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Abstract— In the system modeling from training data with
measurement noise, it is an important problem to select the
appropriate structure of fuzzy model that can present good
generalization. To solve this problem, this paper presents a new
fuzzy inference system for modeling nonlinear dynamic system
based on input and output data measurement noise. In the
proposed fuzzy system, the number of fuzzy rules and parameter
values of membership functions are automatically determined
using the relevance vector machine (RVM) which does not have
a bias term. The RVM has a probabilistic Bayesian learning
framework. The RVM is described by the sum of times of
weight and kernel function. Kernel function projects input space
into high dimensional feature space. The structure of proposed
fuzzy system is same as that of the Takagi-Sugeno fuzzy model.
Especially, the number of fuzzy rules can be reduced under
the process of optimizing a marginal likelihood by adjusting
parameter values of kernel functions using the gradient ascent
method. Once a structure is selected, coefficients in consequent
part are determined by the least square method. Examples
illustrate the effectiveness of the proposed new fuzzy inference
system.

I. I NTRODUCTION

The Fuzzy Inference System (FIS) has shown powerful
capability for the modeling of nonlinear systems [1], [2]. The
FIS based on only human expertness may not lead to sufficient
accuracy for complex and uncertain systems. Because of this
reason, neuro-fuzzy modeling which acquires knowledge from
a set of input-output data has been actively investigated [3]. If
training data set for modeling has measurement noise and (or)
available data size is too small in the real system modeling,
neural network can bring out over-fitting problem which is a
factor of poor generalization.

Therefore it is an important problem to select the appro-
priate structure of neuro-fuzzy model that can perform good
generalization. Some researches have been progressed in order
to solve this problem. Brancoet al. [4] investigated how
and why fuzzy modeling systems are affected when learning
data is corrupted by noise. Holmstromet al. [5] made an
effort to improve the generalization capability of a neural
network by introducing additive noise to the training samples.
Karystinoset al. [6] addressed K-mean clustering algorithm
which results from the least entropic Gaussian mixture upon
equal-likelihood cross-validated shaping for improving milti-
layer perceptrons (MLP) generalization ability. Leeet al. [7]
described a general regression neural network with fuzzy

ART clustering (GRNNFA), as hybrid neural network model,
based on the fusion of fuzzy adaptive resonance theory (Fuzzy
ART) and the general regression neural network (GRNN) for
data regression. However, many researches have usually dealt
system optimization [6], [7] and generalization problem [5]
independently.

Recently, statistical approach methods have popularly de-
veloped in nonlinear system modeling based on input and
output data with measured noise [8], [9], [10], [11]. Statistical
techniques generally deal with trade-off between fitting the
training data and simplifying model capacity. In statistical
method, kernel function offers an alternative solution by map-
ping the data into high dimensional feature space to increase
the computational power. The state-of-the-art Support Vector
Machine (SVM)[12] has been used in order to automatically
find the number of network nodes or fuzzy rules based on
given error bound [11], [13]. The Support Vector Neural
Network (SVNN) is proposed to select the best structure of
radial based function network for the given precision [11].
The Support Vector Fuzzy Inference System is proposed to
find the reduced number of rules using gradient descent
method updating kernel parameters [13]. SVMs have delivered
good performance in various application. However, Tipping
[14] pointed out the following disadvantages of the support
vector learning methodology and proposed the Relevance
Vector Machine (RVM) method. In the SVM, predictions
are not probabilistic and the kernel functionK(x, xi) must
satisfy Mercer’s condition. It is also necessary to estimate the
error/margin trade-off parameterC. Above all, the SVM is
relatively less sparse better than the RVM. Particularly, the
RVM base on a kernel-based Bayesian estimation method.
The RVM has shown a comparable generalization performance
with fewer kernel function than the SVM in [14].

In this paper, to select the appropriate structure of fuzzy
model that can present good generalization, we propose a
new fuzzy inference system for modeling nonlinear dynamic
system based on measured noisy input and output data. In
the suggested fuzzy system, the number of fuzzy rules and
parameter value of membership functions are automatically
found by using the RVM [14] which does not have a bias term.
The structure of proposed fuzzy system is same as that of the
Takagi-Sugeno (TS) fuzzy model. Especially, the number of
fuzzy rules can be reduced under the process of optimizing



a marginal likelihood by adjusting parameter values of kernel
functions using the gradient ascent method. Once a structure
is selected, coefficients in consequent part are determined by
the least square method.

