
A Constructive Algorithm for Neural Network
Ensemble: Dynamical Change in Input Space

M. A. H. Akhand, Md. Monirul Islam* and K. Murase

Dept. of Human and Artificial Intelligent Systems, University of Fukui, Japan
* Dept. of Computer Science and Engineering, BUET, Dhaka, Bangladesh

Email: akhand@synapse.his.fukui-u.ac.jp

 Abstract—This paper presents a constructive
algorithm for neural network ensemble creation using
dynamical change in input space (DCIS) technique.
DCIS is an automatic ensemble creation method where
next component network is added in ensemble by
training with previously misclassified patterns. To
improve performance of this new network in the
ensemble, trains with full training set but all output
node values of misclassified patterns are considered as
zero. DCIS creates optimized ensemble with lower
computational cost and better generalization ability
with respect to previously proposed hand-made
ensemble creation methods such as the bagging and the
boosting. It uses rather simple user-defined parameters
that are the number of partial training epochs and
hidden nodes per network. Results with benchmark
problems exhibit better or competitive performance.

Index Terms—Generalization, constructive approach
and negative correlation learning.

I. INTRODUCTION

Neural Network Ensemble (NNE) is a collection of a
finite number of neural networks that are trained for the
same task [4]. The final output is the combination of
participated network’s output. NNE is known to improve
classification and generalization ability [3], [4]. It is clear,
however, there is no advantage to combining networks that
exhibit identical generalization ability [4]. So, component
networks should be diverged to compensate the failure of
one network by others. On the other hand, if component
networks show very bad generalization ability with
diversity, performance of NNE will decrease. Thus there is
a trade-off between diversity and generalization.

There are various ways we can produce diverse
networks. Those include, varying the set of initial random
weights, varying the topology, varying the algorithm
employed, and varying the training data [4]. It is argued
that networks trained on different training sets are more
likely to show diversity than networks trained on the same
training set from the starting point of different initial
conditions, or with different numbers of hidden nodes, or
using a different algorithm [5]. Data sampling or variation
in training data is the common, effective and verified
technique for NNE creation [8], [9], [10].

Another important issue of any NNE is how to train
individual networks, since the training strategy influences
the diversity and the accuracy of individual networks in

the NNE [1]. There are three major approaches to train
individual networks, i.e., independent training, sequential
training, and simultaneous training [1]. In independent
training, each individual network in NNE is trained
independently to minimize the error between the target
and its output. One major disadvantage of this approach is
the lack of interaction among individual networks during
training [2]. In sequential training, individual networks in
NNE are trained one after another not only to minimize
the error between the targets and their outputs, but also to
decorrelate their errors from previously trained networks.
In this approach, the connection weights of previously
trained networks are frozen when the current network is
being trained. As a result, training an individual network
in the NNE cannot affect the previously trained networks.
The errors of individual networks are not necessarily
negatively correlated [1]. But it is known that negative
correlation among individual networks in NNE is
beneficial for improving NNE’s performance [1].
Recently, Liu and Yao [2] proposed a simultaneous
training method of individual networks in NNE with
negative correlation. They introduced a correlation penalty
term in error function so that individual network in NNE
can be trained simultaneously and interactively. The
advantage of this approach is that it can produce biased
individual networks whose errors tend to be negatively
correlated [2]. One disadvantage of this approach is that
all individual networks in an NNE are concerned with the
whole NNE error. This may cause competitions among
individual networks in the NNE [1].

In DCIS, we therefore presented a constructive
algorithm for NNE creation using a hybrid algorithm of
sequential and simultaneous training. To add a network in
the ensemble we used a simple technique; add a network
that is partially trained by previously misclassified patterns
only. Then we partially trained this new network in
sequential fashion while changing input space that means;
training is performed with full training set but assuming
output node values equal to zero for the patterns that are
currently misclassified by this network. Again we
simultaneously trained the whole NNE via negative
correlation [2].

