

Abstract— The satisfiability problem (SAT) is one of the

most basic and important problems in the computer science.
We have proposed a recurrent analog neural network called
LPPH (Lagrange Programming neural network with Polarized
High-order connections) for the SAT. In this paper, a method of
parallel execution of the LPPH is proposed. Experimental re-
sults show that high speedup radio is obtained. Furthermore
this method is very easy to be realized by hardware. In the
dynamics of the LPPH, there is an important parameter named
attenuation coefficient, which is already know to strongly affect
the speed of execution of the LPPH. However determining the
good value of the attenuation coefficient is very difficult. In this
paper, we also show that our method of the parallel execution
can ease the difficulty of determining the good value of the at-
tenuation coefficient.

I. INTRODUCTION

The satisfiability problem (SAT) is an important funda-

mental problem in the computer science as well as in wide
fields of practical applications, such as decision making,
scheduling, designing , etc. On the other hand the SAT is a
famous NP-complete problem. It requires a lot of time to
solve as the size of problem becomes large. We have pro-
posed a neural network for the SAT named LPPH [1] [2] [3].
The LPPH is based on the Lagrangian method, and it was
proved theoretically that the solutions of the SAT are the
equilibrium points of the LPPH and vice versa, and almost
all solutions of the SAT are stable equilibrium points of the
LPPH. This means that the LPPH is not trapped by any point
which is not a solution of the SAT. The dynamics of the
LPPH consists of the differential equations of the neuron
outputs and the weights of connections between neurons.
Similar to many other neural networks, it is easy for the

LPPH to achieve a parallel processing when neurons are
implemented individually by electronic circuits or on dif-
ferent computers (neuron-level parallel processing). Many
researches of neuron-level parallel processing had been done
[4] [5]. In this case several kinds of communication over-
heads are needed, such as space overhead or time overhead.
In the dynamics of the LPPH, it is known although only

slightly different at initial points, the trajectory of them are
different completely from the experimental results. In this
paper, we propose a parallel technique of the LPPH, which
means preparing plural neural networks of the LPPH in order
to find out a solution more efficiently from the different ini-

tial states (network-level parallel processing). And the ex-
perimental results show that high speedup ratio is obtained
by using this parallel technique of the LPPH.
There is an important parameter named attenuation coeffi-

cient in the dynamics of the LPPH. The attenuation coeffi-
cient is similar to the one which is the essence of “Tabu
learning” of Beyer [6]. And this parameter has strong in-
fluence on the speed of execution of the LPPH. Furthermore
the good value of the attenuation coefficient strongly de-
pends on the given problems, and it is difficult to decide the
good value in advance. In this paper, we also show that our
method of the parallel execution can ease the difficulty of
determining the good value of the attenuation coefficient.

II. SAT AND CNF

A. Conjunctive Normal Form (CNF)
CNF (conjunctive normal form) is a logical formula which

is a conjunction of clauses. The clause is a disjunction of
literals. The literal is a variable (positive literal) or a negation
of a variable (negative literal). Each variable has Boolean
value 0 (False) or 1 (True). The rth clause Cr is written as
follows:

,21 rlrirrr LLLLC ∨∨∨∨∨= LL (1)

where riL means the ith literal of clause Cr. And the CNF is
written as follows:

.21 mCCCE ∧∧∧= L (2)

In this paper, we can make the following assumption

without loss of generality, because xxx =∨ and 1=∨ xx .
Assumption: No variable appears more than once in each

clause.

