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 Abstract—This paper presents a constructive 
algorithm for neural network ensemble creation using 
dynamical change in input space (DCIS) technique. 
DCIS is an automatic ensemble creation method where 
next component network is added in ensemble by 
training with previously misclassified patterns. To 
improve performance of this new network in the 
ensemble, trains with full training set but all output 
node values of misclassified patterns are considered as 
zero. DCIS creates optimized ensemble with lower 
computational cost and better generalization ability 
with respect to previously proposed hand-made 
ensemble creation methods such as the bagging and the 
boosting. It uses rather simple user-defined parameters 
that are the number of partial training epochs and 
hidden nodes per network. Results with benchmark 
problems exhibit better or competitive performance. 
 

Index Terms—Generalization, constructive approach 
and negative correlation learning.  
 

I. INTRODUCTION 
 

Neural Network Ensemble (NNE) is a collection of a 
finite number of neural networks that are trained for the 
same task [4]. The final output is the combination of 
participated network’s output. NNE is known to improve 
classification and generalization ability [3], [4]. It is clear, 
however, there is no advantage to combining networks that 
exhibit identical generalization ability [4]. So, component 
networks should be diverged to compensate the failure of 
one network by others. On the other hand, if component 
networks show very bad generalization ability with 
diversity, performance of NNE will decrease. Thus there is 
a trade-off between diversity and generalization. 

There are various ways we can produce diverse 
networks. Those include, varying the set of initial random 
weights, varying the topology, varying the algorithm 
employed, and varying the training data [4]. It is argued 
that networks trained on different training sets are more 
likely to show diversity than networks trained on the same 
training set from the starting point of different initial 
conditions, or with different numbers of hidden nodes, or 
using a different algorithm [5]. Data sampling or variation 
in training data is the common, effective and verified 
technique for NNE creation [8], [9], [10].  

Another important issue of any NNE is how to train 
individual networks, since the training strategy influences 
the diversity and the accuracy of individual networks in 

the NNE [1]. There are three major approaches to train 
individual networks, i.e., independent training, sequential 
training, and simultaneous training [1]. In independent 
training, each individual network in NNE is trained 
independently to minimize the error between the target 
and its output. One major disadvantage of this approach is 
the lack of interaction among individual networks during 
training [2]. In sequential training, individual networks in 
NNE are trained one after another not only to minimize 
the error between the targets and their outputs, but also to 
decorrelate their errors from previously trained networks. 
In this approach, the connection weights of previously 
trained networks are frozen when the current network is 
being trained. As a result, training an individual network 
in the NNE cannot affect the previously trained networks. 
The errors of individual networks are not necessarily 
negatively correlated [1]. But it is known that negative 
correlation among individual networks in NNE is 
beneficial for improving NNE’s performance [1]. 
Recently, Liu and Yao [2] proposed a simultaneous 
training method of individual networks in NNE with 
negative correlation. They introduced a correlation penalty 
term in error function so that individual network in NNE 
can be trained simultaneously and interactively. The 
advantage of this approach is that it can produce biased 
individual networks whose errors tend to be negatively 
correlated [2]. One disadvantage of this approach is that 
all individual networks in an NNE are concerned with the 
whole NNE error. This may cause competitions among 
individual networks in the NNE [1].  

In DCIS, we therefore presented a constructive 
algorithm for NNE creation using a hybrid algorithm of 
sequential and simultaneous training. To add a network in 
the ensemble we used a simple technique; add a network 
that is partially trained by previously misclassified patterns 
only. Then we partially trained this new network in 
sequential fashion while changing input space that means; 
training is performed with full training set but assuming 
output node values equal to zero for the patterns that are 
currently misclassified by this network. Again we 
simultaneously trained the whole NNE via negative 
correlation [2]. 

The rest of this paper is organized as follows. Section 
II discusses some popular NNE creation methods and the 
difference with the proposed method. Section III describes 
the proposed method in details. Section IV presents 
experimental results of this new method. Finally, Section 
V concludes the paper with a brief summary and a few 
remarks. 



II. METHODS OF NNE CREATION 
 

Two major issues of NNE are, to create component 
networks and to combine the output of component 
networks. A lot of works have been done within last 
decade on NNE creation [6], [8], [9], [10], [11]. Among 
them, the most popular methods are the bagging [9] and 
the boosting [8], [10].  