The rest of this paper is organized as follows. The RVM
is introduced in Section II. The structure and learning algo-
rithm of the new FIS using the RVM are given in Section
III. The effectiveness of the proposed FIS are illustrated by
examples involving nonlinear dynamic systems in Section IV.
Conclusion is given in Section V.

II. RELEVANCE VECTORMACHINE

The RVM has an exploited probabilistic Bayesian learning
framework. It acquires relevance vectors and weights by
maximizing a marginal likelihood. The structure of the RVM is
described by the sum of times of weights and kernel functions.
A kernel function means a set of basis function projecting the
input data into a high dimensional feature space to increase
the computational power.

Given a data set of input-target pairs{xn, tn}N
n=1, and

assuming that the targets are independent and contaminated
with mean-zero Gaussian noiseεn with varianceσ2:

tn = y(xn; w) + εn. (1)

The RVM without a bias can be represented as follows [14]:

y(x; w) =
N∑

i=1

wiK(x, xi) = Φw, (2)

where N is the length of the data, weight vector
w = (w1, ..., wN )T and (N × N) design matrix
Φ = [φ(x1), φ(x), ..., φ(xN )]T , wherein φ(xn) =
[K(xn, x1),K(xn, x2), ..., K(xn, xN )]T and K(x, xi) is
a kernel function.

The likelihood of the measured training data set is written
as:

p(t|w, σ2) = (2πσ2)−N/2exp

{
− 1

2σ2
‖t − Φw‖2

}
(3)

where target vectort = (t1, ..., tN )T . Maximizing likelihood
estimation ofw andσ2 from Eq. (3) leads to over-fitting. To
avoid this, a zero-mean Gaussian prior distribution overw with
varianceα−1 is added as:

p(w|α) =
N∏

i=0

√
α

2π
exp

(
−α

2
w2

i

)
, (4)

whereα = (α1, α2, ..., αN )T .
The posterior distribution over the weight from Bayes rule

is thus given by:

p(w|t, α, σ2) =
likelihood× prior
normalizing factor

,

=
p(t|w, σ2)p(w|σ2)

p(t|α, σ2)
,

= (2π)−(N+1)/2|Σ|−1/2 ·
exp

{
−1

2
(w− µ)T Σ−1(w− µ)

}
(5)

where the posterior meanµ and covarianceΣ are as follows:

µ = σ−2ΣΦTt, (6)

Σ = (σ−2ΦTΦ + A)−1, (7)

with A = diag(α1, α2, ..., αN ).
The likelihood distribution over the training targets Eq. (3)

can be marginalized with respect to the weights to obtain the
marginal likelihood, which is also a Gaussian distribution

p(t|α, σ2) =
∫

p(t|w, σ2)p(w|α)dw,

= (2π)−N/2|C|−1/2exp

{
−1

2
tT C−1t

}
(8)

with covarianceC = σ2I + Φ A−1ΦT.
Values of α and σ2 maximizing themagrinal likelihood

cannot be obtained in closed form, and an iterative re-
estimation method is required [14]. The following the ap-
proach of MacKay [15] gives:

αnew
i =

γi

µ2
i

, (9)

(σ2)new =
‖t −Σµ‖2
N −∑

i γi
, (10)

where µi is the i-th posterior mean weight Eq. (6) and the
quantitiesγi ≡ 1−αi

∑
ii with the i-th diagonal element

∑
ii

of the posterior weight covariance Eq. (7).
In the process of solving this optimization problem, the

vector from the training set that associates with nonzero
hyperparameter is called therelevance vector.

III. N EW FUZZY INFERENCESYSTEM USING THE

RELEVANCE VECTORMACHINE

This section describes the structure of the new fuzzy infer-
ence system based on the TS fuzzy model and the learning
algorithm.

A. The Structure of the FIS Using the Relevance Vector
Machine

Suppose we have given input and target data

(x1, t1), ..., (xN , tN ) (11)

where xi=[xi
1, x

i
1, ..., x

i
D](i = 1, 2, ..., N) is a input variable

and t=[t1, ..., tN ] is a target variable. The proposed TS fuzzy
model with fuzzy if-then rules can be represented by Eq. (12).

