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Abstract - In recent years, cogeneration systems (CGS) 
have been installed in various factories and buildings. In 
order to generate optimal operational planning for CGS, 
various load, for example, electric loads, air-conditioning 
loads, heating loads, and hot water loads, should be 
forecasted, and startup and shutdown status and input 
values for the facilities at each control interval should be 
determined using facility models. The authors have 
already developed optimal operational planning for CGS 
using particle swarm optimization (PSO), which is one of 
the meta-heuristic optimization methods. However, there 
have always been errors between load forecasting value 
and actual load value. Therefore, generated operational 
planning does not always be optimal considering load 
forecasting errors. This paper proposes optimal 
operational planning of a cogeneration plant by PSO 
considering load forecasting error. The proposed method 
is applied to a typical cogeneration system with promising 
results. 
 

I. INTRODUCTION 

In recent years, cogeneration systems (CGS) have been 
installed in various factories and buildings. CGS is usually 
connected to various facilities such as refrigerators, reservoirs, 
and cooling towers, and produces various energies for electric 
loads, air-conditioning loads, heating loads, and hot water 
loads (Fig.1). Since daily load patterns of the various loads are 
different, optimal operation planning for CGS is a very 
important task for saving operational costs and reducing 
environmental loads. 

In order to generate optimal operational planning for CGS, 
various loads should be forecasted, and startup and shutdown 
status and input values for the facilities at each control interval 
should be determined using facility models (Fig.2). Therefore, 
the optimal operational planning problem can be formulated 
as a mixed-integer linear problem (MILP) and mathematical 
programming techniques such as branch-and bound, 
decomposition method, and dynamic programming have been 
applied conventionally [8,13,14]. However, the facilities may 

have nonlinear input-output characteristic practically and 
operational rules, which cannot be expressed as a 
mathematical forms, should be considered in actual operation. 
Therefore, the problem should be formulated as a mixed-
integer nonlinear problem (MINLP), and independent 
facilities models should be developed for practical use and the 
method for solving the MINLP problem has been eagerly 
awaited. 

In these backgrounds, we have already developed optimal 
operational planning of cogeneration plant using particle 
swarm optimization (PSO), which is one of the meta-heuristic 
optimization methods [15]. PSO is one of the evolutionary 
computation (EC) techniques [10]. The method is improved 
and applied to various problems [1-5,7,10,11]. PSO can be 
expanded to handle the whole MINLP by itself easily and 
naturally, and it is easy to apply to various problems compared 
with conventional methods [6,12]. 

This paper proposes optimal operational planning of a 
cogeneration plant by PSO considering load forecasting error. 
Various loads should be forecasted in order to generate 
optimal operational planning for CGS. However, there have 
always been errors between load forecasting value and actual 
load value. Therefore, generated operational planning does not 
always be optimal considering forecasting error. We consider 
forecasting error as uncertainty, and propose a novel optimal 
operational planning method by PSO considering load 
forecasting error. The proposed method is applied to typical 
cogeneration planning problems with promising results. 
 

II. PROBLEM FORMULATION 

A. CONSIDERING METHOD OF LOAD FORECASTING 
ERROR 

Generally, probability distribution of load forecasting error 
is expected to be expressed as normal probability distribution. 
Ideally, a number of simulation cases are performed by the 
considered normal probability distribution. However, 
performing a number of simulation cases is time-consuming. 
Therefore, limited number of types of load forecasting errors 
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is considered as the representative load forecasting values. 
The probability of the each considered representative load 
forecasting value is also defined considering probability 
distribution. Fig.3 shows example of three representative load 
forecasting errors, namely, no load forecasting error, upper 
load forecasting error, and lower load forecasting error. If load 
forecasting value equals to actual load value, load forecasting 
error equals to zero. In Fig.3, for example, the probability of 
the each representative load forecasting value is assumed to be 
the same value. Namely, the probability of each representative 
load forecasting error is assumed to be 1/3. We defineσ as 
the standard deviation between load forecasting value and 
actual load. In normal probability distribution, the probability, 
which becomes lower than -0.43σ, equals to 1/3, and the 
probability, which becomes upper than +0.43σ, equals to 1/3. 
Therefore, the probability, which is contained between -0.43
σ and +0.43σ, equals to 1/3. In Fig.3, if load forecasting 

error equals to zero, representative value (load forecasting 
error) is assumed to zero. On the other hand, if load 
forecasting error has minus value, representative value is 
assumed to -0.43σ, and if load forecasting error has plus 
value, representative value is assumed to +0.43σ. 