The rest of this paper is organized as follows. Section
II discusses some popular NNE creation methods and the
difference with the proposed method. Section III describes
the proposed method in details. Section IV presents
experimental results of this new method. Finally, Section
V concludes the paper with a brief summary and a few
remarks.

II. METHODS OF NNE CREATION

Two major issues of NNE are, to create component
networks and to combine the output of component
networks. A lot of works have been done within last
decade on NNE creation [6], [8], [9], [10], [11]. Among
them, the most popular methods are the bagging [9] and
the boosting [8], [10].

Both bagging [9] and boosting [10] manipulate the
training data in order to generate different component
networks. The bagging produces replicate training sets by
sampling from the training instances. The boosting uses all
instances at each repetition, but maintains a weight for
each instance and weight is varied to focus on different
instances by different networks [8]. In both cases, voting is
used to combine output of component networks to get
NNE’s output [8]. In the bagging each component network
has the same vote, while boosting assigns different voting
strengths to component networks on the basis of their
accuracy [8]. But both are manual NNE creation method
and use probabilistic method to produce the training set for
the next component network [3]. So these methods require
checking all previous networks with mathematical
calculation.

Recently Md. Monirul Islam et al. [1] proposed an
automatic NNE creation algorithm, called CNNE. That is
the first automatic NNE creation algorithm as they
claimed. CNNE changes the architecture of NNE at the
training time with adding hidden nodes and networks.
Instead of training data sampling procedure, it trains all
component networks simultaneously with full training set
via negative correlation. It starts training with two
networks with single hidden node per network. First it
tries to minimize the error by adding hidden node
according to defined criteria, and then by adding new
network with single hidden node. After adding several
networks, if no improvement is found, it stops training
according to a halting criteria. In that case, it starts with
two identical networks; initial random weights are only
difference between them. So, both networks will try to
form identical functions. Another point is that it starts with
single hidden node per network for all the problems but
some problems required more hidden nodes, especially
when number of output classes increases. So
computational cost is high due to full training set for all
the networks and small number of initial hidden nodes.

Our purpose is to develop an automatic NNE creation
algorithm that will overcome the problems of previous
methods. The proposed algorithm DCIS uses a rather
simple technique to create training set for adding next
component network. That is the misclassified patterns of
partially trained networks. Thus any probabilistic
calculation is unnecessary unlike the bagging and the
boosting; only checks, which patterns are misclassified by
all exiting partially trained networks. We used fixed
number of hidden nodes per network for a particular
problem on the basis of the number of output classes [3].
This further simplifies the calculation. Increasing the
number of hidden nodes does not improve the
performance after a particular number [5], and that’s rather
depends on the number of output classes. The

computational cost is therefore lower than CNNE. Another
advantage of the proposed algorithm is that the meaning of
two user define parameters is easy understandable, while
that of CNNE is rather complex [1].

III. DYNAMICAL CHANGE IN INPUT SPACE

(DCIS) METHOD

In DCIS, there are three major steps to create an NNE.
Firstly, it partially trains a network with the patterns that
are misclassified by all exiting partially trained networks.
Secondly, it trains this new network with full training set
but assuming all output node values equal to zero for the
patterns that are misclassified by this new network. By the
second partial training it forces to produce equal output in
all the output nodes for misclassified patterns. This new
network therefore will not oppose other networks to
classify these patterns that are presently misclassified. In
another sense, this network will be diverted for these
classified patterns without affecting others. The third and
final training is performed with all component networks
via negative correlation with full training set to minimize
the total error of the whole NNE. The major steps of DCIS
are summarized in Fig. 1, which are explained further
below:

Start

Mark all patterns with U

Partially train by U marked patterns.
Training epochs, T, is user specified

Test for all patterns and marked with
C that’s are classified by this network

Final Ensemble

Create a network and randomly
initialize the connection weights.

Stop

No

Partially train this network but consider all output node
values equal to zero for the patterns that are not marked
with C. Training epochs, T is same as previous.

Is U marked
pattern equal to zero?

Yes
Finally train all the networks via

negative correlation

Remove U mark from the patterns
that are classified by this network.

