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Abstract—In the system modeling from training data with ~ART clustering (GRNNFA), as hybrid neural network model,
measurement noise, it is an important problem to select the pased on the fusion of fuzzy adaptive resonance theory (Fuzzy
appropriate structure of fuzzy model that can present good ART) and the general regression neural network (GRNN) for

generalization. To solve this problem, this paper presents a new data regression. However. manv r rches hav v dealt
fuzzy inference system for modeling nonlinear dynamic system ala regression. However, many researches have usually dea

based on input and output data measurement noise. In the System optimization [6], [7] and generalization problem [5]
proposed fuzzy system, the number of fuzzy rules and parameter independently.

values of membership functions are automatically determined Recently, statistical approach methods have popularly de-
using the relevance vector machine (RVM) which does not have yejgped in nonlinear system modeling based on input and
a bias term. The RVM has a probabilistic Bayesian learning tout data with d noise 181. 191 [101. [111. Statistical
framework. The RVM is described by the sum of times of ou pu' ata with measure nQ'Se[ 1, 9], [10], [11]. _?'S ICa
weight and kernel function. Kernel function projects input space techniques generally deal with trade-off between fitting the
into high dimensional feature space. The structure of proposed training data and simplifying model capacity. In statistical
fuzzy system is same as that of the Takagi-Sugeno fuzzy model.method, kernel function offers an alternative solution by map-
Especially, the number of fuzzy rules can be reduced under .i,q the data into high dimensional feature space to increase

the process of optimizing a marginal likelihood by adjusting .
parameter values of kernel functions using the gradient ascent the computational power. The state-of-the-art Support Vector

method. Once a structure is selected, coefficients in consequentMachine (SVM)[12] has been used in order to automatically
part are determined by the least square method. Examples find the number of network nodes or fuzzy rules based on
illustrate the effectiveness of the proposed new fuzzy inference given error bound [11], [13]. The Support Vector Neural
system. Network (SVNN) is proposed to select the best structure of
radial based function network for the given precision [11].
The Support Vector Fuzzy Inference System is proposed to
The Fuzzy Inference System (FIS) has shown powerffihd the reduced number of rules using gradient descent
capability for the modeling of nonlinear systems [1], [2]. Thenethod updating kernel parameters [13]. SVMs have delivered
FIS based on only human expertness may not lead to sufficigobd performance in various application. However, Tipping
accuracy for complex and uncertain systems. Because of tfiig] pointed out the following disadvantages of the support
reason, neuro-fuzzy modeling which acquires knowledge frovector learning methodology and proposed the Relevance
a set of input-output data has been actively investigated [3].\léctor Machine (RVM) method. In the SVM, predictions
training data set for modeling has measurement noise and @m®@ not probabilistic and the kernel functidii(x,x;) must
available data size is too small in the real system modelirgatisfy Mercer’'s condition. It is also necessary to estimate the
neural network can bring out over-fitting problem which is &rror/margin trade-off parameté®. Above all, the SVM is
factor of poor generalization. relatively less sparse better than the RVM. Particularly, the
Therefore it is an important problem to select the appr&®/M base on a kernel-based Bayesian estimation method.
priate structure of neuro-fuzzy model that can perform godthe RVM has shown a comparable generalization performance
generalization. Some researches have been progressed in osdtér fewer kernel function than the SVM in [14].
to solve this problem. Brancet al. [4] investigated how In this paper, to select the appropriate structure of fuzzy
and why fuzzy modeling systems are affected when learningpdel that can present good generalization, we propose a
data is corrupted by noise. Holmstroet al. [5] made an new fuzzy inference system for modeling nonlinear dynamic
effort to improve the generalization capability of a neuraystem based on measured noisy input and output data. In
network by introducing additive noise to the training samplethe suggested fuzzy system, the number of fuzzy rules and
Karystinoset al. [6] addressed K-mean clustering algorithnparameter value of membership functions are automatically
which results from the least entropic Gaussian mixture upéound by using the RVM [14] which does not have a bias term.
equal-likelihood cross-validated shaping for improving miltiThe structure of proposed fuzzy system is same as that of the
layer perceptrons (MLP) generalization ability. Leeal. [7] Takagi-Sugeno (TS) fuzzy model. Especially, the number of
described a general regression neural network with fuziyzzy rules can be reduced under the process of optimizing