Both bagging [9] and boosting [10] manipulate the 
training data in order to generate different component 
networks. The bagging produces replicate training sets by 
sampling from the training instances. The boosting uses all 
instances at each repetition, but maintains a weight for 
each instance and weight is varied to focus on different 
instances by different networks [8]. In both cases, voting is 
used to combine output of component networks to get 
NNE’s output [8]. In the bagging each component network 
has the same vote, while boosting assigns different voting 
strengths to component networks on the basis of their 
accuracy [8]. But both are manual NNE creation method 
and use probabilistic method to produce the training set for 
the next component network [3]. So these methods require 
checking all previous networks with mathematical 
calculation. 

Recently Md. Monirul Islam et al. [1] proposed an 
automatic NNE creation algorithm, called CNNE. That is 
the first automatic NNE creation algorithm as they 
claimed. CNNE changes the architecture of NNE at the 
training time with adding hidden nodes and networks. 
Instead of training data sampling procedure, it trains all 
component networks simultaneously with full training set 
via negative correlation. It starts training with two 
networks with single hidden node per network. First it 
tries to minimize the error by adding hidden node 
according to defined criteria, and then by adding new 
network with single hidden node. After adding several 
networks, if no improvement is found, it stops training 
according to a halting criteria. In that case, it starts with 
two identical networks; initial random weights are only 
difference between them. So, both networks will try to 
form identical functions. Another point is that it starts with 
single hidden node per network for all the problems but 
some problems required more hidden nodes, especially 
when number of output classes increases. So 
computational cost is high due to full training set for all 
the networks and small number of initial hidden nodes. 

Our purpose is to develop an automatic NNE creation 
algorithm that will overcome the problems of previous 
methods. The proposed algorithm DCIS uses a rather 
simple technique to create training set for adding next 
component network. That is the misclassified patterns of 
partially trained networks. Thus any probabilistic 
calculation is unnecessary unlike the bagging and the 
boosting; only checks, which patterns are misclassified by 
all exiting partially trained networks. We used fixed 
number of hidden nodes per network for a particular 
problem on the basis of the number of output classes [3]. 
This further simplifies the calculation. Increasing the 
number of hidden nodes does not improve the 
performance after a particular number [5], and that’s rather 
depends on the number of output classes. The 

computational cost is therefore lower than CNNE. Another 
advantage of the proposed algorithm is that the meaning of 
two user define parameters is easy understandable, while 
that of CNNE is rather complex [1].    

            
III. DYNAMICAL CHANGE IN INPUT SPACE 

(DCIS) METHOD  
 

In DCIS, there are three major steps to create an NNE. 
Firstly, it partially trains a network with the patterns that 
are misclassified by all exiting partially trained networks. 
Secondly, it trains this new network with full training set 
but assuming all output node values equal to zero for the 
patterns that are misclassified by this new network.  By the 
second partial training it forces to produce equal output in 
all the output nodes for misclassified patterns. This new 
network therefore will not oppose other networks to 
classify these patterns that are presently misclassified. In 
another sense, this network will be diverted for these 
classified patterns without affecting others. The third and 
final training is performed with all component networks 
via negative correlation with full training set to minimize 
the total error of the whole NNE. The major steps of DCIS 
are summarized in Fig. 1, which are explained further 
below: 

Start  
  

Mark all patterns with U    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Partially train by U marked patterns. 
Training epochs, T, is user specified

Test for all patterns and marked with 
C that’s are classified by this network

Final Ensemble 

Create a network and randomly 
initialize the connection weights. 

Stop 

No

Partially train this network but consider all output node
values equal to zero for the patterns that are not marked
with C.  Training epochs, T is same as previous. 

Is U marked  
pattern equal to zero? 

Yes 
Finally train all the networks via 

negative correlation 

Remove U mark from the patterns 
that are classified by this network. 

Fig.1. Flowchart of DCIS 



Step 1) Divide input patterns into three sets: a training 
set, a validation set and a test set. Mark all training 
patterns with U to indicate unclassified by all exiting 
partially trained networks in the NNE.  

 

Step 2) Create a network with a defined number of 
hidden nodes and randomly initialize all connection 
weights. The number of nodes in the input and output 
layers are the same as the number of inputs and 
outputs of the problem, respectively. 

 

Step 3) Partially train this network with the U marked 
patterns. The number of partial training epochs (T) is 
a user-defined parameter. 

 

Step 4) Remove the U mark from the patterns that are 
classified by this network. 

 

Step 5) Check this network for full training set, how 
many patterns are truly classified. Mark truly 
classified patterns with C for this network.  

 

Step 6) Partially train this network but change input 
space by assuming all output node values equal to 
zero for the patterns that are not marked with C. The 
number partial training epochs is equal to step 3. 

