX

INEQUALITIES

In this section, we shall show how to design the T–S fuzzy
classifier by using convex optimization technique. Designing of
the T–S fuzzy classifier is achieved by solving two sub design
problems: the membership function identification problem and
the consequent parameter identification problem. . To solving
two sub design problems, it needs to define design problem
specifically. Therefore, we formulate the following T–S fuzzy
classifier design problems:

Problem 1: When x belongs to classCi, the antecedent
membership functions and theA andB for (4) should satisfy
the following design objectives:

1) hi(x) is maximized, and thehj,j 6=i(x) is minimized.
2) The membership functionhi(x) of the fuzzy classifier

should be equivalent toi.

A. Antecedent part design

Let us discuss the design process of the antecedent part in
full detail. Consider the first objective of Problem 1. To convert
the identification problem to the convex optimization problem,
the norm distance between the linear functions is calculated.
Then, the LMI optimization problem is formulated by using
Schur’s complement law. Ifx belongs to classCi, hi should
be maximized. So, if antecedent part is design to satisfy the
first objective of Problem 1,hi(x) satisfies following equation,

hi(x) = 1, x ∈ Ci. (7)

Notice that the firing strength can be formulated as following
forms,

hi(x) = e
−

(ci
1−x1)2

vi
1 × e

−
(ci

2−x2)2

vi
2 × . . . × e

−
(ci

n−xm)2

vi
m

= e
−

∑

m
j=1

(ci
j
−xi)

2

vi
j

= e−(x−ci)
T V T

i Vi(x−ci) (8)

where Vi = diag( 1√
vi
1

, . . . , 1√
vi

m

) is the diagonal matrix

containing the width of the gaussian membership functions
of the ith rule, andci = [ci

1, . . . , c
i
m] represents vector that

has center values of the membership function of theith rule.
ci
j is the center of gaussian membership function of thejth

feature of theith rule.
Then (7) can be reformulated as following linear equations:

(x − ci)
T V T

i Vi(x − ci) = 0, x ∈ Ci. (9)

To design the antecedent part, we should determineci and
Vi in (9). By using (9), we can formulate the following the
LMI optimization problem.

Problem 2: Whenx labeled as classCi is given, determine
Vi andci for (4) such as the following constraint is satisfied:

Minimize
ci,Vi

γ subject to

0 < Vi (10)

Vi < Wγ (11)

‖Vi(x − ci)‖2
2 < γ, ∀x ∈ Ci (12)



whereW is weight matrix which is defined as follows:

W = diag(w1, . . . , wm) =
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...
. . .

...
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

. (13)

Remark 1: To consider the influence of variances of fea-
tures, we use weight matrixW . By adding inequality condition
(11), Vi is influenced by variance of featurei.

Theorem 1: If x labeled asCi exists,Vi and ci are deter-
mined by solving the following general eigenvalue problem
(GEVP),

Minimize
ci,Vi

γ subject to

γW > Vi > 0 (14)

∀x ∈ Ci, La(x) =

[

γ ?

Vix − qi γ

]

> 0 (15)

whereqi = Vici and? denotes the transposed element matrix
for the symmetric position.

Proof: The convex optimization constraint (12) can be
rewritten as follows:

(Vi(x − ci))
T (Vi(x − ci)) ≤ γ2.

By using the Schur’s complement, the convex optimization
constraint can be recasted in the LMI form as follows:

[

γ ?

Vix − Vici γ

]

≥ 0

BecauseVici is jointly convex form, we introduce new
LMI variable qi instead ofVici. Therefore, the following LMI
constraints can be hold,

γW > Vi > 0 (16)
[

γ ?

Vix − qi γ

]

> 0, ∀x ∈ Ci (17)

Theorem 1 shows that way to identify the membership
function of theith rule. By using Theorem 1, we can construct
algorithm for the design of antecedent part. The algorithm is
shown in Algorithm 1.

Theorem 1 shows the method for identification of mem-
bership function. By using Theorem 1, we can develop the
design procedure for antecedent part. The algorithm is shown
in Algorithm 1.

