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Abstract- Most real world problems are inherently 
multiobjective in nature.  This is particular true for power 
systems optimization when the environmental/economic 
dispatch problem is to be considered.  This important problem 
has until recently been solved by using a weighted sum of the 
two objectives.  However, with the rising potentials of multi-
objective evolutionary algorithms (MOEAs), more and more 
power systems problems are being tackled with multi-
objective considerations to find optimal compromise 
solutions.  The main reason is that MOEAs can find multiple 
Pareto-optimal solutions in one single run compared to 
conventional methods, which find only one solution at a time 
and thus require multiple runs to obtain the whole Pareto 
front.  In this paper, the Non-dominated Sorting Genetic 
Algorithm – II (NSGA-II) is used to solve the 
environmental/economic dispatch problem for the standard 
IEEE 30-bus system.  Simulation results are compared with 
those using other MOEAs. 
 

I. INTRODUCTION 
 

Electric power plants are traditionally operated on the 
basis of least fuel cost strategies without considering the 
pollutants produced.  Fossil-fired electric power plants using 
coal, oil, gas or their combinations are the major contributors 
to pollution due to their emissions.  These emissions consist of 
particulate matter such as ash and gaseous pollutants such as 
carbon oxides, sulphur oxides and oxides of nitrogen.  With 
this growing concern, the Clean Air Act Amendments have 
been applied to reduce SO2 and NOx emissions from such 
power plants.  Accordingly, emissions can be reduced by three 
main methods [1]: post-combustion cleaning systems such as 
electrostatic precipitators and stack gas scrubbers; switching 
to fuels with lower emission potentials; dispatch of power 
generation to minimize emissions instead of or as a 
supplement to the usual cost objective of economic dispatch.  
The third method involves only minor modifications to 
dispatching programmes for implementing 
environmental/economic dispatching.  These 
environmental/economic dispatch algorithms are summarized 
in [1] and the potential requirements of utilities regarding 
system operations to meet the Clean Air Act Regulations is 
presented in [2]. 

The environmental/economic dispatch problem is a 
constrained multiobjective problem with conflicting objectives 

because pollution minimization is conflicting with minimum 
cost of generation.  Until recently, methods used to solve this 
multiobjective problem have transformed it to a single 
objective one.  These methods include linear and non-linear 
goal programming [3, 4], ε-constrained technique [5], linear 
programming [6], quadratic programming [7], weighted 
minimax [8], Hopfield neural network [9], Tabu Search [10], 
Genetic Algorithm [11, 12, 13].  Some attempts have been 
made for the simultaneous optimization of multiple objectives 
in the environmental/economic dispatch problem using 
evolutionary algorithms [14, 15, 16].  Until relatively recently 
researchers have realized the potential of evolutionary 
algorithms in the area of multiobjective optimization.  These 
algorithms are commonly known as Multiobjective 
Evolutionary Algorithms (MOEAs) and have been 
successfully applied to various problems with multiple and 
conflicting objectives [17].  The main advantage of such 
algorithms is that they can find multiple Pareto-optimal 
solutions in one single run compared to conventional methods, 
which find only one solution at a time and thus require 
multiple runs to obtain the whole Pareto front. 

For the environmental/economic dispatch problem, 
promising results have been obtained using non-elitist MOEAs 
such as Non-dominated Sorting Genetic Algorithm (NSGA) 
[18], Niched Pareto Genetic Algorithm (NPGA) [19] and 
elitist MOEA such as Strength Pareto Evolutionary Algorithm 
(SPEA) [20].  It has been argued that NSGA suffers from 
three weaknesses: computational complexity, non-elitist 
approach and the need to specify a sharing parameter.  An 
improved version of NSGA known as NSGA-II, which 
resolved the above problems and uses elitism to create a 
diverse Pareto-optimal front, has been subsequently presented 
[21, 22].  More recently, NSGA-II has been applied on the 
environmental/economic dispatch problem when the 
transmission losses are approximated using loss coefficients 
[23].  In this paper, the environmental/economic power 
dispatch optimization problem is solved by NSGA-II 
considering exact transmission losses.  Simulation results are 
presented for the standard IEEE 30-bus system. 
 

II. ENVIRONMENTAL/ECONOMIC DISPATCH 
 

The environmental/economic dispatch involves the 
simultaneous optimization of fuel cost and emission objectives 



which are conflicting ones.  The problem is formulated as 
described below. 
 
A. Objective Functions 
 
Fuel Cost Objective 

The classical economic dispatch problem of finding the 
optimal combination of power generation which minimizes the 
total fuel cost while satisfying the total required demand can 
be mathematically stated as follows [5]: 
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where  
C: total fuel cost ($/hr), 
ai, bi, ci: fuel cost coefficients of generator i, 
PGi: power generated by generator i (pu), and 
n: number of generators. 