B. STATE VARIABLES 
State variables are electrical power output values of 

generator and heat energy output values of genelink and heat 
exchanger and heat energy input values of genelink per hour 
(24 points a day). Outputs of each facility for 24 points of the 
day should be determined. Moreover, two or three variables 
are required for one facility (startup and shutdown status 
(binary or discrete variables), and output or output/input 
values (continuous variables)). Therefore, one state variable 
for one facility is composed of vectors with 48 (24 points × 2 
variables) or 72 (24 points × 3 variables) element. Therefore, 
for example, handling two generators, two genelinks, and two 
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Fig. 1 A typical GCS system 
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Fig. 2 A basic concept of optimal operational planning for CGS 
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heat exchangers require 336 variables. In order to realize 
efficient search by PSO, reduction methods of number of state 
variables are required. 

C. PROBLEM FORMULATION 
 (1) Objective function 

The objective function is to minimize the operational 
expected costs of a day considering load forecasting error. 

min (P0C0+P+C++P-C-)                                                    (1) 
where, P0 : probability which corresponds to zero load 

forecasting error, C0 : total daily costs which 
corresponds to zero load forecasting errors, P+ : 
probability which corresponds to plus load 
forecasting error, C+ : total daily costs which 
corresponds to plus load forecasting error, P- : 
probability which corresponds to minus load 
forecasting error, C- : total daily costs which 
corresponds to minus load forecasting error. 

(2) Constraints 
a) Demand and supply balance: Summation of energies 

supplied by facilities such as electrical power, air-
conditioning energy, and heat energy should be equal 
to each corresponding load. 

b) Facility constraints and operational rules: Various 
facility constraints including the boundary constraints 
with state variables should be considered. Input-output 
characteristics of facilities should be also considered 
as facility constraints. For example, the characteristic 
of genelink is nonlinear practically and nonlinear 
characteristic should be considered in the problem. 
Examples of the operational rules are shown below: 
- If the facility is startup, then the facility should not be 

shutdown for a certain period. 
- If the facility is shutdown, then the facility should not 

be startup for a certain period. 
(3) Expansion of PSO for operational planning for CGS 

In order to reduce the number of state variables, the 
following simple expansion of PSO is utilized in this paper. 
Namely, all of state variables can be expressed as continuous 
variables. If the output value for a facility is less than or equal 
to the minimum output value, then the facility is recognized as 
shutdown. Otherwise, the facility is recognized as startup and 
the value is recognized as the output of the facility. The 
reduction method can reduce the state variables to half and 
drastic improvement of PSO search procedures can be 
expected. 
 

III. APPLIED PSO TECHNIQUES 

A. PSO WITH INERTIA WEIGHT APPROACH [10] 
The basic PSO algorithm with inertia weight approach 

(IWA) can be expressed as follows: 
1) State variables (searching point): 

State variables (states and their velocities) can be expressed 
as vectors of continuous numbers. PSO utilizes multiple 
searching points for search procedures. 
2) Generation of initial searching points: 

Initial conditions of searching points are usually generated 
randomly within their allowable ranges. 
3) Evaluation of searching points: 

The current searching points are evaluated by the objective 
function of the target problem. Pbests and gbest can be 
modified by comparing the evaluation values of the current 
searching points, and current pbests and gbest. 
4) Modification of searching points: 

The current searching points are modified using the state 
equations (3), (5) of PSO. 
5) Stop criterion: 

The search procedure can be stopped when the current 
iteration number reaches the predetermined maximum number. 
For example, the last gbest can be output as a solution. 

In IWA, velocity of the state equations can be expressed as 
follows: 

)sgbest(randc)spbest(randcwvv k
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where,  vi
k : velocity of agent i at iteration k, w : 

weighting function, ci : weighting coefficients, 
randi : random number between 0 and 1, si

k : 
current position of agent i at iteration k, pbesti : 
pbest of agent i,  gbest : gbest of the group. 

IWA utilizes the following weighting function in (3): 
( ) iteriterwwww maxminmaxmax ×−−=                                         (3) 

where,  wmax : initial weight, wmin : final weight, 
itermax: maximum iteration number,  iter : 
current iteration number. 