B. Consequent part design

Consider the second objective of Problem 1. In the second
objective, we suppose that the firing strength matrixH is
predetermined. To satisfy the second objective of Problem 1,

it is necessary to determine theA andB so that the following
matrix equality constraint should be satisfied.

Yd = HT (Ax + B), ∀x ∈ F (18)

whereYd is the desired output of the classifier. Equation (18)
is formulated by using (6). Therefore, if the input featurex

belonged to classCi, the desired outputYd becomesi.
However, It is hard to get consequent matricesA and B

which satisfy equality condition (18) for all input features.
To overcome this difficulty, convex optimization techniqueis
considered. By taking norm distance betweenYd and Y (x),
we can formulate following LMI optimization problem:

Problem 3: Whenx andH are given, determineA andB

for (4) so that the following constraint is satisfied:

Minimize γ subject to

‖Yd − HT (Ax + B)‖2

2 < γ, for ∀x ∈ F.

(19)
Theorem 2: If x, Yd, andH exist,A andB of the proposed

T–S fuzzy classifier are determined by solving the following
GEVP

Minimize
A,B

γ subject to

∀x ∈ F, Lc(x) =

[

γ ?

Yd − HT (Ax + B) I

]

> 0.

(20)
Proof: The constraint (19) can be reformulated to LMI

term by using Schur’s complement rule as following step:

(Yd − HT (Ax + B))T (Yd − HT (Ax + B)) < γ (21)

γ −
[

Yd − Y (x)
]T ×

[

Yd − Y (x)
]

> 0 (22)
[

γ ?

Yd − HT (Ax − B)) I

]

> 0. (23)

Theorem 2 shows that way to identify consequent param-
eters. By using Theorem 2, we can construct algorithm for
the design of consequent part. The algorithm is shown in
Algorithm 2.

IV. SIMULATION

In the following subsections, we consider two different
classification problems: iris and WBCD data. Table I shows
the summary of data sets used in simulation. Two kinds of
simulation are performed to evaluate various performancesof
classifier: The first simulation, testing simulation, performs
training with all data set and testing with all data set; the
second simulation, training simulation, performs training with
random half of whole data sets and testing with another
half of whole data set. At the fist simulation, we obtain the
design results of T–S fuzzy classifier: membership functionand



TABLE I

DATA SETS WITH NUMERICAL ATTRIBUTE VALUES.

Data sets No. of Samples No. of Features No. of Classes
Iris 150 4 3

WBCD 683 9 2

TABLE II

CLASSFICATION RESULTS ON VARIOUS DATA SETS: TRAINING CASE.

Data sets No. of Rules Accuracy(%)
Iris 2 98.67

WBCD 2 96.93

consequent parameter and compare to other classifier. Then the
comparisons of generalizing capability between the proposed
T–S fuzzy classifier and other classifier are shown by using
the second simulation.

A. Real World Data

In order to evaluate the performance of the proposed
approach, we perform two simulations. Table II summaries
the results of the training simulation on various data set. In
addition, Table III summaries the results of testing simulation
on various data set. From Table II and Table III, we find
that there are a little difference between results on testing
simulation and training simulation. This means the propose
method has good generalization capability. In the following
subsection, the detail descriptions for data sets and obtained
membership function and consequent parameter are shown.

1) Iris Data: The iris database created by Fisher is a com-
mon benchmark in the classification and the pattern recognition
studies [17]. It has four feature variables: sepal length, sepal
width, petal length, and petal width and consists of 150 feature
vectors: 50 for each iris sestosa, iris versicolor, iris virinica. In
the first simulation, 150 patterns are used to train T–S fuzzy
classifier. Then, same number of sample data are used to evalu-
ate the performance of T–S fuzzy classifier. Training procedure
of T–S fuzzy classifier is comprised by two Algorithm stated
in Section 3. we can get the identified membership function
via Algorithm 1. Figure 1 show the membership functions. By
using Algorithm 2, we can determine consequent parameter
that described as

TABLE III

CLASSIFICATION RESULTS ON VARIOUS DATA SETS: TESTING CASE.