I. INTRODUCTION



a marginal likelihood by adjusting parameter values of kernehere the posterior megm and covarianc&: are as follows:

functions using the gradient ascent method. Once a structure CoanT

is selected, coefficients in consequent part are determined by po= o "X ©6)

the least square method. T = (c70Te+ AT )
The rest of this paper is organized as follows. The RVM, A — diagar, as, ..., ).

is introduced in Section II. The structure and learning algo- thg jikelihood distribution over the training targets Eq. (3)

rithm of the new FIS using the RVM are given in Section, pe marginalized with respect to the weights to obtain the

lll. The effectiveness of the proposed FIS are illustrated By qina| jikelihood which is also a Gaussian distribution
examples involving nonlinear dynamic systems in Section IV.

Conclusion is given in Section V. p(tla,0?) = /p(t|W, o?)p(W|ar)dw,
II. RELEVANCE VECTORMACHINE

The RVM has an exploited probabilistic Bayesian learning
framework. It acquires relevance vectors and weights by ) ) it
maximizing a marginal likelihood. The structure of the RvM igVith covarianceC = ol + & A~ ®". o
described by the sum of times of weights and kernel functions.Values of o and o® maximizing themagrinal likelihood
A kernel function means a set of basis function projecting tff&not be obtained in closed form, and an iterative re-
input data into a high dimensional feature space to incres@gimation method is required [14]. The following the ap-
the computational power. proach of MacKay [15] gives:

Given a data set of input-target paifx,,t,}Y_;, and grew  — i ©)

= (27r)N/2|C1/2exp{;tTclt} (8)

assuming that the targets are independent and contaminated ! u?’
with mean-zero Gaussian noisg with variances?: (02w — It — Sp? 10)
tn = Y(Xn; W) + €. 1) N—=>%

here p; is the i-th posterior mean weight Eq. (6) and the
uantitiesy; = 1 —«; y _,; with thei-th diagonal element_,,
ol of the posterior weight covariance Eg. (7).
y(xsw) = ZwiK(X’Xi) = ow, (@ In the process of solving this optimization problem, the
] =t ) vector from the training set that associates with nonzero
where N is the length of the data, weight vectolyperparameter is called thelevance vector
w = (wg,..,wy)T and (N x N) design matrix
= [p(x1),d(X),...,6(xn)]T, wherein ¢(x,) = l1l. NEW FUzzY INFERENCESYSTEM USING THE
[K (X X1), K (X, X2), ooy K (X, xy)]T and K (x,%;) is RELEVANCE VECTORMACHINE
a kernel function. This section describes the structure of the new fuzzy infer-
The likelihood of the measured training data set is writtegnce system based on the TS fuzzy model and the learning
as: algorithm.

The RVM without a bias can be represented as follows [14]:

p(tjw, 0%) = (QWUQ)—N/Qexp{—12|t—<I>W||2} (3) A. The Structure of the FIS Using the Relevance Vector
20 Machine

where target vector = (t17 ...,tN)T. MaXimiZing likelihood Suppose we have given input and target data
estimation ofw and o2 from Eq. @) leads to over-fitting. To

avoid this, a zero-mean Gaussian prior distribution evevith (X1,t1), oy (X, tn) (11)
variancea ™! is added as: where x;=[z}, %, ..., x%](i = 1,2,...,N) is a input variable
(wlat) = ﬁ o (_g 2) @ andt:[tl_, ey tN] i§ a target variable. The proposed TS fuzzy
p = Ly or Plm5wi): model with fuzzy if-then rules can be represented by Eq. (12).
wherea = (ay, as, ...,an)". Ry : If 1 is K(x1,27;) and ...zp is K(zp,z]p),
The posterior distribution over the weight from Bayes rule Then f1 = aio + an@1 + ... + a1pxp
is thus given by: Ry : If zyis K(z1,25) and ...zp is K(xp,z5p),
p(W[t, a,02) = IikeIiho_on prior Then fo = asy + a1z, + ... + aspxp
normalizing factor
p(tlw, 0®)p(w|o?) : . , .
= p(tje,0?) R, : If zyis K(z1,2,,) and ...zp is K(xp,z)p),
— (QW)*(N+1)/2|2|*1/2 . Then f,, = ano + @121 + ... + anpep, (12)