The current position (searching point in the solution space) 
can be modified by the following state equation: 

1k
i

k
i
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i vss ++ +=                                                                      (4) 

B. IMPROVED PSO [7] 
The following points are improved to the basic POS with 

IWA. 
• The search trajectory of PSO can be controlled by 

introducing the new parameters (P1,P2) based on the 
probability to move close to the position of (pbest, gbest) 
at the following iteration. 
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Fig. 3 Probability distribution of load forecasting error 
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• The wvi
k term of equation (3) is modified as equation (6). 

Using the equation, the center of the range of particle 
movements can be equal to gbest. 

• When the agent becomes gbest, it is perturbed. The new 
parameters (P1,P2) of the agent are adjusted so that the 
new agent may move away from the position of (pbest, 
gbest). 

• When the agent is moved beyond the boundary of feasible 
regions, pbests and gbest cannot be modified. 

• When the agent is moved beyond the boundary of feasible 
regions, the new parameters (P1,P2) of the agent are 
adjusted so that the agent may move close to the position 
of (pbest, gbest). 

The new parameters are set to each agent. The weighting 
coefficient is calculated as: 

22112 cP2c,P2c −==                                                        (5) 
The search trajectory of PSO can be controlled the 

parameters (P1,P2). Concretely, when the value is enlarged 
more than 0.5, the agent may move close to the position of 
pbest/gbest.  

( ) ( ){ }( )x2xgbestcxpbestcgbestw 21 +−+−−=                          (6) 
Namely, the velocity of the improved PSO can be 

expressed as follows: 
)sgbest(randc)spbest(randcwv k

i22
k
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i −×+−×+=+            (7) 

The improved PSO can be expressed as follows: (Step1 
and 5 are same as PSO) 
2) Generation of initial searching points: 

Same as PSO. In addition, the parameters (P1,P2) of each 
agent are set to 0.5 or higher. Then, each agent may move 
close to the position of (pbest, gbest) at the following iteration. 
3) Evaluation of searching points: 

Same as PSO. In addition, when the agent becomes gbest, 
it is perturbed. The parameters (P1,P2) of the agent are 
adjusted to 0.5 or lower so that the agent may move away 
from the position of (pbest, gbest). 
4) Modification of searching points: 

The current searching points are modified using the state 
equation (7), (4) of improved PSO. 
 
 

IV. NUMERICAL EXAPLES 

A. SIMULATION CONDITIONS 
The proposed method is applied to the typical CGS system 

shown in Fig.1. An office load model with 100000 [m2] total 
floor spaces is utilized in the simulation. Two CGS generators 
and two genelinks are assumed to be installed. At most, two 
genelinks can be startup in summer season, one genelink in 
winter season, and one genelink in the intermediate season. 
The cooling tower is installed for each CGS generator. 
Number of agent is set to 200. The iteration number is set to 
100.  

B. SIMULATION RESULTS 
Fig. 5 shows comparison of optimal operational planning 

with or without consideration of load forecasting error against 
no load forecasting error. In Fig. 5, (1)-(a) shows optimal 
planning for air-conditioning load without consideration of 
load forecasting error and (1)-(b) shows optimal planning for 

air-conditioning load with consideration of load forecasting 
error. (2)-(a) shows optimal planning for heat load without 
consideration of load forecasting error and (2)-(b) shows 
optimal planning for heat load with consideration of load 
forecasting error. (3)-(a) shows optimal planning for exhaust 
heat without consideration of load forecasting error and (3)-
(b) shows optimal planning for exhaust heat with 
consideration of load forecasting error.  

According to the results, optimal operational planning with 
consideration of load forecasting error differs from optimal 
operational planning without consideration of load forecasting 
error. Namely, according to the results of air-conditioning 
load planning (Fig. 5 (1)), in the case of without consideration 
of load forecasting error, all exhaust heat is utilized by air-
conditioning load. On the other hand, in the case of with 
consideration of load forecasting error, all exhaust heat is not 
utilized by air-conditioning load. Moreover, according to the 
results of heat load planning (Fig. 5 (2)), all heat loads utilize 
only boiler for heat load in the case of without consideration 
of load forecasting error, while heat loads utilize both exhaust 
heat and boiler for heat load in the case of with consideration 
of load forecasting error. Furthermore, according to the results 
of exhaust heat planning (Fig.5 (3)), all exhaust heat is 
utilized by only genelink in the case of without consideration 
of load forecasting error, while exhaust heat is utilized by both 
genelink and heat exchanger in the case of with consideration 
of load forecasting error.  

