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Abstract--Support vector machines (SVMs) have been 
successfully used in solving nonlinear regression and time 
series problems. However, the application of SVMs to load 
forecasting is very rare. Therefore, the purpose of this 
paper is to examine the feasibility of SVMs in forecasting 
electricity load. In addition, the genetic algorithms are 
applied in the parameter selection of SVM model. 
Forecasting results compared with other two models, 
namely autoregressive integrated moving average 
(ARIMA) and general regression neural networks 
(GRNN), are provided. The experimental data are 
borrowed from the Taiwan Power Company. The 
numerical results indicate that the SVM model with 
genetic algorithms (SVMG) results in better predictive 
performance than the other two approaches. 

I. INTRODUCTION 

A. Electricity demand management 
The accurate forecasting for the future electricity demand 

has become one of the primary management goals, such as 
load planning, cost economy and secures operation fields, in a 
regional or a national system. Since the increasingly  
competitive energy market in many countries, they are 
required to play a specific role in scheduling functions, such 
as unit commitment, hydrothermal coordination, short-term 
maintenance, inter-change and transaction evaluation, network 
power flow dispatched optimization, security strategies etc.. 
Along with the power system privatized and deregulated in 
the recent years, the reliance and accuracy of forecasting have 
received more attention. 

In the meanwhile, the error of load forecasting may 
increase the operating cost [1,2]. It was suggested that the 
increase of 1% in forecasting error would imply in a £ 10 
million of extra operating costs [1]. Overestimation of future 
load results in an unnecessary spinning reserve. On the other 
hand, underestimation of load leads to a failure in providing 
enough reserve and implies high costs in peaking unit. 

However, the load forecasting is a complex task, due to 
the influencing factors, such as climate factors, social 

activities, and seasonal factors. Climate factors depend on the 
temperature and humidity; social factors imply human duty 
activities including work, school and entertainment affecting 
the system load; seasonal factors then include seasonal 
climate change and load growth year after year.  

B. Forecasting approaches in electricity loading 
There is a widespread bibliography on improving the 

accuracy of forecasting methods, which had been proposed in 
the last few decades. One of these methods is a weather- 
insensitive approach which used historical load data to infer 
the future load. This approach is based on univariate time 
sequences and is known as Box-Jenkins Integrated 
autoregressive moving average (ARIMA) [3-5]. Christianse [6] 
and Park et al. [7] proposed exponential smoothing models by 
Fourier series transformation to forecast electricity load. 
Hence, many researchers considered to put related factors 
such as seasonal temperature, and day type in load forecasting 
models. Mbamalu and EI-Hawary [8] presented multiplicative 
AR models considering the seasonal factors in load 
forecasting. The results show that the presented model 
performs better than the univariate AR model in terms of 
forecasting accuracy. Douglas et al. [9] combined Bayesian 
estimation with dynamic linear model in forecasting load. The 
proposed model is particular suitable for predicting load with 
imperfect weather information. Sadownik and Barbosa [10] 
proposed dynamic nonlinear models in load forecasting. The 
disadvantage of these methods is time consuming while the 
number of variables is increasing.  

Regression models build causal-effect relationships 
between the load and one or more independent variables. The 
most popular models are linear regression, indicated by 
Asbury [11]. Papalexopoulos and Hesterberg [12] added the 
“holiday” and “temperature” in modeling. The proposed 
model used weight least square method to obtain robust 
parameter estimation encountering with the hetero- 
skedasticity. Recently, Haida and Muto [13] applied 
transformation function to convert the temperature of the 
previous year in load forecasting. Unfortunately, the proposed 
model leads to unexpected forecasting errors caused by 
seasonal transition. Soliman et al. [14] applied a multivariate 



linear regression model in load forecasting. This model 
includes temperature, wind cooling/ humidity factors and 
outperforms the harmonic model as well as the hybrid model. 
In these models, the dependent variables are usually 
decomposed into weather-insensitive and weather-sensitive 
components (Bunn and Farmer [1], Park et al. [7] and Hyde 
and Hodnett [15]).   

C. Artificial neural networks in load forecasting 
In the recent decades, lots of researches had tried to apply 

the artificial neural networks (ANN) to improve the load 
forecasting accuracy. Park et al. [16] proposed a 3-layer 
backpropagation neural network to deal with daily load 
forecasting problems. The inputs include three indices of 
temperature: average, peak and lowest loads. The outputs are 
peak loads. The presented model provides more accurate 
forecasting results than the regression model and the time 
series model. Lee et at. [17] proposed an ANN model to 
forecast the electricity loads of weekday and weekend-day. 
This model does not yield less relative error than other 
approaches.  An adaptive learning algorithm was proposed 
by Ho et al. [18] to forecast Taiwan electricity load in 1987. 
The numerical results indicate that the proposed algorithms 
converge faster than the traditional backpropagation learning 
method. Novak [19] used the radial basis function (RBF) 
neural networks to forecast power loading. The results show 
that RBF is at least 11 times faster and more reliable than the 
back-propagation neural networks. Darbellay and Slama [20] 
used an ANN to predict the electricity loading in Czech. The 
experimental results indicate that the proposed ANN model 
outperform an ARIMA with a lower normalized mean square 
error. Abdel-Aal [21] proposed an Abductive network to 
forecast hourly loads for five years by using hourly 
temperature and hourly load data. The results of the proposed 
model are very promising. 