 

Step 7) Calculate the U marked patterns. If the number of 
U marked patterns is zero i.e., all patterns are truly 
classified by one or more component networks; then 
proceed step 8, other wise go to step 2 to add another 
component network.  

 

Step 8) Finally train all the networks via negative 
correlation to minimize the NNE error E [1] on the 
validation set. Training stops when the error reaches 
within the acceptable range or when the error status to 
increase. E is defined by 
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Where N is the number of patterns in the validation 

set, M is the number of component networks in the NNE, 
Fi(n) is the output of network i on the nth training pattern, 
and d(n) represents the desired output for the nth pattern.  
 

Step 9) Determine the accuracy of the NNE using the test 
set. 

IV. EXPERIMENTAL STUDIES 
 

To evaluate the performance, we tested DCIS on five 
well-known real world benchmark classification problems. 
These are Australian Credit Card (ACC) problem, Breast 
Cancer Wisconsin (BCW) problem, Diabetes (DB) 
problem, Heart Disease Cleveland (HDC) problem and Iris 
Plants (IP) problem. Origin of these data sets is the UCI 
machine learning benchmark repository. The detailed 
descriptions are available in UCI web site 
(http://www.ics.uci.edu/~mlearn/). But in DCIS we used 
preprocessed Proben1 datasets that were obtained from 
(ftp://ftp.ira.uka.de/pub/neuron/) except Iris Plants 
problem.  

We preprocessed UCI Iris Plans data by rescaling input 
attribute values between 0.0 and 1 by a linear function. 
Also we randomly distributed individual Iris Plan, and 
then equally distributed three Iris Plans. For all problems 
we followed the neural network benchmark methodology 
[7]. All datasets are partitioned into three sets: a training 
set, a validation set, and a testing set. The testing set is 
used to evaluate the generalization performance of the 
trained NNE and is not seen by any individual network 
during the whole training process. It is known that the 
experimental results may vary significantly for different 
partitioning of the same data collection, even when the 
number of examples in each set is the same [7]. TABLE I 
shows the characteristics and partitions of data sets.  

 

TABLE I 
CHARACTERISTICS AND PARTITIONS OF DATASETS 

 

Total and Set Wise Examples 
Prob-

lem 

Input 

Attrib

utes 

Output 

Classes Total Trai
ning 

Valid
ation 

Test 

ACC 51 2 690 345 173 172 

BCW 9 2 699 350 175 174 

DB 8 2 768 384 192 192 

HDC 35 2 303 152 76 75 

IP 4 3 150 75 38 37 
 
A. Experimental Setup 
 

DCIS is an automatic NNE creation algorithm with 
two user-defined parameters; one is the number of partial 
training epochs (T) and another is the number of hidden 
nodes per network. The number of networks in NNE and 
error rate depends upon these two parameters. For our 
experiment, we set these two parameters to create three 
networks in an NNE. We trained individual neural 
networks using the standard back propagation [BP] 
learning [12]. Parameter settings of the BP learning are; 
the learning rate 0.1 and initial random weights between    
-0.1 & 0.1. At the time of final training of NNE we 
selected the penalty term of negative co-relation learning 
[2] as 0.5. To combine output from component networks, 
we used simple average [4]. 
 
B. Results and Comparison 
 

TABLE II compares the average test set error rate with 
other NNE methods. TABLE III shows the comparison of 
the architecture produced by DCIS with those by other 
methods. DCIS’s result is the average of ten independent 
runs.  The results of Arc Boosting, Ada Boosting and 
Bagging were taken from Opitz and Maclin[3]. No result 
has been reported for Iris Plants for CNNE [1]. Form the 
Table II, it is observed that DCIS is the best for Brest 
Cancer Wisconsin and Iris Plants, and is better or 
compatible for other problems. As seen in TABLE III, it is 
clear that the NNE created by DCIS is much more 
compact than any other methods.   

