
 
 

 

 
Abstract— The satisfiability problem (SAT) is one of the 

most basic and important problems in the computer science. 
We have proposed a recurrent analog neural network called 
LPPH (Lagrange Programming neural network with Polarized 
High-order connections) for the SAT. In this paper, a method of 
parallel execution of the LPPH is proposed. Experimental re-
sults show that high speedup radio is obtained. Furthermore 
this method is very easy to be realized by hardware.  In the 
dynamics of the LPPH, there is an important parameter named 
attenuation coefficient, which is already know to strongly affect 
the speed of execution of the LPPH. However determining the 
good value of the attenuation coefficient is very difficult. In this 
paper, we also show that our method of the parallel execution 
can ease the difficulty of determining the good value of the at-
tenuation coefficient.   
 
 

I.  INTRODUCTION 
 
The satisfiability problem (SAT) is an important funda-

mental problem in the computer science as well as in wide 
fields of practical applications, such as decision making, 
scheduling, designing , etc. On the other hand the SAT is a 
famous NP-complete problem. It requires a lot of time to 
solve as the size of problem becomes large.  We have pro-
posed a neural network for the SAT named LPPH [1] [2] [3]. 
The LPPH is based on the Lagrangian method, and it was 
proved theoretically that the solutions of the SAT are the 
equilibrium points of the LPPH and vice versa, and almost 
all solutions of the SAT are stable equilibrium points of the 
LPPH. This means that the LPPH is not trapped by any point 
which is not a solution of the SAT. The dynamics of the 
LPPH consists of the differential equations of the neuron 
outputs and the weights of connections between neurons. 
Similar to many other neural networks, it is easy for the 

LPPH to achieve a parallel processing when neurons are 
implemented individually by electronic circuits or on dif-
ferent computers (neuron-level parallel processing). Many 
researches of neuron-level parallel processing had been done 
[4] [5]. In this case several kinds of communication over-
heads are needed, such as space overhead or time overhead. 
In the dynamics of the LPPH, it is known although only 

slightly different at initial points, the trajectory of them are 
different completely from the experimental results. In this 
paper, we propose a parallel technique of the LPPH, which 
means preparing plural neural networks of the LPPH in order 
to find out a solution more efficiently from the different ini-

tial states (network-level parallel processing). And the ex-
perimental results show that high speedup ratio is obtained 
by using this parallel technique of the LPPH.  
There is an important parameter named attenuation coeffi-

cient in the dynamics of the LPPH. The attenuation coeffi-
cient is similar to the one which is the essence of “Tabu 
learning” of Beyer [6]. And this parameter has strong in-
fluence on the speed of execution of the LPPH. Furthermore 
the good value of the attenuation coefficient strongly de-
pends on the given problems, and it is difficult to decide the 
good value in advance. In this paper, we also show that our 
method of the parallel execution can ease the difficulty of 
determining the good value of the attenuation coefficient. 

  
II. SAT AND CNF 

A. Conjunctive Normal Form (CNF) 
CNF (conjunctive normal form) is a logical formula which 

is a conjunction of clauses. The clause is a disjunction of 
literals. The literal is a variable (positive literal) or a negation 
of a variable (negative literal). Each variable has Boolean 
value 0 (False) or 1 (True). The rth clause Cr is written as 
follows:  

 
,21 rlrirrr LLLLC ∨∨∨∨∨= LL   (1) 

 
where riL  means the ith literal of clause Cr. And the CNF is 
written as follows: 

 
.21 mCCCE ∧∧∧= L  (2) 

 
In this paper, we can make the following assumption 

without loss of generality, because xxx =∨  and 1=∨ xx . 
Assumption: No variable appears more than once in each 

clause. 
 
B. Satisifiability problem (SAT)  
A vector n}1,0{∈x  is called a Boolean assignment. 

When x is assigned to CNF E and the result is true, we say 
‘ x  is a satisfying assignment of E’ or ‘ x  satisfies E’. Sat-
isfiability problem (SAT) is a problem to find a solution of 
the given CNF if any solution exists. The definition of the 
SAT is stated as follows: 
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An example of the SAT is given as follows: 
 

).()()( 321321321 xxxxxxxxxE ∨∨∧∨∨∧∨∨=  （4） 
 
The solutions of the CNF E { }31,0∈x are (0,0,1), (0,1,0), 

(0,1,1), (1,0,1) and (1,1,0) .  
 