R1 : If x1 is K(x1, x
∗
11) and ...xD is K(xD, x∗1D),

Thenf1 = a10 + a11x1 + ... + a1DxD

R2 : If x1 is K(x1, x
∗
21) and ...xD is K(xD, x∗2D),

Thenf2 = a20 + a21x1 + ... + a2DxD

...
...

...

Rn : If x1 is K(x1, x
∗
n1) and ...xD is K(xD, x∗nD),

Thenfn = an0 + an1x1 + ... + anDxD, (12)

wheren is the number of fuzzy rules,D is the dimension of
input variables,xj(j = 1, 2, ..., D) is a input variable,fi is
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Fig. 1. Structure of the proposed fuzzy inference system

the i-th local output variable,K(xj , x
∗
ij)(i = 1, 2, ..., n, j =

1, 2, ..., D) is a fuzzy set andaij(i = 1, 2, ..., n, j =
0, 1, ..., D) is a consequent parameter.

Now, we describe the structure of FIS using the RVM. It
consists of two layers as shown in Fig. 1. The two layers
involved in the proposed FIS are presented as follows:

Layer 1: Input space is nonlinearly projected into feature
space using kernel functions. Relevance Vectors are
obtained from the RVM learning algorithm. The
Gaussian kernel function with varianceθi is used
as follows:

K(x, x∗i ) = exp
(
− (x− x∗i )

2

2θ2
i

)
, i = 1, 2, ..., n (13)

where x∗i is a RV, θi is called a kernel parameter
and n is the number of RVs. After all, this kernel
function becomes a Gaussian membership function
in the proposed FIS.x∗i and θi is respectively the
center and variance of thei-th Gaussian membership
function. The RVM algorithm is a fuzzy inference
engine determining the number of fuzzy rules in FIS.
The Layer 1 is related to the antecedent part of the
FIS.

Layer 2: For the overall output of the fuzzy model con-
structed, defuzzification using the Center Of Gravity
(COG) method is performed.

f(x) =
∑n

i=1 K(x, x∗i ) fi∑n
j=1 K(x, x∗j )

,

=
n∑

i=1

βi (ai0 + ai1x1 + · · ·+ aiDxD) (14)

where βi = K(x,x∗i )∑n
j=1 K(x,x∗j ) and fi = ai0 + ai1x1 +

· · · + aiDxD. It is assumed thatK(x, x∗i ) ≥ 0,∑n
j=1 K(x, x∗j ) > 0. Therefore,0 ≤ βi ≤ 1, (i =
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Fig. 2. Learning algorithm of the proposed FIS

1, 2, ..., n).
The Layer 2 connects with the consequent part of
the FIS.

B. The Learning Algorithm of the FIS Using the Relevance
Vector Machine

The learning algorithm of the FIS using the RVM is shown
in Fig. 2. It can be summarized by the following iterative
procedure.

Step 1: Assign the initial hyperparameterα and kernel
parameterθi.

Step 2:Using the following extended RVM algorithm based
on kernel mapping [14], find RVsx∗i being the
centers ci of Gaussian membership function and
weight w. Particularly, using the Gradient Ascent
Method (GAM), kernel parameterθi is adjusted in
order to select the appropriate type of kernel function
related to the nonlinear dynamic system. Assume
that the log of the marginal likelihood Eq. (8) is the
objective functionL,

L = −1
2

[log |σ2I + Φ A−1ΦT|
+ tT(σ2I + Φ A−1ΦT)−1t]. (15)

From the GAM, the kernel parameterθi is updated
such that the objective functionL is maximized as:

∆θk = ηθ∇θk
L = ηθ

∂L

∂θk
,

= ηθ
∂L

∂φnm

∂φnm

∂θk
,

= ηθθ
−3
k

[
N∑

n=1

N∑
m=1

DnmΦnm(xnk − xmk)2
]
(16)

where Dnm = ∂L/∂φnm wherein matrix
D = σ−2[(t− y)µT −ΦΣ], a set of Gaussian kernel
function φnm = exp{−∑n

k=1(xnk − xmk)2/2θ2
k}

andηθ is the learning late ofθi.

Step 3:Using the following Least Square Estimation (LSE)
method, estimate the parameteraij of the linear
equationfi in Eq. (14).
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Fig. 3. Output data of dynamic system fore(k) ≡ 0

Let

Q =
[

a10 a11 ... a1D , ..., an0 an1 ... anD

]T
, (17)

W =




β1
1 β1

1x1
1 ... β1

1x1
D, ..., β1

n β1
nx1

1 ... β1
nx1

D

β2
1 β2

1x2
1 ... β2

1x2
D, ..., β2

n β2
nx2

1 ... β2
nx2

D

...
... ...