Data sets Rules Worst Acc.(%) Avrage Acc. (%) Best Acc. (%)
Iris 2 94.67 97.91 100

WBCD 2 95.02 96.30 97.66

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4  4.5  5  5.5  6  6.5  7  7.5

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5  2  2.5  3  3.5  4  4.5

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.5  0  0.5  1  1.5  2  2.5  3

(d)

Fig. 1. Membership functions for iris data: training simulation. (a) feature
x1. (b) featurex2. (c) featurex3. (d) featurex4.



TABLE IV

CLASSFICATION RESULTS ON VARIOUS DATA SET: TESTING DATA SET

Data set
Classfiication accuracy (%)

Ours C4.5
Iris 97.91 94.00

WBCD 96.30 93.84

A =





−0.0000 0.0000 −0.0001
−0.1121 −0.2234 0.0029
−0.1020 −0.0624 0.1276



 , B =





0.6667
1.7547
1.8412



 .

In the second simulation, we use 76 patterns to train the T–
S fuzzy classifier and use 75 patterns to test the generalizing
capability.

2) Wisconsin Breast Cancer Diagnostic Data: The WBCD
was obtained from the university of Wisconsin Hospitals,
Madison from Dr. W.H. Wolberg [14]. This data contains
699 patterns and has two classes; 468 patterns belong to the
‘benign’ and other 241 patterns belong to the ‘malignant’.
Since 16 patterns have missing values, we use 683 patterns
to evaluate the performance of the proposed classifier.

To evaluate the training performance, 683 patterns are
used to identify the T–S fuzzy classifier. In similar to iris
data simulation, the proposed two algorithms are used. The
identified membership functions are shown in Figure 2. The
consequent parameters can be denoted as
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, B =

[

0.6857
1.6990

]

.

In the testing simulation, the proposed classifier is trained by
using 242 random data. Another 241 data are used to evaluate
the general capability of classifier.

B. Performance Comparisons

To check the superiority of the proposed classifier, we
compare the performance of the proposed classifier with other
classifier. The C4.5 algorithm is compared with the proposed
method for all data sets. The C4.5 algorithm is well-known
and frequently used as common bench mark. Table IV gives
the results of comparison and shows the superiority of the
proposed method for all data set.
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Fig. 2. Membership functions for WBCD data: training simulation. (a)-(i)
show the membership function of features fromx1 to x9.



TABLE V

COMPARISON OF CLASSIFICATION RESULTS ONWBCDD DATA : TESTING

DATA SET

Reference Average of classification accuracy (%)
[14] 95.14
[15] 95.57
[16] 95.60
Ours 96.30

TABLE VI

COMPARISON OF CLASSIFICATION RESULTS ONIRIS DATA: TESTING DATA

SET

Reference Number of rules Classification accuracy (%)
[10] 17 97.33
[10] 5 92.00
[13] 48 97.33
Ours 3 97.66

In addition, to compare the proposed classifier with another
classifier that except C.45 algorithm, WBCD data set is used
for comparison. Table V shows the results of the comparison
for WBCD data set. From Table V, we can confirm that the
proposed classifier has better performance than conventional
classifies.

Next, in order to show the superiority of the proposed design
method, we compare the proposed classifier with conventional
fuzzy classifier. To give the confidence of the performance
comparison, we use iris data set which is used in common
bench mark. Table IV show the comparison results on iris data
set. We can figure out that the proposed method has higher
performance than other classifier.

V. CONCLUSIONS

In this paper, the LMI based design method for T–S fuzzy
classifier is proposed. In order to apply LMI optimization
technique to T–S fuzzy classifier, we relax design problem of
T–S fuzzy classifier to LMI optimization problem. The main
advantage of the proposed T–S fuzzy classifier is that the T–S
fuzzy classifier can be obtained, very reliably and efficiently,
using interior-point method or other special methods for LMI
optimization. In order to check the performance of the pro-
posed T–S fuzzy classifier, we use four real world data for
simulation. From the simulation result, we can confirm that
the membership functions and consequent parameter is well
identified and the performance is higher than conventional
classifier.
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