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~ Abstract—In this paper, we present a new linear matrix solved efficiently [18]. These advantages help to get over th
inequality (LMI) approach to design of Takagi—Sugeno (T-S) disadvantages from conventional methods.
fuzzy classifier. In this paper, we present a novel approach to |, this paper, we present a new LMI approach to T-S

design of Takagi—Sugeno (T-S) fuzzy classifier. In order to design e . L S N
the T-S fuzzy classifier, we set up two sub design problems: the fuzzy classifier design. Similar to typical identificatiorethod,

antecedent and consequent part design problem. The main idea tWO-step procedure is proposed. First, antecedent part-8f T
is that the sub design problem is viewed as a LMI optimization fuzzy classifier is determined. By formulating and solvirgIL
problem. Finally, the performance of the T-S fuzzy classifier is optimization problem, the center and width of membership
evaluated by computer simulations and compared to other fuzzy fynction are identified. In the second, consequent part ef th
classifier. U .

T-S fuzzy classifier is determined. The consequent paramete
of the T-S fuzzy classifier are also determined by formugatin
LMI optimization problems and solving it.

We focus on the problems of designing a fuzzy rule-basedThe organization of this paper is as follows. After the
classifier form observation data. Frequently, in dataedriv introduction, the basic definitions and the structure ofzfuz
fuzzy classification approaches, the T-S type fuzzy modeldkassifier are presented in Section 2. Section 3 presentsathe
used [1]. The typical identification of the T-S fuzzy classifi sic approach to classifier design by LMI including the clfissi
is done in two steps. First, the fuzzy rule antecedents gssblem statement. Simulation results testify to the dias's
determined; then, consequent parameters are identified gerformances and the utilities of the proposed method are
using optimization techniques. discussed in Section 4 including two design examples: iris,

Many methods have been proposed to determine antecedafigconsin breast cancer diagnostic (WBCD).
part and consequent part of the T-S fuzzy classifier: ge-
netic algorithm (GA), neural network (NN), and statistical
approaches [2]- [9], [12]. The conventional design method Pattern classification problems are summarized by assign-
has been successfully applied to T-S fuzzy classifier, hewyevnd & classC; from a predefined class category set=
there are some weak points. GA can be used widely to designt: C2, - Cn} to an object described as a point in a certain
the T-S fuzzy classifier, but, GA can guarantee the optignaliteature space: € R™.
and unique of obtained T-S fuzzy classifier and spend much!he fuzzy classifier implements these proper mappings by
time to get solution. In NN case, because NN require a lot Bfing fuzzy sets and IF-THEN rules. One of them, the T-
data to get good confidence in the result, NN is not suitabRe fuzzy classifier is considered in this paper. The T-S fuzzy
to problems which have small size data set. Differ form G/lassifier has following fuzzy rules [12]:
statistical approach gives uniquely optimal solution foreg R; :IF x,is M;; AND ... AND z,, is M, 1)
problems, however, it need prior probability information. THEN yi(2) = a; . b

In order to solve these disadvantages, we use LMI optimiza- Yi@) = andy oot GimTm b
tion technique. LMI optimization technique has followingim Here z; € R is the ith feature input,M,,, ..., M;,, are the
advantages: LMI optimization technique has uniquely optimantecedent fuzzy setg;(z) is the consequent output of the
solution, and is derivative-free optimization method, aaeh ith rule, v = [z;...2,]7 € F C R™ is input feature
be formulated by using only inequality relationship, and igector, andF is the feature vector set containing all feature

I. INTRODUCTION

Il. PRELIMINARIES



vector, anda,;; and b; are consequent parameters. In this Problem 1: When = belongs to clas<;, the antecedent
paper, we consider only gaussian membership function as thembership functions and thé and B for (4) should satisfy
membership function of the T-S fuzzy classifier. the following design objectives:

The final output of the T-S fuzzy classifier is inferred b)i) h;

is maximized, and thé; ;; is minimized.
following equations. () 3.i#i(T)

2) The membership functiorh;(x) of the fuzzy classifier

S hi(@) (0T gy + bi) should be equivalent ta

S B @
. = A. Antecedent part design

hi(x) = H pn,; () ®) Let us discuss the design process of the antecedent part in
J=1 full detail. Consider the first objective of Problem 1. To cert

whereh;(z) is the firing strength of theth rule, iy, (z;) € the identification problem to the convex optimization pesh|
R[0,1] is the membership degree of thith feature of theth the norm distance between the linear functions is calalate
rule. For computational convenience, the final output of thE'en, the LMI optimization problem is formulated by using