D. Support vector machines in forecasting 
Unlike most of the traditional neural network models which 

implement the empirical risk minimization principle, the 
support vector machines (SVMs) implement the structural risk 
minimization principle which seeks to minimize an upper 
bound of the generalization error rather than minimize the 
training error. Based on this principle, SVMs achieve an 
optimum networks structure. The SVMs is equivalent to 
solving a linear constrained quadratic programming problem 
so that the solution of SVMs is always unique and globally 
optimal. Originally, SVMs have been developed for pattern 
recognition problems. Recently, with the introduction of 
Vapnik’sε -insensitive loss function, support vector machines 
have been extended to solve nonlinear regression estimation 
problems. The SVMs are successfully in time series 
forecasting. Cao [22] used the SVMs experts for time series 
forecasting. A two-stage neural network architecture is 
contained in the generalized SVMs experts. The numerical 
results indicated that the SVMs experts are able to achieve the 
better generalization in comparison with the single SVMs 
models. In 2002, Cao and Gu [23] presented a dynamic SVMs 

model to deal with non-stationary time series problems. 
Experiment results showed that the DSVMs outperform 
standard SVMs in forecasting non-stationary time series. In 
the same year, Tay and Cao [24] proposed a C-ascending 
SVMs, to model non-stationary financial time series. 
Experiment results showed that the C-ascending SVMs with 
the actually ordered sample data consistently perform better 
than the standard SVMs.  Tay and Cao [25] used SVMs in 
forecasting financial time series. The numerical results 
indicated that the SVMs are superior to the multi-layer 
back-propagation neural network in financial time series 
forecasting. Lu et al. [26] used support vector machines in 
predicting air quality parameters with different time series. 
The experimental results showed that the SVMs outperform 
the conventional Radial Basis Function networks. 

According to the brief review of literature related to 
forecasting methods, this paper attempts to verify the 
forecasting accuracy improvement of SVM model. Therefore, 
three forecasting models based on different approaches are 
constructed by using Taiwan Power Company data set. Then, 
a forecast accuracies comparison is implementing in turn. The 
rest of the paper is organized as follows. The algorithms of 
three employed approaches are introduced in section 2. A 
numerical example modeling results describe in section 3. 
Conclusions are given in section 4. 

II. METHODOLOGY 
In this paper, three models are employed in Taiwan load 

forecasting. These approaches are autoregressive integrated 
moving average (ARIMA), general regression neural network 
(GRNN), and SVMs. The follows are a brief of the three 
forecasting approaches.  

A. ARIMA model 
Developed by Box and Jenkins [3], the ARIMA model has 

been one of the most popular approaches in forecasting. In an 
ARIMA model, the future value of a variable is supposed to 
be a linear combination of past values and past errors, 
expressed as follows: 

ptpttt yyyy −−− +⋅⋅⋅+++= φφφθ 22110             

qtqttt −−− −−−−+ εθεθεθε L2211                   (1) 

where yt is the actual value and εt is the random error at time 
t; iφ  and iθ  are the coefficients; p and q are integers and 
often referred to as autoregressive and moving average 
polynomials, respectively. In addition, the difference operator 
∇ is considered to solve the non-stationary problem, and 
defined as follows: 

1−−=∇ ttt yyy , 1
2

−∇−∇=∇ ttt yyy                    (2) 
Basically, three phases are included in this approach: model 
identification, parameter estimation and diagnostic checking. 
The ARIMA (2,2,1) model is specified in this paper. It can be 
represented as follows. 

tt ByB εθθφ )()( 10
2

2 +=∇                           (3) 
where B is the backward shift operator and defined as follows: 
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B. GRNN model 
Developed by Specht [27], the general regression neural 

network (GRNN) model is capable of approximating any 
arbitrary function from historical data. The foundation of 
GRNN operation is based on the theory of kernel regression. 
The GRNN logic can be summarized in an equivalent 
nonlinear regression formula 
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where N is the predicted value of GRNN, M the input vector 
( nMMM ,, ,21 L ) which consists of n predictor variables, 

][ MNE  the expected value of the output N given an input 
vector M, and f(M, N) the joint probability density function of 
M and N. 