... , ...,
...

... ...
...

βn
1 βn

1 xl
1 ... βn

1 xn
D, ..., βn

n βn
nxn

1 ... βn
nxn

D


 (18)

whereβj
i = K(xj ,x∗i )∑n

k=1 K(x,x∗k) . Thus fuzzy model output
is f(x) = WQ.
If (W TW ) is nonsingular, the parameter vectorQ is
calculated by

Q = (W TW )−1W Ty. (19)

IV. EXAMPLES

In this section, we show two simulation results of the
proposed FIS for the modeling of the nonlinear dynamic
systems.

A. Example 1 : Modeling of 2-Input Nonlinear dynamic system

Consider the nonlinear dynamic system [11],

y(k) = (0.8− 0.5 exp(−y2(k − 1)))y(k − 1)
− (0.3 + 0.9 exp(−y2(k − 1)))y(k − 2)
+ 0.1 sin(πy(k − 1)) + e(k) (20)

wheree(k) is a white noise,e(k) ∼ N(0, 0.12). The training
input of the model isX(k) = [y(k − 1), y(k − 2)]. For
e(k) ≡ 0, this nonlinear dynamic system is unstable at the
origin. Training data of dynamic system input with 300 data
points is shown in Figure 3. This data points are generated
from an initial condition of X(1) = [0.1, 0.1]. But, the
training input data of 300 point pairs are generated from initial
condition ofX(1) = [0, 0]. After the simulation, the proposed
FIS generates the 7 RVs(x∗i ), so that it has 7 rules as follows,

Ri : If x1 is K(x1, x
∗
i1) andx2 is K(x2, x

∗
i2),

Thenfi = ai0 + ai1x1 + ai2x2, i = 1, ..., 7. (21)
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Fig. 4. Training data of dynamic system with noise and selected RVs (O)

TABLE I

PARAMETER VALUES OF THE FIS FOR MODELING OF

X(k) = [y(k − 1), y(k − 2)]

Rule
Antecedent part Consequent part

cij θij ai0, ai1, ai2

1 1.1036 0.5064 1.2486 1.2462 176.34 -29.17 -17.59
2 -0.1316 -1.0581 1.2761 1.2836 256.04 -60.45 21.09
3 -0.7969 0.5276 1.2731 1.2719 284.20 -50.14 -79.64
4 -0.7838 -1.1208 1.2730 1.2779 -262.79 -30.91 -13.15
5 -0.0553 0.9856 1.2817 1.3074 -43.97 -20.68 22.49
6 -1.2754 -0.0553 1.2788 1.2754 -374.52 -52.24 -46.78
7 0.6863 -0.3308 1.2720 1.2582 -116.25 0.02 -37.16
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Fig. 5. Estimated dynamic system output ofX(k) = [y(k − 1), y(k − 2)]

TABLE II

COMPARED RESULTS OF NONLINEAR DYNAMIC FUNCTION

Type Rules( or SVs) Model error

Chanet al. [11] 10 0.099
Proposed FIS 7 0.017
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Fig. 6. Membership function of modeling the dynamic system

Figure 4 shows training data with noises and selected 7
relevance vectors. The parameter values of premise and conse-
quence parts are listed in Table I. Figure 5 shows the modeling
result of estimated dynamic system output ofX(k) = [y(k −
1), y(k − 2)]. Membership functions show in Figure 6. The
method in the literature applied to the same dynamic system,
and the results listed on the Table II. The modeling error is the
standard deviation of test errors. Compared with the number
of rules and modeling error, the proposed method gives the
smaller number of rules and modeling error rather than other.