 
The minimum emission dispatch optimizes the above 

classical economic dispatch including NOx emission objective 
which can be modeled using second order polynomial 
functions [5]: 
 
NOx Emission Objective 
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Units of 

xNOE  are ton/hr. 
 
B. Constraints 

The optimization problem is bounded by the following 
constraints: 
 
Power balance constraints 
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where  
PD: total load (MW), and 
PL: transmission losses (MW). 

 
The transmission losses is given by 
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where 
N : number of buses 

ijr : series resistance connecting buses i and j 

iV : voltage magnitude at bus I 

iδ : voltage angle at bus I 

iP : real power injection at bus i 

iQ : reactive power injection at bus i 
 

Maximum and minimum limits of power generation 
 

The power generated PGi by each generator is constrained 
between its minimum and maximum limits, i.e., 

  PGimin ≤ PGi ≤ PGimax 
where 
 PGimin: minimum power generated, and 
 PGimax: maximum power generated. 
 
C. Multiobjective Formulation 
 

The multiobjective environmental/economic dispatch 
optimization problem is therefore formulated as: 
 
Minimize [

xNOE C, ]            (5) 
subject to: g(PGi) = 0           (power balance) 
and  PGimin ≤ PGi ≤ PGimax    (generation limits) 
 
 

III. NSGA-II 
 

Elitism ensures that the fitness of the best solution in a 
population does not deteriorate as the generation advances.  
Rudolph [24] has proved that genetic algorithms converge to 
the global optimal solution of some functions in the presence 
of elitism.  In fact, using elite parents increases the probability 
of creating better offsprings.  For multiobjective optimization 
problems, individuals found on the non-dominated front are 
considered as elites.  Deb et al. [21, 22] have proposed an 
elitist Non-dominated Sorting Genetic Algorithm known as 
NSGA-II which uses both elite-preserving and diversity-
preserving mechanisms.  The two distinct goals in 
multiobjective optimization are: 
(i) discover solutions as close to the Pareto-optimal 

solutions as possible 
(ii) find solutions as diverse as possible in the obtained 

non-dominated front 
It has been shown [21, 22] that NSGA-II can achieve these 
two goals well. 
 

The NSGA-II procedure [21, 22] is outlined below: 
 
NSGA-II 
Step 1 
Combine parent and offspring populations and create 

ttt QPR ∪=  
Perform a non-dominated sorting to Rt and identify different 
fronts: Fi, i = 1, 2,… 
Step 2 
Set new population Pt+1 = null.  Set a counter i = 1. 
Until NFP it <++1 , perform itt FPP ∪= ++ 11  and 1+= ii . 
Step 3 
Perform the Crowding-sort(Fi,<c) procedure given below and 
include the most widely spread ( 1+− tPN ) solutions by using 
the crowding distance values in the sorted Fi to Pt+1. 
Step 4 
Create offspring population Qt+1 from Pt+1 by using the 
crowded tournament selection, crossover and mutation 
operators. 
 



Crowding-sort(Fi<c) 
Step 1 
Call the number of solutions in F as Fl = .  For each i in the 
set, first assign crowding distance, 0=id . 
Step 2 
For each objective function M,...,,m 21= , sort the set in 
worse order of mf  or, find the sorted indices vector: 

mI =sort(fm,>) 
Step 3 
For M,...,,m 21= , assign a large distance to the boundary 
solutions, or ∞== m
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NSGA-II performs a non-dominated sorting of the 

combined parent and offspring population.  Elitism is 
introduced by maintaining the best non-dominated solutions in 
fronts until all P population slots are filled.  A crowded 
distance-based niching strategy is used to find solutions from 
the last front that are to be carried over to the next generation.  
The variables are represented as real numbers and the 
simulated binary crossover [25] and the polynomial mutation 
operator [26] are used. 
 

IV. BEST COMPROMISE SOLUTION 
 

The algorithm described in the previous section generates 
the non-dominated set of solutions known as the Pareto-
optimal solutions.  The decision maker (power system 
operator) may have imprecise or fuzzy goals for each 
objective function.  To aid the operator in selecting an 
operating point from the obtained set of Pareto-optimal 
solutions, fuzzy logic theory is applied to each objective 
functions to obtain a fuzzy membership function 

ifµ as 
follows [8]: 
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The best non-dominated solution can be found when eqn. 

(7) is a maximum where the normalized sum of membership 
function values for all objectives is highest. 
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where M is the number of non-dominated solutions. 
 

V. SIMULATION RESULTS 
 

Simulations were performed on the standard IEEE 30-bus 
system [5, 6, 18, 19, 20].  Fuel cost and NOx emission 
coefficients for this system are given in Tables 1 and 2 
respectively.  The total system demand is 2.834 p.u. 
 