The GRNN primarily has four layers of processing unit. 
Each layer of processing units is assigned with a specific 
computational function when nonlinear regression is 
performed. The first layer of the network is responsible for the 
reception of information. There is a unique input neuron for 
each predictor variable in the input vector M. The input 
neurons then feed the data to the second layer. The number of 
neurons in the second layer is equal to the number of cases in 
the training set. Therefore, the neurons in the second layer are 
called pattern neurons. A pattern neuron is employed to 
process the data in a systematic way so that the relationship 
between the input and the proper response is “memorized’. A 
multivariate Gaussian function of 

]2/)()(exp[ 2σθ iii UMUM −′−−=                   (9) 
and the data from the input neurons are used to compute an 
output iθ  by a typical pattern neuron i, where Ui is a specific 
training vector represented by pattern neuron i, and s  is the 
smoothing parameter. Eq. (8) is extended by Cacoullos [28] 
and adopted by Specht [27] in his GRNN design. 

The neurons of the third layer, namely the summation 
neurons, receive the outputs of the pattern neurons. In the 
third layer, the outputs from all pattern neurons are augmented. 
Basically, two kinds of summations, simple summations and 
weighted summations, are conducted in neurons of the third 
layer. The simple summation and the weighted summation 
operations can be represented as Eq. (10) and Eq. (11) 
respectively. 
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where wi is the pattern neuron i connected to third layer of 

weights. 
The summations of neurons in third layer are then fed into 

the fourth layer. The GRNN regression output Q is calculated 
as follows. 

sw SSQ=                                        (12) 

C. SVMG model 
The support vector machines were proposed by Vapnik [29]. 

Based on the structured risk minimization principle, the SVMs 
seek to minimize an upper bound of the generalization error 
instead of the empirical error in the other neural networks. In 
addition, the SVM models generate the regress function by 
applying a set of high dimensional nonlinear functions. The 
nonlinear function is formulated as follows.  

bxwy i += )(φ                                   (13) 
where )(xφ  is called feature which is nonlinear mapped 
from the input space x . The wi and b are coefficients which 
are estimated by minimizing the regularized risk function 
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It is known that the regression estimation function is the 
one that minimizes the function Eq. (14) with the following 
ε -insensitive loss function, 
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where both C and ε  are prescribed parameters. di is the actual 

value at period i. yi is the estimation value at period i. The first 

term ),( ydLε  function indicates the fact that it does not 

penalize errors belowε . The first term ∑
=

N

i
ii ydL

N
C

1

),(ε is the 

empirical error. The second term,
2

2
w

, is used as a measure 

of function flatness. C is used as the trade-off between the 

empirical risk (first term) and the model flatness (second 

term). Two positive slack variables ζ and *ζ , which 

represent the distance from actual values to the corresponding 

boundary values of ε -tube (Eq.(15)), are introduced. Then, 

Eq. (14) is transformed to the following constrained function: 
Minimize 
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Subjected to: 
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Finally, by applying Karush-Kuhn-Tucker conditions for 



regression, Eq (16) results in a dual  Lagrangian form as Eq 
(17). 
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with the constraints: 
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iα are called Lagrange multipliers. 
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Here, K(x,xi) is called the kernel function. The value of the 

kernel is equal to the inner product of two vectors x and xi in 

the feature space )(xφ and )( ixφ , i.e., K(x,xi)= )(xφ * )( ixφ . 

Any function that satisfies Mercer’s condition by Vapink [29] 

can be used as the Kernel function. The Gaussian kernel 

function ( )22 2exp),( σii xxxxK −−= is specified in this 

study. In this study, the SVMs were employed to estimate the 

nonlinear behavior of the forecasting data set because 

Gaussian kernels tend to give good performance under general 

smoothness assumptions. 
Inspired by the natural evolution process, Holland [30] 

proposed genetic algorithms (GAs), an organized random 
search technique which imitates the biological evolution 
process. Such algorithms are based on the principle of the 
survival of the fittest, which attempts to retain genetic 
information from generation to generation. The major 
advantages of GAs are the capabilities for finding optimal or 
near optimal solutions with relatively modest computational 
requirements. The procedure of GAs briefly described as 
follows. Step 1: Initialization. Construct randomly the initial 
population of chromosomes. Step 2: Evaluating fitness. 
Evaluate the fitness of each chromosome. In this study, the 
negative value normalized root mean square error measure 
(-NRMSE) is used as the fitness function and shown as 
follows. 

Fitness function = 
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where ai and fi represent the actual and forecast values 
correspondingly, and n is the number of forecasting period. 
Step 3: Selection. Select mating pair, #1 parent and #2 parent, 
for reproduction. Step 4: Crossover and mutation. Create new 

offspring by crossover and mutation operations. Step 5: Next 
generation. Form a population for the next generation. Step 6: 
Stop condition. If the number of generation is equal to a given 
scale, then the best chromosomes are presented as a solution, 
otherwise go back to Step 2. 