III. LPPH 

 
A.Continuous Valued Satisfiability Problem (CONSAT) 
SAT is a discrete valued problem. Here we will convert the 

SAT into an arithmetic continuous valued problem. 
  Let us consider ),,,( 21 nxxx L=x  to be a vector of arith-
metic continuous valued variables. For each ,,,2,1 ni L=  
and ,,,2,1 mr L=  a function ]1,0[]1,0[: →n

irg  is defined 
as follows: 
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Corresponding with ),,2,1( mrCr L= a function 

]1,0[]1,0[: →n
rh  is design as follows: 
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 So the CONSAT can be defined as follows, 
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Note that a solution of the CONSAT is in [0, 1]n, while a 
solution of the SAT is in {0, 1}n . 
 
 
B.  Definition of LPPH 
The LPPH is expressed by Lagrange function as follow: 
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Here, 0)( ≥wx,F  is clearly. And when n]1,0[∈x  is a so-
lution of the CONSAT, 0)( =wx,F . Therefore if the mini-
mum of above expression is found, it is the solution of the 
CONSAT. The LPPH will be defined as follows by using 

)( wx,F . 
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By solving the above differential equations, the LPPH can 
find a solution of the SAT. α  is called attenuation coeffi-
cient. 
 
C. Features of LPPH 

Some features are proved about the LPPH when α=0. 
 
(1) The LPPH does not have equilibrium points other than 

the solutions of the CONSAT, while a solution of the 
CONSAT is an equilibrium point of the LPPH. 

(2)  The dynamics of the LPPH converges to a solution of 
the CONSAT when it approaches the solution. 

 
The features do not guarantee dynamics of the LPPH to find 

a solution anytime although a solution exists. However ex-
perimental results show the LPPH can find a solution effec-
tively if the CONSAT is satisfiable. We also know from 
experiments that if small appropriate positive value of α 
significantly improve the efficiency of the LPPH. 

IV. PARALLEL EXECUTION OF THE LPPH 

A. Definition of the Parallel Execution of the LPPH 
We have known that only slightly difference of initial 

points ultimately cause the completely difference of the tra-
jectories of the LPPH. In this paper, we propose a parallel 
execution of the LPPH. In this technique,  
 

(1) Prepare plural neural networks of the LPPHs. 
(2) Start the LPPHs simultaneously from different initial 

points to each others. 
(3) When any of the LPPHs finds a solution , halt all the 

LPPHs  and return the solution. 
 

The image of the parallel execution of the LPPH is shown 
as Fig.1. 
It is easy to realize the parallel execution of the LPPH by 

hardware. Only we have to do is preparing plural neural 
networks. The total system is very simple and executable at 
high-speed. 

 
B. Experiment 
Suppose that the parallel execution of p LPPHs is done. Let 
jt  be the execution time of jth LPPH for finding a solution. 

Then, { }pjtT jjp ≤≤= 1min  is the execution time of the 

parallel execution. We will call Tp and pTp, “execution time” 
and “total execution time”, respectively. In some experiment 
we use “number of update” instead of “execution time”, 
because these are proportional when the problem is fixed. 

 
 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. The image of the parallel technique of the LPPH 
 
 

 
 

Fig.2 The speedup ratio of random 3-SAT 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Several  types of dependency on the attenuation coefficient 
 

The result of experiment is shown in Fig.2. The horizontal 
axis indicates the number of LPPHs, and the vertical axis 
indicates the speedup ratio, namely )(/)( 1TETE p  , where E 
means the average. In this experiment, parallel execution of 
P (P=1, 2, …,50)  neural networks of the LPPH is used. 
Randomly generated 3-SAT problems are used in this ex-
periments. They are exp-r300 (300 variables and 1275 
clauses), exp-r200 (200 variables and 860 clauses), exp-r100 
(100 variables and 430 clauses), exp-r50 (50 variables and 
215 clauses).  From Fig. 2, it is shown that the high speedup 
ratio is obtained. This is remarkable for large and difficult 
problems, e.g. exp-r300. 
 
C. Problem dependency of the attenuation coefficient 
The value of attenuation coefficient influences the execu-

tion time of the LPPH strongly. The experimental results 

show that the speedup can be achieved by using the optimal 
value of the attenuation coefficient. However, the optimal 
value strongly depends on the problems in hand. Further-
more it is known to be very difficult to decide the optimal 
value of attenuate coefficient in advance.  
When the value of attenuation coefficient is too small, the 

values of weights become large, and speed of the change of 
the weights become slow, hence, the execution time will 
increase [3]. Adversely the value of attenuation coefficient is 
too large, the dynamics of the LPPH will fall into a limit 
circle frequently. The dependency on the attenuation coef-
ficient is very strong in general, for difficult problems. Sev-
eral types of dependency are shown in the Fig.3. Type 1 
represents the typical dependency mentioned above. For 
some problems, the optimal value of the attenuation coeffi-
cient is small (Type 2), while for some other problems, the 
optimal value is large (Type 3). Furthermore there are 
problems for which the optimal value is 0 (Type 4), or the 
dependency is bimodal (Type 5). 
 