Fig.1. Flowchart of DCIS

Step 1) Divide input patterns into three sets: a training
set, a validation set and a test set. Mark all training
patterns with U to indicate unclassified by all exiting
partially trained networks in the NNE.

Step 2) Create a network with a defined number of
hidden nodes and randomly initialize all connection
weights. The number of nodes in the input and output
layers are the same as the number of inputs and
outputs of the problem, respectively.

Step 3) Partially train this network with the U marked
patterns. The number of partial training epochs (T) is
a user-defined parameter.

Step 4) Remove the U mark from the patterns that are
classified by this network.

Step 5) Check this network for full training set, how
many patterns are truly classified. Mark truly
classified patterns with C for this network.

Step 6) Partially train this network but change input
space by assuming all output node values equal to
zero for the patterns that are not marked with C. The
number partial training epochs is equal to step 3.

Step 7) Calculate the U marked patterns. If the number of
U marked patterns is zero i.e., all patterns are truly
classified by one or more component networks; then
proceed step 8, other wise go to step 2 to add another
component network.

Step 8) Finally train all the networks via negative
correlation to minimize the NNE error E [1] on the
validation set. Training stops when the error reaches
within the acceptable range or when the error status to
increase. E is defined by

 ∑ ∑
= =









−=

N

n

M

i
i ndnF

MN
E

1

2

1
)()(1

2
11100 (1)

Where N is the number of patterns in the validation

set, M is the number of component networks in the NNE,
Fi(n) is the output of network i on the nth training pattern,
and d(n) represents the desired output for the nth pattern.

Step 9) Determine the accuracy of the NNE using the test
set.

IV. EXPERIMENTAL STUDIES

To evaluate the performance, we tested DCIS on five
well-known real world benchmark classification problems.
These are Australian Credit Card (ACC) problem, Breast
Cancer Wisconsin (BCW) problem, Diabetes (DB)
problem, Heart Disease Cleveland (HDC) problem and Iris
Plants (IP) problem. Origin of these data sets is the UCI
machine learning benchmark repository. The detailed
descriptions are available in UCI web site
(http://www.ics.uci.edu/~mlearn/). But in DCIS we used
preprocessed Proben1 datasets that were obtained from
(ftp://ftp.ira.uka.de/pub/neuron/) except Iris Plants
problem.

We preprocessed UCI Iris Plans data by rescaling input
attribute values between 0.0 and 1 by a linear function.
Also we randomly distributed individual Iris Plan, and
then equally distributed three Iris Plans. For all problems
we followed the neural network benchmark methodology
[7]. All datasets are partitioned into three sets: a training
set, a validation set, and a testing set. The testing set is
used to evaluate the generalization performance of the
trained NNE and is not seen by any individual network
during the whole training process. It is known that the
experimental results may vary significantly for different
partitioning of the same data collection, even when the
number of examples in each set is the same [7]. TABLE I
shows the characteristics and partitions of data sets.

TABLE I
CHARACTERISTICS AND PARTITIONS OF DATASETS

Total and Set Wise Examples
Prob-

lem

Input

Attrib

utes

Output

Classes Total Trai
ning

Valid
ation

Test

ACC 51 2 690 345 173 172

BCW 9 2 699 350 175 174

DB 8 2 768 384 192 192

HDC 35 2 303 152 76 75

IP 4 3 150 75 38 37

A. Experimental Setup

DCIS is an automatic NNE creation algorithm with
two user-defined parameters; one is the number of partial
training epochs (T) and another is the number of hidden
nodes per network. The number of networks in NNE and
error rate depends upon these two parameters. For our
experiment, we set these two parameters to create three
networks in an NNE. We trained individual neural
networks using the standard back propagation [BP]
learning [12]. Parameter settings of the BP learning are;
the learning rate 0.1 and initial random weights between
-0.1 & 0.1. At the time of final training of NNE we
selected the penalty term of negative co-relation learning
[2] as 0.5. To combine output from component networks,
we used simple average [4].