T-S fuzzy classifier can be represented as following mat€hur's complement law. It belongs to clas€;, h; should
equation: be maximized. So, if antecedent part is design to satisfy the

first objective of Problem 1, (x) satisfies following equation,

Y(z) = H'(Az + B) 4)
hl(fL‘) =1,z¢€ C;. (7)
where
Thi(z)] fa1 ... aim]  [a1] (b Notice that the firing strength can be formulated as follayvin
forms,
) ’ ’ ‘ : _(ef-=p)? _ (ch—=)? (e —am)?
H = hz({E) 714 =|ai1 ... Qim| = |a; ,B = bz . (5) h7(£13) —e . vl x e : v X ...xe vl,
. . . B m (Céfmi)Q
. Jj=1 vl
hi(z) a a a b —° '
L/uL) ] Lai .- im | L& | A :ef(wfci)TViTVi(a:fci) ®)

After the final results of the T-S fuzzy classifier is calcu-
lated, the class label of is determined. The classificationwhere V; = diag(—— —~) is the diagonal matrix

_ i ARy
mapping resultshould have one of the class label Corr(?ontaining the Widtﬁi)f the gaussian membership functions
sponding tox. To determine the class label, the T-S fuzz

classifier is designed to have the final output which is eq”ﬁ‘;Ls center values of the

¥t the ith rule, andc; = [ct,...,c.] represents vector that

. : membership function ofitherule.
to correspondmg class label. For exa_mple,xlfbelongs to cj is the center of gaussian membership function of ftie
classC;, the final output should be equivalent ¢§. For this feature of theith rule.

reason, the class label is determined by computing theserror_l_hen (7) can be reformulated as following linear equations:
betweenY (x) and C;. The class label that has the smallest 9 q '

error becomes the final clags,

(x—c)"VIVi(x —¢;) =0, x€C;. 9
C = arg, min{li —Y(z)|}, i € [1,...,n]. (6) _ )
To design the antecedent part, we should determjre:nd
I1l. Fuzzy CLASSIFIERDESIGN VIA LINEAR MATRIX V; in (9). By using (9), we can formulate the following the
INEQUALITIES LMI optimization problem.

Problem 2: Whenz labeled as clas€’; is given, determine

In this section, we shall show how to design the T-S fuzz‘% andc; for (4) such as the following constraint is satisfied:

classifier by using convex optimization technique. Desigrof
the T-S fuzzy classifier is achieved by solving two sub design Minimize subiect to
problems: the membership function identification problerd a i, Vi K )
the consequent parameter identification problem. . To sglvi 0<V; (10)
two sub design problems, it needs to define design problem v

- X P < Wry (11)
specifically. Therefore, we formulate the following T-S #yiz )
classifier design problems: Vil —ci)lla <v,  Vzel; (12)



whereW is weight matrix which is defined as follows: it is necessary to determine tkeand B so that the following

0 0 matrix equality constraint should be satisfied.
w1 N

0 wy ... 0 Yy=H"(Az+ B), Ve €F (18)
W = diag(wy,...,wn) = | . . - (13)
: : I whereY; is the desired output of the classifier. Equation (18)
0 0 ... wp is formulated by using (6). Therefore, if the input feature
Remark 1. To consider the influence of variances of feabelonged to clase);, the desired output, becomes.
tures, we use weight matri¥’. By adding inequality condition However, It is hard to get consequent matricésand B
(11), V; is influenced by variance of featuie which satisfy equality condition (18) for all input featsre
Theorem 1: If = labeled asC; exists,V; andc; are deter- Tg overcome this difficulty, convex optimization technigjse
mined by solving the following general eigenvalue problergonsidered. By taking norm distance betweénand Y (z),

