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Abstract—The constraint satisfaction problem (CSP) is a 
combinatorial problem to find a solution which satisfies all given 
constraints. We proposed a neural network called LPPH to solve 
the satisfiability problem (SAT). The LPPH is not trapped by 
any point which is not a solution of the SAT. In this paper, we 
extend the LPPH for solving the CSP. Our neural network can 
update all neuron simultaneously. This is an advantage for the 
VLSI implementation. Experimental results show our proposal 
is effective. 

I. INTRODUCTION 

The CSP (Constraint Satisfaction Problem) is a problem to 
find a variable assignment which satisfies all given 
constraints. Because the CSP has a well defined abstract 
formulation, it can represent various problems in the 
computer science. The decision problem whether the given 
CSP has a solution or not is an NP complete problem. There 
are two kinds of methods for solving the CSP, the complete 
search method and the incomplete search method. The 
complete search method can determine the inconsistency of 
the given problem, while the incomplete search method can 
not. If the given problem has solutions, the incomplete search 
method can find a solution quickly.  

The tree search method [1] and the merge method [2] are 
the well used complete search methods. The tree search 
method recursively divides the original problem into partial 
problems, and finds a solution for each partial problem. The 
merge method merges constraints of the given problem, and 
at the end of search, it can find all solutions by unifying all 
constraints to one constraint. The MCHC (Min-Conflict Hill 
Climbing) [3] and the GENET [4] belong to the incomplete 
search method. The MCHC assigns a value to each variable 
randomly as an initial assignment, and iteratively changes the 
value of a selected variable to minimize the number of 
violations of constraints. The MCHC algorithm has the 
possibility of being trapped by local minima. To escape from 
local minima, the MCHC reassigns initial values. The 
GENET also changes value of selected variables so as to 
minimize the number of violations of constraints. When the 
GENET is trapped by local minima, it manages to escape 
from local minima by increasing the weights of constraints 
which is not satisfied at the time.  
We proposed a neural network called LPPH for solving the 

SAT (SATisfiability problem) [5], [6], [7]. The SAT is a 
problem to find an assignment of truth values to variables 
which satisfies the given CNF (Conjunctive Normal Form). 
To use the LPPH for solving the SAT, at first we convert the 
SAT to an equivalent continuous valued problem called   
CONSAT (CONtinuous valued SAT). In this approach each 
clause has a weight, and if the clause is not satisfied, it 
increases its weight. The dynamics of the LPPH changes the 
landscape dynamically, and the trajectory of the LPPH is not 
trapped by any point which is not the solution of the 
CONSAT.  
 In this paper, we extend the LPPH called LPPH-CSP for 

solving the CSP. Compared with the SAT, the CSP can 
represent problem more compactly and effectively. In our 
experiment, we compare the LPPH-CSP with the LPPH and 
the GENET, and show the effectiveness of the LPPH-CSP. 
The LPPH-CSP can update all neurons simultaneously. This 
is an advantage for the VLSI implementation. 

II. CSP 

The CSP is a combinatorial problem to find a solution 
which satisfies all given constraints. The CSP is defined by a 
triple (X,D,C). 

 X={X1,X2,… ,Xn} is a finite set of variables. 
 D={D1,D2,…,Dn} is a finite set of domains. Each 

domain Di is a finite set of values and each variable Xi is 
assigned a value in Di.  

 C={C1,C2,...,Cm} is a finite set of constraints. 
A solution of the CSP is a variable assignment to X which 
satisfies C. 

Let xij be a Boolean variable which represents “variable Xi 
is assigned the jth value in Di”. xij is called a VVP 
(Variable-Value Pair). If xij is true (xij=1), variable Xi is 
assigned the jth value in Di. If xij is false (xij=0), variable Xi is 
not assigned the jth value in Di. Constraint Cr consists of a set 
of VVPs. In this paper, we consider the following types of 
constraints. 

 ALT(n,S) [at-least-n-true constraint] 
S is a finite set of VVPs. The ALT constraint requires 
that at least n of VVPs in S must be true. 

 ALF(n, S) [at-least-n-false constraint] 
The ALF constraint requires that at least n of VVPs in S 
must be false. 



 AMT(n,S) [at-most-n-true constraint] 
The AMT constraint requires that at most n of VVPs in 
S must be true. 

 AMF(n,S) [at-most-n-false constraint] 
The AMF constraint requires that at most n of VVPs in S 
must be false. 

In the ordinary definition of the CSP, only binary constraints 
are included. The binary constraint requires “at least one of 
the given two VVPs is false”, and is represented by ALF(1,S). 
By introducing the above four types of constraints, we can 
represent the given combinatorial problems more compactly. 
The N-coloring problem is the problem to paint all nodes of 
the given undirected graph by the given number of colors, not 
to color the adjacent nodes by the same color. Fig.1 (b) shows 
a CSP which represents a 3-coloring problem of an undirected 
graph shown in Fig.1 (a). In Fig.1 (b), ALT constraints and 
AMT constraints require that each node must be painted by 
just one color. ALF constraints require that adjacent nodes 
must not be painted by the same color. 