1 Tl wheren is the number of fuzzy ruled) is the dimension of
exp{—2(w—u) (W “)} ®) input variables,z;(j = 1,2,...,D) is a input variable,f; is
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o Fig. 2. Learning algorithm of the proposed FIS
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Xi
. 1,2,...,n).
The Layer 2 connects with the consequent part of
the FIS.
*... Antecedent Part 7% Consequent Part /i )
B. The Learning Algorithm of the FIS Using the Relevance
Fig. 1. Structure of the proposed fuzzy inference system Vector Machine
The learning algorithm of the FIS using the RVM is shown
in Fig. 2. It can be summarized by the following iterative
the i-th local output variabIeK(:cj,x;‘j)(i =1,2,..,n,5 = procedure.
1,2,..,D) is a fuzzy set anda;;(i = 1,2,..m,J =  gtep 1:Assign the initial hyperparameten and kernel

0,1,...,D) is a consequent parameter.
Now, we describe the structure of FIS using the RVM. It

consists of two layers as shown in Fig. 1. The o layers g 24sing the following extended RVM algorithm based
involved in the proposed FIS are presented as follows: on kernel mapping [14], find RVs being the

parametem;.

Layer 1: Input space is nonlinearly projected into feature centersc; of Gaussian membership function and
space using kernel functions. Relevance Vectors are weight w. Particularly, using the Gradient Ascent
obtained from the RVM learning algorithm. The Method (GAM), kernel parametet; is adjusted in
Gaussian kernel function with variangg is used order to select the appropriate type of kernel function
as follows: related to the nonlinear dynamic system. Assume

. (X —x5)2\ . that the log of the marginal likelihood Eq. (8) is the
K(x,x;) = exp( - Tpiz)"‘ =12,..,n (13) objective functionL,
where x} is a RV, ¢, is called a kernel parameter _ 1 2 15T
andn is the number of RVs. After all, this kernel L= log o™t +® A~ 7]
function becomes a Gaussian membership function +tT?+o AT 1. (15)
in the proposed FISx; and 6, is respectively the .
center and variance of theth Gaussian membership From the GAM, the kernel parametér is updated
function. The RVM algorithm is a fuzzy inference such that the objective functiob is maximized as:
engine determining the number of fuzzy rules in FIS. oL
The Layer 1 is related to the antecedent part of the Aby = neVo,L =m0 90,
FIS. AL b
Layer 2: For the overall output of the fuzzy model con- = M Dbmm 00y

structed, defuzzification using the Center Of Gravity
(COG) method is performed.

N N

7]09;;3 Z Z Dnmq)nm(mnk - xmk)Q (16)

f(X) Z?:l K(X7 X;k) fl n=1m=1
Do KX x5) where D,,, = OL/d¢,, wherein matrix
n D =o0"?[(t—y)u" — ®X], a set of Gaussian kernel
Zﬁi (aio +anz1 + - +aiprp) (14) function ¢, = exp{— > 1_, (Tnk — Tmi)? /2603 }
i=1 andny is the learning late of),.
K(X,X]) o X
where §; = ST K and fi = aio + anay + Step 3:Using the following Least Square Estimation (LSE)

.+ aipzp. It is assumed thati(x,x}) > 0, method, estimate the parametey; of the linear
> =1 K(X,x5) > 0. Therefore,0 < §; < 1, (i = equatlonj} in Eq. (14).
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Fig. 3. Output data of dynamic system fefk) = 0 . o . . .
Fig. 4. Training data of dynamic system with noise and selected RVs (O)