Figure 1 shows the framework of the proposed SVMG 
model. GAs are used to search better combination of three 
parameters in SVMs so that a smaller NRMSE is obtained in 
each iteration of forecasting.  

Parameter selection

Stop condition

Forecasting

Error calculation

Parameters obtained

SVMsGAs

Yes

No

SVMG

Figure 1 Framework of SVMG 

D. Indices of performance evaluation  
In this study, two indices, namely MAPE (mean absolute 

percent error) and NRMSE (normalized root mean square 
error measure), are used as forecasting accuracy measures. 

The indices are shown as follows respectively. 
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where n is the number of forecasting periods; ai is the actual 
production value at period i; and fi is the forecasting load 
value of Taiwan power demand at period i. 

III. NUMERICAL EXAMPLE 

A. Data set 
In this paper, ARIMA, GRNN and SVMs are employed to 

forecast the future data of the Taiwan electricity demand 
values. The total load values from 1945 to 2003 are used as 
experimental data. Totally, there are 59 data of load values of 
Taiwan electricity demand. It is necessary to implement the 
forecast accuracy comparison for the three models based on 
the same modeling periods. Hence, the data are divided into 
three data sets: the training data set (40 years, from 1945 
through 1984), the validation (parameter selection) data set 
(10 years, from 1985 through 1994), and the testing data set (9 
years, from 1995 through 2003). The training data set of 
ARIMA model is from 1945 through 1984. 



B. Parameters selection of three models 

In this study, the selection of free parameters of three 
models plays an essential role in obtaining good forecasting 
results. For ARIMA models, the parameters selection is 
conducted by taking the second-order regular difference. By 
statistical packages, the most suitable model for the 40 year 
training data set is ARIMA(2,2,1). The equation used is 
presented as follows. 

tt ByBB ε)7552.01(2.414)9245.06702.11( 1221 ++=∇++ (22) 

After the ARIMA model has been constructed, it is important 
to examine the fitness of the model to a given time series. To 
confirm this, autocorrection function (ACF) is calculated. Plot 
of the estimated residual ACF is showed in Figure 2, it is 
observed that residuals are not autocorrelated.. PACF, showed 
in Figure 3, is also used to check the residuals and indicates.  
The residuals are approximately white noise.  

The kernel parameters, σ , C, and ε  of the SVMs are 
determined based on the index, MAPE. The model with the 
minimum testing MAPE value is selected as the most suitable 
model for this example. The forecasting results and the 
parameters for the different SVMG models are illustrated in 
Table 1. 
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Figure 2 Estimated residual ACF 
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Figure 3 Estimated residual PACF 

Table 2 gives the free parameters for different models. 

Therefore, the suitable parameters of different models are 
used to forecast Taiwan electricity load values in testing data 
set. 

Table 1 Forecasting Results and Parameters of SVMG model 
Parameters Numbers of 

input data σ  C ε  
MAPE of testing 

(%) 

30 0.4651 4.1716×1011 45.602 3.80 
25 0.6627 6.7422×1011 53.705 2.96 
20 1.4569 8.1699×1011 72.121 5.06 
15 1.0024 2.9579×1011 98.158 4.98 

Table 2 Suitable values of parameters for different models 
Models Suitable parameter combinations 

ARIMA p=2, d=2, q=1 
GRNN σ =0.04 
SVMG σ =0.6627, C=6.7422×1011, ε =53.705 

C. Forecasting results 

Figure 4 shows real values as well as forecasting values of 
different models. Performance of three forecasting models is 
listed in Table3. The numerical results indicate that the SVMs 
are superior to the ARIMA(2,2,1) and GRNN models in terms 
of forecasting accuracy. 
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Figure 4 Forecasting values for different models  

Table 3 Forecasting results based on forecasting indices 

 MAPE NRMSE 

ARIMA(2,2,1) 10.31% 0.105997 
GRNN (spread=0.04) 5.18% 0.054732 
SVMG(0.6627, 6.7422×1011, 53.705) 2.96% 0.035016 

IV. CONCLUSIONS 
The electricity supply is the most important infrastructure 

to assist social activities operation for a regional or a national 
economic system. Especially, for an export-oriented economy, 
like Taiwan, more accurate load forecasting is able to provide 
more advantages in saving and distributing limited resource 
efficiently. From the historical data, the Taiwan electricity 
demand values show a strong growth trends. In this paper, we 
employed a novel forecasting technique, SVMG, to examine 



its feasibility in forecasting annual electricity loads. Two other 
forecasting approaches, ARIMA and GRNN, are used to 
compare the forecasting performance. Experiment results 
indicate that the proposed SVMG model outperforms the 
other approaches in terms of forecasting accuracy.  
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