(GEVP), we can formulate following LMI optimization problem:
o . Problem 3: Whenz and H are given, determingl and B
MZZZ,WZE 7 subject to for (4) so that the following constraint is satisfied:
YW >Vi>0 (14 Minimize ~ subject to
_ Y * 2
Ve e C;, Lg(x) = {Vix . 7] >0 (15) |Ys— H'(Az + B)||, <, for Vz G(Ji.g)
whereq; = V;c¢; andx denotes the transposed element matrix Theorem 2: If z, Yy, andH exist, A and B of the proposed
for the symmetric position. T-S fuzzy classifier are determined by solving the following
Proof: The convex optimization constraint (12) can b&EVP
rewritten as follows: S .
Mzgzgnze ~ subject to
(Vi(x — )T (Vile — i) <2 ’
ol *
. o F, L.z)= .
By using the Schur’s complement, the convex optimization vz €F, (@) Y;-H'(Az+B) I >0
constraint can be recasted in the LMI form as follows: (20)
Proof: The constraint (19) can be reformulated to LMI
v * >0 term by using Schur's complement rule as following step:
Vi =Viei vy
_gT T _gT
BecauseVjc; is jointly convex form, we introduce new (Yo — H (Ax + B)) (YdT H (Az+B)) <y (21)
LMI variable q; instead ofV;¢;. Therefore, the following LMI v=[Ya=Y(2)] x[Ya=Y()] >0 (22
constraints can be hold, ~y * 0 23)
T _ > 0.
W S Vi >0 (16) Yo— H' (Ax—B)) I
[ |
*
[va_ @ 7} > 0, Vz € C; (17)  Theorem 2 shows that way to identify consequent param-

eters. By using Theorem 2, we can construct algorithm for

B the design of consequent part. The algorithm is shown in
Theorem 1 shows that way to identify the membershigigorithm 2.

function of theith rule. By using Theorem 1, we can construct
algorithm for the design of antecedent part. The algoritem i IV. SIMULATION

shown in Algorithm 1. In the following subsections, we consider two different
Theorem 1 shows the method for identification of mentiassification problems: iris and WBCD data. Table | shows
bership function. By using Theorem 1, we can develop thRe summary of data sets used in simulation. Two kinds of
design procedure for antecedent part. The algorithm is Bhogimulation are performed to evaluate various performawntes
in Algorithm 1. classifier: The first simulation, testing simulation, penfis
training with all data set and testing with all data set; the
second simulation, training simulation, performs tragnimith
Consider the second objective of Problem 1. In the secorahdom half of whole data sets and testing with another
objective, we suppose that the firing strength matkixis half of whole data set. At the fist simulation, we obtain the
predetermined. To satisfy the second objective of Problemdesign results of T-S fuzzy classifier: membership functiod

B. Consequent part design



TABLE |
DATA SETS WITH NUMERICAL ATTRIBUTE VALUES.

Data sets|| No. of Samples| No. of Features| No. of Classes
Iris 150 4 3
WBCD 683 9 2

TABLE Il
CLASSFICATION RESULTS ON VARIOUS DATA SETSTRAINING CASE.

Data sets|| No. of Rules | Accuracy(%)
Iris 2 98.67
WBCD 2 96.93

consequent parameter and compare to other classifier. fiken t
comparisons of generalizing capability between the pregos
T-S fuzzy classifier and other classifier are shown by using
the second simulation.

A. Real World Data

In order to evaluate the performance of the proposed
approach, we perform two simulations. Table Il summaries
the results of the training simulation on various data set. |
addition, Table Il summaries the results of testing sirtiata
on various data set. From Table Il and Table Ill, we find
that there are a little difference between results on tgstin
simulation and training simulation. This means the propose
method has good generalization capability. In the follayvin
subsection, the detail descriptions for data sets and radatai
membership function and consequent parameter are shown.

1) Iris Data: The iris database created by Fisher is a com-
mon benchmark in the classification and the pattern redognit
studies [17]. It has four feature variables: sepal lengépab
width, petal length, and petal width and consists of 150ufieat
vectors: 50 for each iris sestosa, iris versicolor, irignita. In
the first simulation, 150 patterns are used to train T-S fuzzy
classifier. Then, same number of sample data are used tc evalu
ate the performance of T-S fuzzy classifier. Training proced
of T-S fuzzy classifier is comprised by two Algorithm stated
in Section 3. we can get the identified membership function
via Algorithm 1. Figure 1 show the membership functions. By
using Algorithm 2, we can determine consequent parameter
that described as

TABLE Il
CLASSIFICATION RESULTS ON VARIOUS DATA SETSTESTING CASE

(d)

Best Acc. (%) H9- 1.