Let TABLE |
.
Q= [ @wan .. a1p .y Gno an1 - anp |, a7) PARAMETER VALUES OF THE FIS FOR MODELING OF
Bi Bizy .. Bixh, -y By Bpxi . Bpap X(k) = [y(k — 1), y(k — 2)]
32 3222 ... 3242 82 (242 ... B2x? ’
W= 1 1.1 v PITDy wevy n n 1 - PrZTh (18) Rule Antecedent part Consequent part
O S Cij 1 0ij ai0, i1, di2
n gn nn n gnn nn 1 1.1036 0.5064] 1.2486 1.2462] 176.34 -29.17 -17.59
5_1 pian - ﬂl*mD’“" m P Pnh 2 | -0.1316 -1.0581| 1.2761 1.2836] 256.04 -60.45 21.09
wheres? = 725 (X;(’?Qx*)_ Thus fuzzy model output 3 |[0.7969 0.5276| 1.2731 1.2719| 284.20 -50.14 -79.64
is F(x) = W =1 BOX, 4 || -0.7838 -1.1208| 1.2730 1.2779] -262.79 -30.91 -13.15
= : 5 || -0.0553 0.9856] 1.2817 1.3074| -43.97 -20.68 22.49
If (WTW) is nonsingular, the parameter vect@ris 6 || -1.2754 -0.0553| 1.2788 1.2754 -374.52 -52.24 -46.7§
calculated by 7 0.6863 -0.3308| 1.2720 1.2582| -116.25 0.02 -37.16
Q = Ww)"'wly. (19)
IV. EXAMPLES "
In this section, we show two simulation results of the o
proposed FIS for the modeling of the nonlinear dynamic T R ~ . ]
systems. P . R
0.5 N 1 4
A. Example 1 : Modeling of 2-Input Nonlinear dynamic system ! : T
/ . .
Consider the nonlinear dynamic system [11], 7 .l , ’ / |
= : i
y(k) = (0.8—0.5 exp(—y*(k —1)))y(k —1) 1 E _ ;
— (0.34 0.9 exp(—y%(k — 1))y(k —2) A : C ]
+ 0.1sin(my(k — 1)) + e(k) (20) T 7
1+ St - i
wheree(k) is a white noiseg(k) ~ N(0,0.1?). The training
input of the model isX (k) = [y(k — 1),y(k — 2)]. For
15 ‘ ‘ ‘ ‘ ‘

e(k) = 0, this nonlinear dynamic system is unstable at the s 1 08
origin. Training data of dynamic system input with 300 data
points is shown in Figure 3. This data points are generatéd. 5. Estimated dynamic system output®fk) = [y(k — 1), y(k — 2)]

0
y(k-2)

from an initial condition of X(1) = [0.1,0.1]. But, the
training input data of 300 point pairs are generated from initial
condition of X (1) = [0, 0]. After the simulation, the proposed TABLE I
FIS generates the 7 RV} ), so that it has 7 rules as follows, COMPARED RESULTS OF NONLINEAR DYNAMIC FUNCTION
Ri 2 M xyis K(zy, 7y) andzy i K (2, 27,), l Type [ Rules( or SVs)| Model error |
Chanet al. [11] 10 0.099

Thenf; = a0 + asnz1 + apxe,i=1,...,7. (21) Proposed FIS 7 0.017




TABLE Il

PARAMETER VALUES OF THEFIS FOR MODELING OFy3

Rule

Antecedent part

Consequent part

C’L]

[

(a0, a1, asp)(10%)

-0.9451 3.0913

1.6588 1.6775

-0.0130 0.0009 0.0103

1.2031 2.7042

2.0207 1.8010

-1.2575 0.2623 0.0405

1.1397 0.5988

1.8474 1.8775

-0.0953 -0.0161 0.0598

0.5122 1.4056

1.7968 1.7698

-0.9086 -0.0897 0.0128

-1.8941 0.8151

1.8014 1.7803

0.3043 0.0316 -0.0023

1.6345 1.7778

2.1581 1.8619

7.0789 -0.1506 -0.5634

Degree of membership

-0.9796 1.5137

1.8311 1.8411

-0.7581 0.0134 0.1401

1.7438 1.1445

2.0774 1.8797

-3.8325 -0.1710 -0.5539

©| 00 N| O U1 B[ W[ N =

0.8388 3.1328

1.8193 1.8737

1.0665 -0.0248 -0.0979

TABLE IV

PARAMETER VALUES OF THEFIS FOR MODELING OFy2

Rule

Antecedent part

Consequent part

Cij

[

(aio, ai1, asi2)(107%)