http://www.ics.uci.edu/~mlearn/
ftp://ftp.ira.uka.de/pub/neuron/


TABLE II 
AVERAGE TEST SET ERROR COMPARISON AMONG DCIS, ARC 

BOOSTING, ADA BOOSTING, BAGGING AND CNNE 
 

Setting Prob-

lem T # 
HN 

DCIS 
Arc 

Boos-
ting 

Ada 
Boos-
ting 

Bagg-
ing CNNE

ACC 200 3 0.139 0.158 0.138 0.157 0.092 

BCW 15 1 0.012 0.038 0.034 0.040 0.013 

DB 50 3 0.234 0.244 0.228 0.233 0.198 

HDC 50 3 0.164 0.207 0.170 0.211 0.134 

IP 30 5 0.0 0.037 0.040 0.039 --- 

 
TABLE III 

ARCHITECTURE COMPARISON AMONG NNE CREATED BY 
DCIS, ARC BOOSTING, ADA BOOSTING, BAGGING AND CNNE 

 
Average Network 

Numbers 
Average Hidden Nodes

 Per Network Prob-

lem DCIS 

Boos-
ting/ 

Bagg-
ing 

CNNE DCIS 

Boos-
ting/ 

Bagg-
ing 

CNNE

ACC 2.5 25 7.8 3 10 4.7 

BCW 3 25 4.8 1 5 2.9 

DB 3 25 6.5 3 5 3.4 

HDC 3 25 5.5 3 5 4.9 

IP 3 25 --- 5 5 --- 

  
TABLE IV 

EFFECT OF PARTIAL TRAINING ASSUMING THAT  
ALL OUTPUT NODE VALUES ARE EQUAL TO ZERO 

 FOR MISCLASSIFIED PATTERNS ON  
AUSTRALIAN CREDIT CARD PROBLEM 

 

Before NNE Train After NNE Train 
Set 

With  Without With Without 

Training 311 210 321 311 

Validation 152 98 154 154 

Test 144 98 149 148 

 
C. Effect of partial training assuming that all output node 
values are equal to zero for misclassified patterns 

 
As a sample, we tested the effect of the partial training 

assuming that all output node values are equal to zero for 
misclassified patterns (second partial training) on 
Australian Credit Card Problem. Same initial random 
weights were used and the setting of DCIS is as like Table 

II. As shown in Table IV, with the second partial training, 
DCIS truly classify 311 & 321 patterns before and after 
the final NNE training (the third train with negative 
correlation) respectively from training set. On the other 
hand, without second partial training the numbers are 210 
& 311. So the second partial train allows DCIS to classify 
10 more patterns from the training set and also 1 more 
pattern from the test set.    
 
D. Variation effect of partial training epochs (T) 
 

Figs. 2-6 show the variation effect of partial training 
epochs (T) on the number of networks and the error rate 
for various problems from same initial random weights. 
From these figures, it is observed that, if number of 
networks created is same for different values of T but the 
error rate changed due to variation of T. The number of 
hidden nodes is same as that of Table II and the final NNE 
training minimized error for the validation set. If error 
minimizes on the training set, the error rate decreased for 
the training set but increase for the validation and the test 
set. Figs. 2-6 may vary due to initial random weights. 

 

 
Fig. 2. Australian Credit Card problem. 

 
 

Fig. 3. Breast Cancer Wisconsin problem. 



 Fig. 4. Diabetes problem. 
 

 
Fig. 5. Heart Disease Cleveland problem. 
 

 
Fig. 6. Iris Plants problem 

  
E. Variation effect of hidden nodes per network 
 

Figs. 7-11 show the variation effect of hidden nodes per 
network for same initial random weights. Here T is same 
as that of Table II. From these figures, it is observed that 
when the number of hidden nodes per network is less than 

the number of output classes, error rate is high in general. 
When the number is increased up to a certain level, the 
error rate does not improve any further. It is observed that 
optimized number of hidden nodes per network is related 
to the number output classes [3]. Figs. 7-11 may vary due 
to initial random weights. 

 

Fig. 7. Australian Credit Card problem. 
 

Fig. 8. Breast Cancer Wisconsin problem. 
 

Fig. 9. Diabetes problem 



 
Fig. 10. Heart Disease Cleveland problem 

 

 
Fig. 11. Iris Plants problem 

 
V. CONCLUSIONS 

 

We have proposed a new automatic NNE creation 
algorithm in this paper. The novelty of the proposed 
method is that this method does not require probabilistic 
calculation to add next component network unlike the 
previously proposed methods such as the bagging and the 
boosting. And also the procedure is straightforward and 
simple. Performance of this method is better or equivalent 
to that of other hand-made NNE algorithms. Though the 
performance is inferior to CNNE’s for most of the cases, 
the final architecture of NNE are much more compact in 
the proposed method.   

There are three training steps in the proposed NNE 
creation method. Firstly, partial train with misclassified 
patterns, secondly partial train by changing input space, 
and thirdly, NNE training via negative correlation. For the 
two partial trainings, we used same training epochs for 
simplicity. So further conclusion may be drawn altering 
the second partial training epochs.  
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