B. Results and Comparison

TABLE II compares the average test set error rate with
other NNE methods. TABLE III shows the comparison of
the architecture produced by DCIS with those by other
methods. DCIS’s result is the average of ten independent
runs. The results of Arc Boosting, Ada Boosting and
Bagging were taken from Opitz and Maclin[3]. No result
has been reported for Iris Plants for CNNE [1]. Form the
Table II, it is observed that DCIS is the best for Brest
Cancer Wisconsin and Iris Plants, and is better or
compatible for other problems. As seen in TABLE III, it is
clear that the NNE created by DCIS is much more
compact than any other methods.

http://www.ics.uci.edu/~mlearn/
ftp://ftp.ira.uka.de/pub/neuron/

TABLE II
AVERAGE TEST SET ERROR COMPARISON AMONG DCIS, ARC

BOOSTING, ADA BOOSTING, BAGGING AND CNNE

Setting Prob-

lem T #
HN

DCIS
Arc

Boos-
ting

Ada
Boos-
ting

Bagg-
ing CNNE

ACC 200 3 0.139 0.158 0.138 0.157 0.092

BCW 15 1 0.012 0.038 0.034 0.040 0.013

DB 50 3 0.234 0.244 0.228 0.233 0.198

HDC 50 3 0.164 0.207 0.170 0.211 0.134

IP 30 5 0.0 0.037 0.040 0.039 ---

TABLE III

ARCHITECTURE COMPARISON AMONG NNE CREATED BY
DCIS, ARC BOOSTING, ADA BOOSTING, BAGGING AND CNNE

Average Network

Numbers
Average Hidden Nodes

 Per Network Prob-

lem DCIS

Boos-
ting/

Bagg-
ing

CNNE DCIS

Boos-
ting/

Bagg-
ing

CNNE

ACC 2.5 25 7.8 3 10 4.7

BCW 3 25 4.8 1 5 2.9

DB 3 25 6.5 3 5 3.4

HDC 3 25 5.5 3 5 4.9

IP 3 25 --- 5 5 ---

TABLE IV

EFFECT OF PARTIAL TRAINING ASSUMING THAT
ALL OUTPUT NODE VALUES ARE EQUAL TO ZERO

 FOR MISCLASSIFIED PATTERNS ON
AUSTRALIAN CREDIT CARD PROBLEM

Before NNE Train After NNE Train
Set

With Without With Without

Training 311 210 321 311

Validation 152 98 154 154

Test 144 98 149 148

C. Effect of partial training assuming that all output node
values are equal to zero for misclassified patterns

As a sample, we tested the effect of the partial training

assuming that all output node values are equal to zero for
misclassified patterns (second partial training) on
Australian Credit Card Problem. Same initial random
weights were used and the setting of DCIS is as like Table

II. As shown in Table IV, with the second partial training,
DCIS truly classify 311 & 321 patterns before and after
the final NNE training (the third train with negative
correlation) respectively from training set. On the other
hand, without second partial training the numbers are 210
& 311. So the second partial train allows DCIS to classify
10 more patterns from the training set and also 1 more
pattern from the test set.

D. Variation effect of partial training epochs (T)

Figs. 2-6 show the variation effect of partial training
epochs (T) on the number of networks and the error rate
for various problems from same initial random weights.
From these figures, it is observed that, if number of
networks created is same for different values of T but the
error rate changed due to variation of T. The number of
hidden nodes is same as that of Table II and the final NNE
training minimized error for the validation set. If error
minimizes on the training set, the error rate decreased for
the training set but increase for the validation and the test
set. Figs. 2-6 may vary due to initial random weights.

Fig. 2. Australian Credit Card problem.

Fig. 3. Breast Cancer Wisconsin problem.

 Fig. 4. Diabetes problem.

Fig. 5. Heart Disease Cleveland problem.

Fig. 6. Iris Plants problem

E. Variation effect of hidden nodes per network

Figs. 7-11 show the variation effect of hidden nodes per
network for same initial random weights. Here T is same
as that of Table II. From these figures, it is observed that
when the number of hidden nodes per network is less than

the number of output classes, error rate is high in general.
When the number is increased up to a certain level, the
error rate does not improve any further. It is observed that
optimized number of hidden nodes per network is related
to the number output classes [3]. Figs. 7-11 may vary due
to initial random weights.