 

Table 1: Fuel Cost coefficients 
Unit 

i 
ai bi ci PGimin PGimax 

1 10 200 100 0.05 0.50 

2 10 150 120 0.05 0.60 

3 20 180 40 0.05 1.00 

4 10 100 60 0.05 1.20 

5 20 180 40 0.05 1.00 

6 10 150 100 0.05 0.60 

 
 

Table 2: NOx Emission coefficients 
Unit 

i 
aiN biN ciN diN eiN 

1 4.091e-2 -5.554e-2 6.490e-2 2.0e-4 2.857 
2 2.543e-2 -6.047e-2 5.638e-2 5.0e-4 3.333 
3 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.000 
4 5.326e-2 -3.550e-2 3.380e-2 2.0e-3 2.000 
5 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.000 
6 6.131e-2 -5.555e-2 5.151e-2 1.0e-5 6.667 

 
 

In all simulations, the following parameters were used: 
• population size = 50 
• crossover probability = 0.9 
• mutation probability = 0.2 
• distribution index for crossover = 10 
• distribution index for mutation = 20 

 
The simulations were run for two different cases: 

Case 1: System is considered as lossless 
Case 2: Transmission losses are considered 

 
 
A. Case 1 
 

Figs. 1 and 2 show the convergence of the algorithm 
towards the optimum solution (best fuel cost and best NOx 
emission, respectively) for the lossless case.  It is to be noted 
that these figures refer to a single run of NSGA-II.  Fig. 3 
shows a good diversity in the non-dominated solutions 
obtained by NSGA-II after 200 generations. 
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Figure 1: Convergence of fuel cost 
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Figure 2: Convergence of NOx emission 
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Figure 3: Non-dominated solutions for Case 1 
 

Table 3 and 4 show the best fuel cost and best NOx 
emission obtained by NSGA-II as compared to Linear 
Programming (LP) [5], Multi-Objective Stochastic Search 
Technique (MOSST) [16], Non-dominated Sorting Genetic 
Algorithm (NSGA) [18], Niched Pareto Genetic Algorithm 

(NPGA) [19] and Strength Pareto Evolutionary Algorithm 
(SPEA) [20].  It can be deduced that NSGA-II finds 
comparable minimum fuel cost and comparable minimum NOx 
emission to the last three evolutionary algorithms.  These 
results confirm that NSGA-II is able to obtain the Pareto front 
for the problem since the two extreme solutions (minimum of 
each objective) are found. 
 
 

Table 3: Best fuel cost 
 LP [6] MOSST 

[16] 
NSGA 

[18] 
NPGA 

[19] 
SPEA 
[20] 

NSGA-
II 

PG1 0.1500 0.1125 0.1567 0.1080 0.1062 0.1059 
PG2 0.3000 0.3020 0.2870 0.3284 0.2897 0.3177 
PG3 0.5500 0.5311 0.4671 0.5386 0.5289 0.5216 
PG4 1.0500 1.0208 1.0467 1.0067 1.0025 1.0146 
PG5 0.4600 0.5311 0.5037 0.4949 0.5402 0.5159 
PG6 0.3500 0.3625 0.3729 0.3574 0.3664 0.3583 
Best cost 606.314 605.889 600.572 600.259 600.15 600.155 
Corresp. 
emission 

0.22330 0.22220 0.22282 0.22116 0.2215 0.22188 

 
 

Table 4: Best NOx emission 
 LP [6] MOSST 

[16] 
NSGA 

[18] 
NPGA 

[19] 
SPEA 
[20] 

NSGA-
II 

PG1 0.4000 0.4095 0.4394 0.4002 0.4116 0.4074 
PG2 0.4500 0.4626 0.4511 0.4474 0.4532 0.4577 
PG3 0.5500 0.5426 0.5105 0.5166 0.5329 0.5389 
PG4 0.4000 0.3884 0.3871 0.3688 0.3832 0.3837 
PG5 0.5500 0.5427 0.5553 0.5751 0.5383 0.5352 
PG6 0.5000 0.5142 0.4905 0.5259 0.5148 0.5110 
Best 
emission 

0.19424 0.19418 0.19436 0.19433 0.1942 0.19420 

Corresp. 
cost 

639.600 644.112 639.231 639.182 638.51 638.269 

 
Using the fuzzy logic method given by equation (7), the 

best compromise solution was calculated and the results are 
given in Table 5 together with those of the other evolutionary 
algorithms. 
 