Data sets|| Rules | Worst Acc.(%) | Avrage Acc. (%)
Iris 2 94.67 97.91 100
WBCD 2 95.02 96.30 97.66

Membership functions for iris data: training simubati (a) feature
z1. (b) featurexs. (c) featurexs. (d) featurexy.



TABLE IV

CLASSFICATION RESULTS ON VARIOUS DATA SETTESTING DATA SET

Classfiication accuracy (%)

Data set Ours C45

Iris 97.91 94.00

WBCD 96.30 93.84
—0.0000  0.0000 —0.0001 0.6667
A= 1|-0.1121 —-0.2234 0.0029 |, B = |1.7547

—0.1020 -0.0624 0.1276 1.8412 @ (b)

In the second simulation, we use 76 patterns to train the T—.
S fuzzy classifier and use 75 patterns to test the genemlizin -
capability.

2) Wisconsin Breast Cancer Diagnostic Data: The WBCD
was obtained from the university of Wisconsin Hospitals, -
Madison from Dr. W.H. Wolberg [14]. This data contains e e
699 patterns and has two classes; 468 patterns belong to the © C)
‘benign’ and other 241 patterns belong to the ‘malignant’.
Since 16 patterns have missing values, we use 683 patterns
to evaluate the performance of the proposed classifier.

To evaluate the training performance, 683 patterns are..
used to identify the T-S fuzzy classifier. In similar to iris
data simulation, the proposed two algorithms are used. The-
identified membership functions are shown in Figure 2. The .
consequent parameters can be denoted as

[0.0155  0.0125 17
0.0263  0.0021
0.0314  0.0030
0.0109  0.0051
A= 00056 —0.0012| | B:{?'gggg}
0.0504  0.0052 : e R
0.0163  0.0096 @ )
0.0288  0.0015 : .
00548 0.0028 |

In the testing simulation, the proposed classifier is traimg
using 242 random data. Another 241 data are used to evaluate
the general capability of classifier.

B. Performance Comparisons

To check the superiority of the proposed classifier, we 0
compare the performance of the proposed classifier withr ottrég. 2.  Membership functions for WBCD data: training simulati¢a)-(i)
classifier. The C4.5 algorithm is compared with the propos&@P the membership function of features fram to .
method for all data sets. The C4.5 algorithm is well-known
and frequently used as common bench mark. Table IV gives
the results of comparison and shows the superiority of the
proposed method for all data set.



TABLE V

COMPARISON OF CLASSIFICATION RESULTS ONWBCDD DATA: TESTING [2]
DATA SET
[3]
Reference| Average of classification accuracy (%)
[14] 95.14 [4]
[15] 95.57
[16] 95.60
Ours 96.30
[5]
TABLE VI
COMPARISON OF CLASSIFICATION RESULTS ONRIS DATA: TESTING DATA (6]
SET
— [71
Reference| Number of rules| Classification accuracy (%)
[10] 17 97.33
[10] 5 92.00
[13] 48 97.33 [8]
Ours 3 97.66
(9]

In addition, to compare the proposed classifier with anoth@?!
classifier that except C.45 algorithm, WBCD data set is used
for comparison. Table V shows the results of the comparis&i!
for WBCD data set. From Table V, we can confirm that the
proposed classifier has better performance than convehtion2]
classifies.

Next, in order to show the superiority of the proposed desi
method, we compare the proposed classifier with convertiona
fuzzy classifier. To give the confidence of the performand&!
comparison, we use iris data set which is used in common
bench mark. Table IV show the comparison results on iris dgia]
set. We can figure out that the proposed method has higher
performance than other classifier. [16]

V. CONCLUSIONS
17
In this paper, the LMI based design method for T-S fuzz[y ]

classifier is proposed. In order to apply LMI optimizatior18]
technique to T-S fuzzy classifier, we relax design problem of
T-S fuzzy classifier to LMI optimization problem. The main
advantage of the proposed T-S fuzzy classifier is that the T-S
fuzzy classifier can be obtained, very reliably and effidient
using interior-point method or other special methods forlLM
optimization. In order to check the performance of the pro-
posed T-S fuzzy classifier, we use four real world data for
simulation. From the simulation result, we can confirm that
the membership functions and consequent parameter is well
identified and the performance is higher than conventional
classifier.
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