Fig. 7. Australian Credit Card problem.

Fig. 8. Breast Cancer Wisconsin problem.

Fig. 9. Diabetes problem

Fig. 10. Heart Disease Cleveland problem

Fig. 11. Iris Plants problem

V. CONCLUSIONS

We have proposed a new automatic NNE creation
algorithm in this paper. The novelty of the proposed
method is that this method does not require probabilistic
calculation to add next component network unlike the
previously proposed methods such as the bagging and the
boosting. And also the procedure is straightforward and
simple. Performance of this method is better or equivalent
to that of other hand-made NNE algorithms. Though the
performance is inferior to CNNE’s for most of the cases,
the final architecture of NNE are much more compact in
the proposed method.

There are three training steps in the proposed NNE
creation method. Firstly, partial train with misclassified
patterns, secondly partial train by changing input space,
and thirdly, NNE training via negative correlation. For the
two partial trainings, we used same training epochs for
simplicity. So further conclusion may be drawn altering
the second partial training epochs.

REFERENCES

[1] Md. Monirul Islam, X.Yao and K. Murase. A
Constructive Algorithm for Training neural
Network Ensembles, IEEE Transactions on Neural
Networks, vol. 14, no. 4, 2003, pp. 820-834.

[2] Y. Liu and X. Yao. Ensemble learning via negative
correlation, Neural Networks, vol. 12, 1999, pp.
1399-1404.

[3] D. W. Opitz and R. Maclin. Popular ensemble
methods: An empirical study, Journal of Artificial
Intelligence Research, vol. 11, 1999, pp. 169-198.

[4] A. J. C. Sharkey. On combining artificial neural
nets, Connection Science, vol. 8, no. 3/4, 1996, pp.
299-314.

[5] A. J. C. Sharkey, Combining diverse neural nets,
Knowledge Engineering Review, vol. 12 no. 3,
1997, pp. 299-314.

[6] B. E. Rosen. Ensemble learning using decorrelated
neural networks, Connection Science, vol. 8, 1996,
pp. 373-383.

[7] L. Prechelt. Proben1- a set of benchmarks and
benching rules for neural network training
algorithms, Tech. Rep. 21/94, Fakultat fur
Informatik, University of Karlsruhe, Germany,
1994.

[8] J. R. Quinlan. Bagging, boosting, and C4.5, in
Proc. Of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference,
Menlo park, August 4-8, 1996, AAAI Press/MIT
Press, 1996, pp. 725-730.

[9] L. Breiman. Bagging predictors, Machine
Learning, vol. 24, 1996, pp. 123-140.

[10] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm, in Proc. 13th International
Conference on Machine Learning, Morgan
kaufmann, 1996, pp. 148-156.

[11] A. J. C. Sharkey, N. E. Sharkey, U. Gerecke and G.
O. Chandroth. The `test and select' approach to
ensemble combination, in Multiple Classifier
Systems, LNCS 1857, J. Kittler and F. Roli, Eds.,
30-44 (Springer-Verlag, 2000).

[12] D. Rumelhart, G. Hinton, & R. Williams. Learning
internal representations by error propagation,
Parallel Distributed Processing: Explorations in
the microstructure of cognition. Volume 1:
Foundations, MIT Press, Cambridge, MA, 1986,
pp. 318-363

	I. INTRODUCTION
	II. METHODS OF NNE CREATION
	
	
	IV. EXPERIMENTAL STUDIES

	A. Experimental Setup
	B. Results and Comparison
	
	Average Network Numbers
	DCIS
	CNNE
	Boos-ting/ Bagg-ing
	Before NNE Train
	With
	With

	C. Effect of partial training assuming that all output node values are equal to zero for misclassified patterns
	
	
	
	D. Variation effect of partial training epochs (T)

	V. CONCLUSIONS