 

Table 5: Best compromise 
 NSGA 

[18] 
NPGA 
[19] 

SPEA 
[20] 

NSGA-II 

PG1 0.2571 0.2696 0.2785 0.2565 
PG2 0.3774 0.3673 0.3764 0.3820 
PG3 0.5381 0.5594 0.5300 0.5351 
PG4 0.6872 0.6496 0.6931 0.6941 
PG5 0.5404 0.5396 0.5406 0.5361 
PG6 0.4337 0.4486 0.4153 0.4302 
Cost 610.067 612.127 610.254 609.808 
Emission 0.20060 0.19941 0.20055 0.20078 

 
 
B. Case 2 
 

In this case, the transmission losses are considered and the 
NSGA-II algorithm was run for 200 generations.  Figs. 4 and 5 
show the convergence of the algorithm towards the optimum 
solution (best fuel cost and best NOx emission, respectively).  
It is to be noted that these figures refer to a single run of 
NSGA-II. 
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Figure 4: Convergence of fuel cost 
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Figure 5: Convergence of NOx emission 

 
Fig. 6 shows the non-dominated solutions obtained by 

NSGA-II for Case 2 where a good distribution of the solutions 
is observed. 
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Figure 6: Non-dominated solutions for Case 2 

 
The best fuel cost and best NOx emission obtained by 

NSGA-II as compared to NSGA, NPGA and SPEA are given 

in Table 6.  It is observed that NSGA-II again finds better 
minimum fuel cost and emission level that the evolutionary 
algorithms. 
 
 

Table 6: Best fuel cost 
 NSGA 

[18] 
NPGA 
[19] 

SPEA 
[20] 

NSGA-II 

PG1 0.1168 0.1245 0.1086 0.1182 
PG2 0.3165 0.2792 0.3056 0.3148 
PG3 0.5441 0.6284 0.5818 0.5910 
PG4 0.9447 1.0264 0.9846 0.9710 
PG5 0.5498 0.4693 0.5288 0.5172 
PG6 0.3964 0.3993 0.3584 0.3548 
Best cost 608.245 608.147 607.807 607.801 
Corresp. 
emission 

0.21664 0.22364 0.22015 0.21891 

 
 

Table 7: Best NOX emission 
 NSGA 

[18] 
NPGA 
[19] 

SPEA 
[20] 

NSGA-II 

PG1 0.4113 0.3923 0.4043 0.4141 
PG2 0.4591 0.4700 0.4525 0.4602 
PG3 0.5117 0.5565 0.5525 0.5429 
PG4 0.3724 0.3695 0.4079 0.4011 
PG5 0.5810 0.5599 0.5468 0.5422 
PG6 0.5304 0.5163 0.5005 0.5045 
Best 
emission 

0.19432 0.19424 0.19422 0.19419 

Corresp. 
cost 

647.251 645.984 642.603 644.133 

 
Again, it can be deduced that the algorithm is capable of 

obtaining the Pareto front for the given problem since the 
minimum of each objective is found. 
 

The best compromise solution selected using fuzzy logic 
theory (equation (7)) is given in Table 8. 
 
 

Table 8: Best compromise 
 NSGA 

[18] 
NPGA 
[19] 

SPEA 
[20] 

NSGA-II 

PG1 0.2699 0.2227 0.2594 0.2697 
PG2 0.3885 0.3787 0.3848 0.3645 
PG3 0.5645 0.5560 0.5645 0.5545 
PG4 0.6570 0.7147 0.7030 0.6951 
PG5 0.5441 0.5500 0.5431 0.5619 
PG6 0.4398 0.4424 0.4091 0.4186 
Cost 618.686 615.097 616.069 616.502 
Emission 0.19940 0.20207 0.20118 0.20089 

 
It has been shown that NSGA-II can obtain the Pareto 

front of the problem and it is therefore ideal for solving the 
multiobjective environmental/economic dispatch optimization 
problem which has conflicting objectives from the fact that the 
multiobjective approach yields multiple Pareto-optimal 
solutions in a single simulation run whereas multiple runs are 
required for the single objective approach with weighted 
objectives. 

 



VI. CONCLUSIONS 
 

In this paper, the multi-objective environmental/economic 
dispatch problem has been solved using the elitist Non-
dominated Sorting Genetic Algorithm - II (NSGA-II).  The 
simulation results have shown that NSGA-II achieves good 
convergence and diversity when applied to the standard IEEE 
30-bus system.  Comparison with linear programming, 
multiobjective stochastic search technique MOSST, non-elitist 
NSGA, Niched Pareto Genetic Algorithm NPGA and Strength 
Pareto Evolutionary Algorithm showed that NSGA-II obtains 
the Pareto optimal solutions.  When considering each 
objective, NSGA-II finds better solutions that the other 
evolutionary algorithms.  Moreover, the solutions are obtained 
in a single simulation run as compared to single objective 
approach using weighted objectives which require multiple 
runs to identify the Pareto front.  Besides, fuzzy set theory is 
used to select an operating point (best compromise solution) 
from the obtained set of Pareto-optimal solutions. 
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