The difference of optimal planning between with and 
without consideration of load forecasting error is explained as 
follows. Genelink has a nonlinear characteristic shown in 
Fig.6. In the lower load factor areas, available exhaust heat is 
proportional to load factor. In the middle load factor areas, 
available exhaust heat is independent of load factor and has a 
constant value (maximum exhaust heat). The actual operation 
of CGS plant is shown in Fig.7. Firstly, the optimal 
operational planning is generated considering load forecasting 
value. Next, each facility receives set point corresponding to 
the optimal operational planning. However, there are load 
forecasting errors between load forecasting value and actual 
load value Therefore, each facility changes set point in order 
to balance supply and demand. The operation is called local 
control.  

In Fig.6, we consider three load forecasting error. Namely, 
load condition (a) means no load forecasting error, load 
condition (b) means lower load forecasting error, and load 
condition (c) means upper load forecasting error. If we do not 
consider load forecasting error, only load condition (a) is 
considered. In such a case, utilization of all exhaust heat by 
genelink is the most efficient operational planning because we 
assume that efficiency of the genelink is better than efficiency 
of heat exchanger. Therefore, if we do not consider load 
forecasting error, all exhaust heat is utilized by only genelink. 
On the other hand, if we consider load forecasting error, load 
condition (a), (b), and (c) must be considered. In such a case, 
if load condition (a) changes load condition (b), local control 
of genelink is operated and load value becomes lower. 
Therefore, in load condition (b), available exhaust heat is 
lower than load condition (a) because of the nonlinear 
characteristic of genelink. If genelink utilizes all exhaust heat 
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in load condition (b), exhaust heat difference ∆ between load 
condition (a) and (b) shown in Fig.6 is wasted. The cooling 
tower must release the exhaust heat difference. On the 
contrary, if genelink does not utilize all exhaust heat, exhaust 
heat is not wasted. Therefore, if we consider load forecasting 
error, the optimal operational planning for exhaust heat is to 
be utilized by both genelink and heat exchanger. 

Table.1 shows comparison of the operational expected 
costs of a day with or without consideration of load 
forecasting error. Case 1 in Table.1 represents the results 
shown in Fig. 5. Note that all of the value shown in Table.1 is 
the relative value when the value without consideration of 
load forecasting error is assumed to be 100 in each case. As 

shown in Table.1, the method with consideration of load 
forecasting error can reduce the operational expected costs 
compared to the method without consideration of load 
forecasting error. However, some cases are the same 
operational expected costs and operational planning between 
with and without consideration of load forecasting error. 
Namely, considering load forecasting error cannot always 
reduce the operational expected costs. However, considering 
load forecasting error can generate at least the same or 
cheaper operational planning compared to the method without 
consideration of load forecasting error. It indicates practical 
possibility of reduction of the operational expected costs 
considering load forecasting error.  
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(1) Optimal operational planning for air-conditioning load 
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(2) Optimal operational planning for heat load 
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Fig.5 Numerical results of typical CGS system 
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According to Table.1, only about 0.02 to 0.06 % reductions 
are realized. However, the yearly total operational expected 
costs are large and the yearly actual prices of 0.02 to 0.06 % 
reductions are large enough. 
 

V. CONCLUSIONS 

This paper proposes optimal operational planning of a 
cogeneration plant by PSO considering load forecasting error. 
The proposed method is applied to typical cogeneration 
planning problem, which is formulated as a mixed-integer 
nonlinear problem. According to the results, the method with 
consideration of load forecasting error can reduce more 
operational expected costs compared with the method without 
consideration of load forecasting error. It indicates practical 
possibility of reduction of the operational expected costs 
considering load forecasting error. In future works, the 
proposed method will be applied to the actual cogeneration 
plants and the effectiveness of the proposed method will be 
verified. 
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Table. 1 Comparison of the operational expected costs of a 
day with or without consideration of load forecasting error  

Case 
no 

Wo/ consideration of 
load forecasting error 

W/ consideration of 
load forecasting error

1 100.00 99.94 
2 100.00 99.98 
3 100.00 99.98 