B. Satisifiability problem (SAT)
A vector n}1,0{∈x is called a Boolean assignment.

When x is assigned to CNF E and the result is true, we say
‘ x is a satisfying assignment of E’ or ‘ x satisfies E’. Sat-
isfiability problem (SAT) is a problem to find a solution of
the given CNF if any solution exists. The definition of the
SAT is stated as follows:

Kairong Zhang and Masahiro Nagamatu

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,
2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan

e-mail: choh-kaie@edu.brain.kyutech.ac.jp

Parallel Execution of Neural Networks for
Solving SAT

{ }n
r mrCsatisfiedthatsuch

findSAT

1,0

,2,1
,)(

∈

=

x

x
x

L （3）

An example of the SAT is given as follows:

).()()(321321321 xxxxxxxxxE ∨∨∧∨∨∧∨∨= （4）

The solutions of the CNF E { }31,0∈x are (0,0,1), (0,1,0),

(0,1,1), (1,0,1) and (1,1,0) .

III. LPPH

A.Continuous Valued Satisfiability Problem (CONSAT)
SAT is a discrete valued problem. Here we will convert the

SAT into an arithmetic continuous valued problem.
 Let us consider),,,(21 nxxx L=x to be a vector of arith-
metic continuous valued variables. For each ,,,2,1 ni L=
and ,,,2,1 mr L= a function]1,0[]1,0[: →n

irg is defined
as follows:








−=

.1
, 1

,
)(

otherwise
literalpositiveaasCinappearsxifx

literalnegativeaasCinappearsxifx
g rii

rii

ir x （5）

Corresponding with),,2,1(mrCr L= a function

]1,0[]1,0[: →n
rh is design as follows:

.)()(
1
∏
=

=
n

i
irr gh xx （6）

 So the CONSAT can be defined as follows,

[].1,0
,,,2,10)(

),()(

∈
=∀=

x
x

x
mrhthatsuch

findCONSAT
L （7）

Note that a solution of the CONSAT is in [0, 1]n, while a
solution of the SAT is in {0, 1}n .

B. Definition of LPPH
The LPPH is expressed by Lagrange function as follow:

m
m

r

n
rr hwF),0(,]1,0[,)()(

1

∞∈∈=∑
=

wxxwx, （8）

Here, 0)(≥wx,F is clearly. And when n]1,0[∈x is a so-
lution of the CONSAT, 0)(=wx,F . Therefore if the mini-
mum of above expression is found, it is the solution of the
CONSAT. The LPPH will be defined as follows by using

)(wx,F .

.,,2,1)(

)()1(

mrh
dt

dw

,n,1,2,i
x

Fxx
dt
dx

rr
r

i
ii

i

L

L

=+−=

=
∂

∂
−−=

xw

wx,

α
 （9）

By solving the above differential equations, the LPPH can
find a solution of the SAT. α is called attenuation coeffi-
cient.

C. Features of LPPH

Some features are proved about the LPPH when α=0.

(1) The LPPH does not have equilibrium points other than

the solutions of the CONSAT, while a solution of the
CONSAT is an equilibrium point of the LPPH.

(2) The dynamics of the LPPH converges to a solution of
the CONSAT when it approaches the solution.

The features do not guarantee dynamics of the LPPH to find

a solution anytime although a solution exists. However ex-
perimental results show the LPPH can find a solution effec-
tively if the CONSAT is satisfiable. We also know from
experiments that if small appropriate positive value of α
significantly improve the efficiency of the LPPH.

IV. PARALLEL EXECUTION OF THE LPPH

A. Definition of the Parallel Execution of the LPPH
We have known that only slightly difference of initial

points ultimately cause the completely difference of the tra-
jectories of the LPPH. In this paper, we propose a parallel
execution of the LPPH. In this technique,

(1) Prepare plural neural networks of the LPPHs.
(2) Start the LPPHs simultaneously from different initial

points to each others.
(3) When any of the LPPHs finds a solution , halt all the

LPPHs and return the solution.

The image of the parallel execution of the LPPH is shown
as Fig.1.
It is easy to realize the parallel execution of the LPPH by

hardware. Only we have to do is preparing plural neural
networks. The total system is very simple and executable at
high-speed.

B. Experiment
Suppose that the parallel execution of p LPPHs is done. Let
jt be the execution time of jth LPPH for finding a solution.