1 -0.9362 1.3506

1.7683 1.7693

0.2474 0.0291 0.0044

0.9283 2.6690

1.7913 1.7589

0.1231 0.0648 0.0328

1.1615 0.6477

1.7438 1.8362

0.0178 -0.0015 0.0047

-1.0987 3.1254

1.8134 1.8089

0.2060 -0.0208 -0.0094

1.8904 1.6948

1.8718 1.7891

-0.0174 0.0027 -0.0017

-1.8941 0.8151

1.9341 1.8339

1.2382 0.0751 0.1493

-1.7287 2.5087

1.8177 1.7801

0.2529 -0.0354 -0.0877

-1.0644 0.5615

1.8274 1.8352

-0.5924 -0.0096 -0.0887

1.5707 3.0659

1.7598 1.7811

-0.4055 0.0153 0.0208

Degree of membership

5| ©| 0o N of | 5] wo| N

-1.7653 1.4311

1.8860 1.7826

-0.9732 0.0560 -0.0287

ol I I I I I I

05 0
y(k-2)

Fig. 6. Membership function of modeling the dynamic system

Figure 4 shows training data with noises and selected 7

relevance vectors. The parameter values of premise and conse- , {

guence parts are listed in Table I. Figure 5 shows the modeling
result of estimated dynamic system output®fk) = [y(k —

1), y(k — 2)]. Membership functions show in Figure 6. The
method in the literature applied to the same dynamic system,
and the results listed on the Table Il. The modeling error is the
standard deviation of test errors. Compared with the number
of rules and modeling error, the proposed method gives the
smaller number of rules and modeling error rather than other.

B. Example 2 : Modeling of Robot Arm Data

The training robot arm data are obtained from the relation-
ship between input variables:{(, ) being joint angles and
target variablegy;, y2) being positions,

2.0cosx1 + 1.3 cos(x1 + x2) + 9,
2.0sinzy + 1.3sin(z; + z2) + 6,

(22)
(23)

U1
Y2

whered is a Gaussian noisé,~ N (0, 0.05%). We use the 400

input-target pairs of robot arm which was used by MacKay
[16] and Chuet al. [17]. In this data set, the first 200 data and
the second 200 data are respectively used as training and
data set. After the simulation, the proposed FIS respectively

ety

T T
—_— OmgMalh
257" Proposed FIS
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Comparison of test data gf, y2 and outputs of the proposed FIS



TABLE V
COMPARED RESULTS OF THE MODELING ROBOT ARM DATAy1 AND y2

(5]

l Type [[ Rules(or SVs)] ASE (10-3) | 6]
m 21 2.491
Chuet al. [17] v a2 3.184
U 9 2.465

Proposed FIS v 10 3.046 (7]

(8]

generates the 9 and 10 RVs}) for y; andys9, so that it has
9 and 10 rules as follows, [l

R; If 1 is K(z1,2};) andxs is K(x2,2],),

Then f; = ajp + anx1 + a;aze. [10]

(24)
The parameter values of premise and consequence parts A
listed in Table Il and IV. Figure 7 shows the modeling results
of test robot arm data af; andys.

To analyze the performance of the proposed FIS, the mO(EiIZ]
eling error is defined by as following Average Square Error
(ASE) [13]

N
ase = Zimalve — J(00)"

where N is the number of datay, and f(xy) are respectively

the original system and fuzzy modeling output. [15]
The method in the literature applied to the same dynamigg

system, and the results listed on the Table V. Compared wit

the number of rules and modeling error, the proposed methd#']

gives the smaller number of rules regard to similar modeling

error rather than other.

(25) [14]

V. CONCLUSION

In this paper, we have introduced a new approach to
fuzzy modeling using the relevance vector machine. Our
main concern is to determine the best structure of the TS
fuzzy model for modeling nonlinear dynamic systems with
measurement error. The number of rules and the parameter
values of membership functions in the proposed FIS can
be decided using maximizing the marginal likelihood of the
RVM. Parameter values of kernel functions were adjusted
using the gradient ascent method. Coefficients in consequent
part of the TS fuzzy model were determined by the least square
method. Simulation of examples showed the effectiveness of
the proposed FIS for modeling of nonlinear dynamic systems
with noise.
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