B. Example 2 : Modeling of Robot Arm Data

The training robot arm data are obtained from the relation-
ship between input variables (x1, x2) being joint angles and
target variables(y1, y2) being positions,

y1 = 2.0 cos x1 + 1.3 cos(x1 + x2) + δ, (22)

y2 = 2.0 sin x1 + 1.3 sin(x1 + x2) + δ, (23)

whereδ is a Gaussian noise,δ ∼ N(0, 0.052). We use the 400
input-target pairs of robot arm which was used by MacKay
[16] and Chuet al. [17]. In this data set, the first 200 data and
the second 200 data are respectively used as training and test
data set. After the simulation, the proposed FIS respectively

TABLE III

PARAMETER VALUES OF THE FIS FOR MODELING OFy1

Rule
Antecedent part Consequent part

cij θij (ai0, ai1, ai2)(104)

1 -0.9451 3.0913 1.6588 1.6775 -0.0130 0.0009 0.0103
2 1.2031 2.7042 2.0207 1.8010 -1.2575 0.2623 0.0405
3 1.1397 0.5988 1.8474 1.8775 -0.0953 -0.0161 0.0598
4 0.5122 1.4056 1.7968 1.7698 -0.9086 -0.0897 0.0128
5 -1.8941 0.8151 1.8014 1.7803 0.3043 0.0316 -0.0023
6 1.6345 1.7778 2.1581 1.8619 7.0789 -0.1506 -0.5634
7 -0.9796 1.5137 1.8311 1.8411 -0.7581 0.0134 0.1401
8 1.7438 1.1445 2.0774 1.8797 -3.8325 -0.1710 -0.5539
9 0.8388 3.1328 1.8193 1.8737 1.0665 -0.0248 -0.0979

TABLE IV

PARAMETER VALUES OF THE FIS FOR MODELING OFy2

Rule
Antecedent part Consequent part

cij θij (ai0, ai1, ai2)(104)

1 -0.9362 1.3506 1.7683 1.7693 0.2474 0.0291 0.0046
2 0.9283 2.6690 1.7913 1.7589 0.1231 0.0648 0.0328
3 1.1615 0.6477 1.7438 1.8362 0.0178 -0.0015 0.0047
4 -1.0987 3.1254 1.8134 1.8089 0.2060 -0.0208 -0.0094
5 1.8904 1.6948 1.8718 1.7891 -0.0174 0.0027 -0.0017
6 -1.8941 0.8151 1.9341 1.8339 1.2382 0.0751 0.1493
7 -1.7287 2.5087 1.8177 1.7801 0.2529 -0.0354 -0.0872
8 -1.0644 0.5615 1.8274 1.8352 -0.5924 -0.0096 -0.0887
9 1.5707 3.0659 1.7598 1.7811 -0.4055 0.0153 0.0208
10 -1.7653 1.4311 1.8860 1.7826 -0.9732 0.0560 -0.0287
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Fig. 7. Comparison of test data ofy1, y2 and outputs of the proposed FIS



TABLE V

COMPARED RESULTS OF THE MODELING ROBOT ARM DATAy1 AND y2

Type Rules( or SVs) ASE (10−3)

Chu et al. [17]
y1 21 2.491
y2 42 3.184

Proposed FIS
y1 9 2.465
y2 10 3.046

generates the 9 and 10 RVs(x∗i ) for y1 andy2, so that it has
9 and 10 rules as follows,

Ri : If x1 is K(x1, x
∗
i1) andx2 is K(x2, x

∗
i2),

Then fi = ai0 + ai1x1 + ai2x2. (24)

The parameter values of premise and consequence parts are
listed in Table III and IV. Figure 7 shows the modeling results
of test robot arm data ofy1 andy2.

To analyze the performance of the proposed FIS, the mod-
eling error is defined by as following Average Square Error
(ASE)

ASE =
∑N

k=1(yk − f(xk))2

N
(25)

whereN is the number of data,yk andf(xk) are respectively
the original system and fuzzy modeling output.

The method in the literature applied to the same dynamic
system, and the results listed on the Table V. Compared with
the number of rules and modeling error, the proposed method
gives the smaller number of rules regard to similar modeling
error rather than other.

V. CONCLUSION

In this paper, we have introduced a new approach to
fuzzy modeling using the relevance vector machine. Our
main concern is to determine the best structure of the TS
fuzzy model for modeling nonlinear dynamic systems with
measurement error. The number of rules and the parameter
values of membership functions in the proposed FIS can
be decided using maximizing the marginal likelihood of the
RVM. Parameter values of kernel functions were adjusted
using the gradient ascent method. Coefficients in consequent
part of the TS fuzzy model were determined by the least square
method. Simulation of examples showed the effectiveness of
the proposed FIS for modeling of nonlinear dynamic systems
with noise.
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