Then, { }pjtT jjp ≤≤= 1min is the execution time of the

parallel execution. We will call Tp and pTp, “execution time”
and “total execution time”, respectively. In some experiment
we use “number of update” instead of “execution time”,
because these are proportional when the problem is fixed.

Fig.1. The image of the parallel technique of the LPPH

Fig.2 The speedup ratio of random 3-SAT

Fig.3 Several types of dependency on the attenuation coefficient

The result of experiment is shown in Fig.2. The horizontal
axis indicates the number of LPPHs, and the vertical axis
indicates the speedup ratio, namely)(/)(1TETE p , where E
means the average. In this experiment, parallel execution of
P (P=1, 2, …,50) neural networks of the LPPH is used.
Randomly generated 3-SAT problems are used in this ex-
periments. They are exp-r300 (300 variables and 1275
clauses), exp-r200 (200 variables and 860 clauses), exp-r100
(100 variables and 430 clauses), exp-r50 (50 variables and
215 clauses). From Fig. 2, it is shown that the high speedup
ratio is obtained. This is remarkable for large and difficult
problems, e.g. exp-r300.

C. Problem dependency of the attenuation coefficient
The value of attenuation coefficient influences the execu-

tion time of the LPPH strongly. The experimental results

show that the speedup can be achieved by using the optimal
value of the attenuation coefficient. However, the optimal
value strongly depends on the problems in hand. Further-
more it is known to be very difficult to decide the optimal
value of attenuate coefficient in advance.
When the value of attenuation coefficient is too small, the

values of weights become large, and speed of the change of
the weights become slow, hence, the execution time will
increase [3]. Adversely the value of attenuation coefficient is
too large, the dynamics of the LPPH will fall into a limit
circle frequently. The dependency on the attenuation coef-
ficient is very strong in general, for difficult problems. Sev-
eral types of dependency are shown in the Fig.3. Type 1
represents the typical dependency mentioned above. For
some problems, the optimal value of the attenuation coeffi-
cient is small (Type 2), while for some other problems, the
optimal value is large (Type 3). Furthermore there are
problems for which the optimal value is 0 (Type 4), or the
dependency is bimodal (Type 5).

D. Advantage of the parallel execution
To examine the relation between the number of the LPPHs

and the dependency of the execution time on the attenuation
coefficient, the following experiments are done. In the ex-
periments, we examined how the execution time depends on
the attenuation coefficients for several numbers of LPPHs.
The experimental results are shown in Fig.4 and Fig.5. Fig.4
is the result for a random 3-SAT problem of 200 variables,
and Fig.5 is the result for an unique-solution random 3-SAT
problem of 50 variables. The horizontal axes indicate the
value of the attenuation coefficient and the vertical axes in-
dicate the average of the total number of updates. From the
experimental results, we can see, for the random 3-SAT
problem, the optimal value of the attenuation coefficient
increases as the number of LPPHs increases. Additionally, it
can be seen that the dependency on the attenuation coeffi-
cient is eased. For the unique-solution random 3-SAT
problem, although it can be seen that the dependency on the
attenuation coefficient is eased, the optimal value of the
attenuation coefficient is not affected by the number of the
LPPHs. From the experimental results, we can see the de-
pendency of the execution time on the attenuation coefficient
can be eased by the parallel execution of the LPPH.