III. GENET 

Wand and Tsang [4] proposed a neural network called 
GENET for solving the CSP. In the GENET algorithm, one 
variable is iteratively selected and changes its value to 
minimize the number of violations of all constraints. If the 
GENET is trapped by a local minimum, it escapes from the 
local minimum by increasing the weights of constraints which 
are not satisfied at the time. In this section, we explain the 
GENET for the CSP which has only binary constraints, 
however the GENET can be applied to general constraints [8]. 
Neuron <i,j> corresponds VVP xij. The input to the neuron 

<i,j>  is calculated by the following equation.  
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W<i,j><k,l>  is a weight of  connection between neuron <i,j> 
and <k,l>. All weights will be initially set to 0. V<k,l> is the 
output of neuron <k,l>. V<k,l> has a discrete value 0 or 1. If 
V<k,l >= 1, xkl is true, and if V<k,l >= 0, xkl is false. 

A. GENET Algorithm 

The algorithm of the GENET is described as follows: 
1. Select arbitrarily one neuron from each variable. Set the 

output of the selected neuron to 1, and set the outputs of the 
other neurons to 0. 

2. For each variable:  
Calculate the inputs of neurons in the variable, and set the 
output of a neuron which has the largest input to 1. If tie 
break occurs, select arbitrarily one of them. Set the outputs 
of neurons to 0. 

3. If none of neurons has changed the output in step2, then    
(a) If all constraints are satisfied, then a solution is 

found. Terminate the algorithm.  
(b) Otherwise, activate learning.  

4. go to step2. 
 

 
 
 
 
 
 
 

 
(a) An undirected graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) A CSP which represents a 3-Coloring Problem 

Fig.1  An example of 3-Coloring Problem 

 

B. Learning 

The GENET may be stuck in a local minimum, i.e. the state 
in which the GENET can not change its all outputs, though it 
has not found a solution of the CSP yet. For this reason, the 
GENET adjusts the weight of connection between neurons by 
the following equation. 
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Wt
<i,j><k,l> is the weight of connection between neuron <i,j> 

and <k,l> at time t. The cost of each violated constraint   
increases by learning, and the GENET can escape from the 
local minimum. 

IV. LPPH-CSP 

If the GENET updates all variables simultaneously, “this 
may cause the network to oscillate between a small number of 
states indefinitely [8]”. Therefore, the GENET must update 
all variables sequentially. In this section, we propose methods 
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called LPPH-CSP(1) and LPPH-CSP(2) which can update all 
variables simultaneously.  

Let VVP xij represent the degree of certainty that the 
variable Xi is assigned the jth value of Di. xij has the 
continuous  value between 0 and 1. The dynamics of the 
LPPH-CSP is defined as follows:  
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where srij(x) represents a force put on xij for satisfying 
constraint Cr. wr is the weight of constraint Cr. hr(x) 
represents the degree of unsatisfaction of constraint Cr. α is 
called the attenuation coefficient. In the LPPH-CSP, each 
variable changes its value so as to satisfy all constraints, and 
weight wr increases, if constraint Cr is not satisfied. The 
LPPH-CSP searches a solution of the CSP by numerically 
solving the above dynamics. This dynamics is an extension of 
the dynamics of the LPPH for the SAT [5]. 
  The important question is how to define functions hr(x) and 
srij(x) for the constraints introduced in 2. Now we will 
consider two methods to define these functions. 

A. LPPH-CSP(1) 

In the first method, the function srij(x) is defined for each 
constraint Cr as follows: 
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The function hr(x) is defined as follows for ALT(1,S), 
ALF(1,S), AMT(1,S) and AMF(1,S). 

 Cｒ=ALT(1,S) 
For this type of constraint hr(x) is defined as follows: 
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If any VVP in Cr other than xij has value 1, srij(x) = 0, namely 
no force is put on xij. Otherwise, some force is put on xij so as 
to increase the value of xij .  

 Cｒ=ALF(1, S) 
For this type of constraint hr(x) is defined as follows: 
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If any VVP in Cr other than xij has value 0, srij(x) = 0, namely 
no force is put on xij. Otherwise, some force is put on xij so as 
to decrease the value of xij .  

 Cｒ=AMT(1, S) 

For this type of constraint hr(x) is defined as follows: 
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where nr is the number of VVPs in Cr. From (4) we have  
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If the sum of VVPs in Cr other than xij is equal to 0, srij(x) = 0, 
namely no force is put on xij. Otherwise, some force is put on 
xij so as to decrease the value of xij.  