D. Advantage of the parallel execution 
To examine the relation between the number of the LPPHs 

and the dependency of the execution time on the attenuation 
coefficient, the following experiments are done. In the ex-
periments, we examined how the execution time depends on 
the attenuation coefficients for several numbers of LPPHs. 
The experimental results are shown in Fig.4 and Fig.5. Fig.4 
is the result for a random 3-SAT problem of 200 variables, 
and Fig.5 is the result for an unique-solution random 3-SAT 
problem of 50 variables. The horizontal axes indicate the 
value of the attenuation coefficient and the vertical axes in-
dicate the average of the total number of updates. From the 
experimental results, we can see, for the random 3-SAT 
problem, the optimal value of the attenuation coefficient 
increases as the number of LPPHs increases. Additionally, it 
can be seen that the dependency on the attenuation coeffi-
cient is eased. For the unique-solution random 3-SAT 
problem, although it can be seen that the dependency on the 
attenuation coefficient is eased, the optimal value of the 
attenuation coefficient is not affected by the number of the 
LPPHs. From the experimental results, we can see the de-
pendency of the execution time on the attenuation coefficient 
can be eased by the parallel execution of the LPPH. 

   
Fig.4 The dependency of total execution updates on the attenuation coeffi-

cient for a random 3-SAT problem of 200 variables and 860 clauses 
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Fig.5 The dependency of total execution updates on the attenuation coeffi-
cient for an unique-solution random 3-SAT problem of 50 variables and 120 

clauses 
 
 

 
 
Fig.6 Comparison of several parallel execution methods for random 3-SAT 

problem of 200 variables and 860 clauses 
 
 

 
 

Fig.7 Comparison of several parallel execution methods for an 
unique-solution random 3-SAT problem of 30 variables and 64 clauses 

 
 

V. GENERATING ATTENUATION COEFFICIENTS RANDOMLY  

It is known that the optimal value of the attenuation coef-
ficients for each problem is very different as shown in Fig.3. 
And it is very difficult to decide the good value of the at-
tenuation coefficient for each given problem. So far we have 
used a fixed value of the attenuation coefficient for each 
LPPH in the parallel execution. In this section we will ex-

amine the effectiveness of assigning different value to each 
LPPH. 
Fig.6 and Fig.7 show the experimental results that com-

paring with the parallel executions in which the attenuate 
coefficient are fixed and the one in which the attenuation 
coefficients are generated by uniform random number be-
tween 0 and 0.2. In Fig.6~7, the horizontal axes indicate the 
number of LPPHs and the vertical axes indicate total number 
of updates. In this experiment, the random 3-SAT problem of 
200 variables and 860 clauses and an unique-solution ran-
dom 3-SAT problem of 30 variables and 64 clauses are used. 
 In Fig.6, for the fixed values of the attenuation coefficient, 
α=0.06 and α=0.14 are used. From the result of Fig.4, it is 
known that α=0.14 is the best value of the attenuation co-
efficient, and α=0.06 is a bad value for the random 3-SAT 
problem. From Fig.6 we can see that the result of the parallel 
execution with randomly generated attenuation coefficients 
is better than the result of one with α=0.06, and close to the 
result of one with α=0.14 for some cases. 
In Fig.7, for the fixed values of the attenuation coefficient, 
α=0.06 (the best value of attenuate coefficient), α=0.2(a bad 
value of the attenuate coefficient) are used. We can also see 
that the result of randomly generated attenuation coefficients 
is closed to the result of the best attenuation coefficient 
(α=0.06). 
 

VI. CONCLUTION 

We propose a technique of parallel execution of the LPPH 
(network level parallel processing). It is very easy to realize 
this technique by hardware. Only we have to do is preparing 
plural LPPHs, and execute them simultaneously. From the 
experimental results, the high speedup ratio is obtained es-
pecially for the difficult problems. 
It is known that the attenuation coefficient has strong in-

fluence on the execution time of the LPPH. And it is also 
known to be very difficult to find the optimal value of the 
attenuation coefficient in advance. From the experimental 
results of this paper, the dependency of the execution time on 
the attenuation coefficient can be eased by the parallel exe-
cution of the LPPH. 
 We also examined the efficiency of the parallel execution 
with randomly generated attenuation coefficients. Ex-
perimental results show this technique is more efficient 
than using a bad value for the attenuation coefficient. 
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