Fig.4 The dependency of total execution updates on the attenuation coeffi-

cient for a random 3-SAT problem of 200 variables and 860 clauses

Solution

Initial states

Type3

Attenuation coefficient

Type2

Type5
Type4

Type1

Th
e

nu
m

be
r o

f u
pd

at
es

Fig.5 The dependency of total execution updates on the attenuation coeffi-
cient for an unique-solution random 3-SAT problem of 50 variables and 120

clauses

Fig.6 Comparison of several parallel execution methods for random 3-SAT

problem of 200 variables and 860 clauses

Fig.7 Comparison of several parallel execution methods for an
unique-solution random 3-SAT problem of 30 variables and 64 clauses

V. GENERATING ATTENUATION COEFFICIENTS RANDOMLY

It is known that the optimal value of the attenuation coef-
ficients for each problem is very different as shown in Fig.3.
And it is very difficult to decide the good value of the at-
tenuation coefficient for each given problem. So far we have
used a fixed value of the attenuation coefficient for each
LPPH in the parallel execution. In this section we will ex-

amine the effectiveness of assigning different value to each
LPPH.
Fig.6 and Fig.7 show the experimental results that com-

paring with the parallel executions in which the attenuate
coefficient are fixed and the one in which the attenuation
coefficients are generated by uniform random number be-
tween 0 and 0.2. In Fig.6~7, the horizontal axes indicate the
number of LPPHs and the vertical axes indicate total number
of updates. In this experiment, the random 3-SAT problem of
200 variables and 860 clauses and an unique-solution ran-
dom 3-SAT problem of 30 variables and 64 clauses are used.
 In Fig.6, for the fixed values of the attenuation coefficient,
α=0.06 and α=0.14 are used. From the result of Fig.4, it is
known that α=0.14 is the best value of the attenuation co-
efficient, and α=0.06 is a bad value for the random 3-SAT
problem. From Fig.6 we can see that the result of the parallel
execution with randomly generated attenuation coefficients
is better than the result of one with α=0.06, and close to the
result of one with α=0.14 for some cases.
In Fig.7, for the fixed values of the attenuation coefficient,
α=0.06 (the best value of attenuate coefficient), α=0.2(a bad
value of the attenuate coefficient) are used. We can also see
that the result of randomly generated attenuation coefficients
is closed to the result of the best attenuation coefficient
(α=0.06).

VI. CONCLUTION

We propose a technique of parallel execution of the LPPH
(network level parallel processing). It is very easy to realize
this technique by hardware. Only we have to do is preparing
plural LPPHs, and execute them simultaneously. From the
experimental results, the high speedup ratio is obtained es-
pecially for the difficult problems.
It is known that the attenuation coefficient has strong in-

fluence on the execution time of the LPPH. And it is also
known to be very difficult to find the optimal value of the
attenuation coefficient in advance. From the experimental
results of this paper, the dependency of the execution time on
the attenuation coefficient can be eased by the parallel exe-
cution of the LPPH.
 We also examined the efficiency of the parallel execution
with randomly generated attenuation coefficients. Ex-
perimental results show this technique is more efficient
than using a bad value for the attenuation coefficient.

REFERENCE

[1] M. Nagamatu and T. Yannaru, “On the stability of Lagrange

programming neural networks of satisfiability problems of proposi-
tional calculus”, Neurocomputing, 13, 119-133, 1995.

[2] M. Nagamatu and T. Yannaru, “Parallel state space search for SAT
with Lagrange Programming Neural Network”, proceedings of the
fifth International Conference on Neural Information Processing.
October, 1998

[3] M. Nagamatu and T. Yanaru, ”Solving SAT by Lagrange Pro-
gramming Neural Network with Long and Short Term Memories”,

ch. 11 in “Information Modelling and Knowledge Bases”, IOS Press,
pp．289-301, 2000

[4] W. Chrabakh and R. Wolski, “GrADSAT: A Parallel SAT Solver for
the Grid”, UCSB Computer Science Technical Report Number
2003-05

[5] C. Sinz, W. Blochinger and W. Kuchlin, “PaSAT-Parallel
SAT-Checking with Lemma Exchange: Implementation and Appli-
cations”, In Proceedings of SAT2001, pages 212-217, 2001.

 [6] D. A. Beyer and R. G. Ogier, “Tabu learning: a neural network search
method for solving nonconvex optimization problem,” Proc. 1991
IEEE Int. Joint Conf. Neural Networks, pp. 953-961,1991.