 Cｒ=AMF(1, S) 
For this type of constraint hr(x) is defined as follows: 
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From (4)  we have  
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If the sum of VVPs in Cr other than xij is equal to 0, srij(x) = 0, 
namely no force is put on xij. Otherwise, some force is put on 
xij so as to decrease the value of xij.  
 In these definitions, we explained only about the case of   
n = 1 for ALT(n,S), ALF(n,S), AMT(n,S) and AMF(n,S). We 
can also define hr(x) and srij(x) for constraints with n > 1. 
However in these cases, the number of terms in the above  
functions becomes large. For example, the number of terms in 
hr(x) for ALT(n,S) becomes nC2. 

B. LPPH-CSP(2) 

 Cｒ=ALT(n, S) 
For this type of constraint hr(x) and srij(x) are defined as 

follows: 
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 Cｒ=ALF(n, S) 
For this type of constraint hr(x) and srij(x) are defined as 

follows: 
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 Cｒ=AMT(n, S) 
For this type of constraint hr(x) and srij(x) are defined as 

follows: 
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 Cｒ=AMF(n, S) 
For this type of constraint hr(x) and srij(x) are defined as 

follows: 
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V. EXPERIMENT 

A. Comparison of proposed methods 

We compared the LPPH-CSP(1), the LPPH-CSP(2) and the 
LPPH. For the LPPH, the given CSP is converted to the SAT 
at first, and the LPPH is applied to the SAT. Table 1 shows 
the average CPU time for the N-Queen Problems. The 
average is calculated by changing initial points 30 times. For 
each try, the CPU time is limited to 300 sec. Table 1 shows 
only LPPH-CSP(2) can find a solution efficiently. 
 

Table 1  CPU time(sec) for N-Queen problems 

problem LPPH LPPH-CSP(1) LPPH-CSP(2)

10-Queen 0.08 0.04 0.01 

20-Queen 3.43  6.52 0.04 

30-Queen 20.78 300 0.10 

40-Queen 64.72 300 0.30 

50-Queen 115.05 300 0.44 

 

B. Attenuation coefficient 

From experiments of the LPPH for the SAT, we know that 
the CPU time depends the value of attenuation coefficient. 
Fig.2, Fig.3, and Fig.4 show how the value of attenuation 
coefficient α influences the CPU time of the LPPH-CSP(2). 
Horizontal axes indicate the value of attenuation coefficient α, 
and vertical axes indicate the average CPU time. Fig.2, Fig.3, 
and Fig.4 show results for the Car Sequencing Problems, 
Random CSPs and the N-Queen Problems, respectively. For 
the Car Sequencing Problems, Benchmark problems of   
CSPLib(http://4c.ucc.ie/~tw/csplib/) are used. Random CSPs 
are generated by randomly adding binary constraints. For 
Random CSP, the number of variables is 20, the number of 
values for each variables is 10, and the number of clauses is 
3800. From these experimental results, we can see the value 
about 0.1 is the best for the attenuation coefficient α for these 
problems. 
 

 
Fig.2  CPU time vs. attenuation coefficient for Car Sequencing Problems 

 
Fig.3  CPU time vs. attenuation coefficient for Rondom CSPs 

 
Fig.4  CPU time vs. attenuation coefficient for N-Queen Problems 



C. Comparison with GENET 

To investigate the efficiency of the LPPH-CSP(2), we 
compared the GENET and the LPPH-CSP(2). Fig.5, Fig.6, 
and Fig.7 show the results for the Car Sequencing Problems, 
Random CSPs and the N-Queen Problems, respectively. 
Random CSPs are generated by randomly adding AMT 
constraints. For Random CSP, the number of variables is 100, 
the number of values for each variables is 40, and the number 
of clauses is 1200. For the N-Queen Problems, the 
LPPH-CSP(2) is faster than the GENET. However, for the 
Car Sequencing Problems and Random CSPs, the GENET is 
faster than the LPPH-CSP(2). 

VI. CONCLUSION 

 In this paper, we proposed two neural networks called 
LPPH-CSP(1) and LPPH-CSP(2). The LPPH-CSP(1) is a 
naive extension of the LPPH for the SAT, and the 
LPPH-CSP(2) is defined by using NMAX or NMIN functions. 
From experimental results, the LPPH-CSP(2) is extremely 
faster than LPPH-CSP(1) and the LPPH. Experiments in 
which the LPPH-CSP is compared with the GENET show that 
for some problems the LPPH-CSP is faster than GENET, 
while for other problems the GENET is faster than the 
LPPH-CSP. However, generally speaking, we can say the 
LPPH-CSP(2) is as efficient as the GENET. The GENET 
must update all variables sequentially, while the LPPH-CSP 
can update all variables simultaneously. We think this is an 
advantage of the LPPH-CSP(2) for the VLSI implementation. 
This study will be followed by applying the LPPH-CSP(2) 

for extended problems of the CSP such as Max-CSP. We also 
need to incorporate other new types of constraints which are 
useful to represent practical problems into the LPPH-CSP(2). 
 
 

 

Fig.5  Comparison with GENET for Car Sequencing Problems 

 

Fig.6  Comparison with GENET for Random CSPs 

 

Fig.7  Comparison with GENET for N-Queen Problems 
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