
Brain computation system that searches for internal 
procedures by functional parts combination 

Takashi Omori, Akitoshi Ogawa 
Graduate School of Information Science & Technology 

Hokkaido University 
omori@complex.eng.hokudai.ac.jp 

Abstract: A learning architecture for intelligent system 

based on brain system nature is proposed. To reduce large 

amount of learning time that is necessary for conventional 

methods, we introduce reuse of knowledge that are 

acquired through past experiences. The architecture 

enables immediate adaptation to a new task that is similar 

to well experienced tasks. The effect is evaluated in a 

series of navigation tasks that becomes difficult stepwise. 

keywords:  Knowledge Reuse, Immediate adaptation,  

Neural Network, Genetic Algorithm, Navigation 

1. Introduction 

An intelligent agent in the real world confronts various 

tasks and environments that cannot be predicted in advance. 

The agent is required to solve the tasks efficiently in a short 

time. For this purpose, the agent needs two specific abilities. 

One is continuity of a mapping between processing system 

structures and emerging processing behaviors. The agent 

should be able to solve multiple tasks that are similar to but 

different from past learned ones. The other is immediate 

adaptation, with which the agent can solve a new task quickly. 

To realize the adaptation ability, it is necessary that the agent 

re-applies knowledge derived from past experiences to a new 

task. Because the tasks are unknown in advance, the 

knowledge for task solving must be acquired autonomously 

and incrementally from experiences. 

Reinforcement Learning (RL) (Sutton & Barto, 1998) and 

Evolutionary Robotics (ER) (Nolfi & Floreano, 2000) are 

known as autonomous learning methods based on interaction 

with the environment. These methods, however, consume 

much time owing to the need to learn actions by trial and 

error. To shorten the learning time, reusing the results of past 

learning is efficient. However, RL and ER requires much 

time for re-learning new or changed tasks. 

On the other side, brain reveals excellent learning ability 

by reusing past experiences and learning results. Many 

researchers will agree that brain assembles processing neural 

circuit for each of different tasks by selectively activating 

different functional parts in cortical areas. The mechanism of 

functional parts combination (FPC) looks to be specific 

computational principle for brain. At least now, however, we 

don’t know much about FPC; what granuity of functional 

parts are used?, how their combination is searched?, what 

ability can be realized?, foe example.  

In this paper, for seeking for the detailed property of FPC 

principle, we propose a new neural learning system that 

reuses knowledge of previously learned tasks to solve a new 

task. The system can control the topology of a neural network, 

construct module-like sub-neural networks (SNNs) in a 

self-organized manner, and form a neural circuit that 

generates an output action from an input of the new task. The 

system searches a combination of the sub-networks to form a 

circuit, in which the connection knowledge within the 

sub-network and the combination of the sub-networks are 

reused. The agent in our system reuses the knowledge of past 

tasks and exhibits fast adaptation to a new task. To verify the 

effectiveness of the proposed system, we apply it to a basic 

benchmark of robot navigation and compare its performance 

against other learning methods.  

2. Knowledge-reusing neural learning system 

2.1 Formation of input-output circuit SNN combination 

Factors that determine the whole processing of the neural 

network under consideration are the topology of the network, 

the transfer function of each neuron, the learning rule, and 

weights of the SNN. Once first three factors are decided, 

learning according to the input from the environment decides 

the forth factor, and decides network’s fine processing. The 

four factors are the knowledge for the task solving. 

The neural network in this paper consists of three groups 

of input, intermediate and output layers. Input and output 

layers are prepared corresponding to multiple sensory inputs 

and action outputs. Intermediate layers that connect between 

the input and output layers are also prepared. The connection 

topology of the intermediate layers can be flexibly changed 

to form various input-to-output processing circuits. The 

layers are a set of SNNs that have the ability to learn its 



internal connections. The system creates SNNs and makes 

them learn to acquire various types of knowledge for task 

solving.  

The combination of SNNs sets up the whole neural 

network and decides the processing of the system. Task 

solving by the system is equivalent to creating and 

combining the SNNs to form a whole neural network that 

generates proper actions for any inputs from the task 

environment. We propose a following learning system. 

A) The system creates SNNs relevant to a task by learning 

the weights in a self-organizing manner. 

B) Searching connections between SNNs, the system forms 

a transfer function from input to putput. 

2.2 Structure Matrix 

The calculation process of the neural learning system from 

input to output is decided by the first three factors. We 

introduce a structure matrix to search the factors and learn 

the weights (Fig.1). If the number of an SNN is n , the 

structure matrix is an nn  regular matrix. SNNs in the 

input, intermediate and output layer groups are numbered in 

sequential order. 

Each non-diagonal element in this matrix represents a 

relation between two SNNs; the row represents the input and 

the column represents the output. The upper-triangle part, 

except the diagonal part cij (i,j = 1,2,…,n, i<j) represents the 

existence of the connection between SNNi and SNNj and the 

learning rule of each connection. The diagonal part represents 

the transfer function of each SNN. For simplicity, loopy 

connections and direct connections between input SNNs and 

between output SNNs are not permitted due to constraining 

corresponding cij elements. The transfer functions of input 

and output layers are fixed by the physical nature of the input 

and output signal. 

Fig.1 Overview of proposed method. The system assign three 

factors of knowledge using the structure matrix. 

2.3 Searching the Structure Matrix and NN Learning 

The system can solve a task by searching a structure 

matrix and by learning weights for the task. We adopted the 

genetic algorithm (GA) as the method to search the matrix. In 

the GA method, the structure matrix corresponds to a gene. 

Some learning rules must be prepared for SNNs. The 

structure matrix assigns a learning rule for each of the SNNs, 

and each SNN updates its weight from the response of the 

whole network to data from the task environment. 

The GA requires a fitness estimation of the matrix for 

search. We defined a fitness function corresponding to each 

gene which represents a structure matrix. The algorithm for 

task solving and knowledge acquisition for an individual task 

is summarized as follows. 

1. The system creates a set of initial structure matrices or 

reuses the acquired matrix randomly. 

2. Calculate the fitness of each individual. 

3. If termination conditions are fulfilled, this algorithm 

terminates. 

4. Crossover by a random pair and mutation on each 

element of the structure matrix is applied. 

5. Go to 2 

After the matrix searching and weight learning, we can 

obtain the best individual that has the highest fitness value. 

We then change the task to be solved. 

The system generates the first generation genes for the 

new task based on the genetic operations. If the new task is 

similar to tasks already experienced, then the target structure 

matrix for the new task can be expected to be similar to the 

previously acquired ones. The search time for the new task 

will be shorter and it might even be possible to solve the new 

task immediately.  

3. Simulation Experiments 

3.1 Task and environment 

We prepared a Khepera simulator that employs real 

observational data. The Khepera has infrared and visible- 

light sensors, six on the front and two on back, and two 

wheels positioned side-by-side. The simulator settings are 

that the sensory data is noisy, actions are forward, turn left 

and turn right, the forward speed is 1 cm/s, and the interval 

time for each action is 0.5 sec. Walls surround the 

experimental environment.  

We prepared three tasks, A, B and C, shown in Fig. 2, 3 

and 4 respectively. The starting coordinates (x, y,θ) = (5+5r1,

5+5r2, 2πr3) are common to the tasks. Here, ri is a uniform 

random number, 0<ri<1. In task A, the coordinates of the 

light are set to (60,25) with low intensity, and the dot-lined 

area that surrounds the light is the goal (Fig. 2). In task B, the 

coordinates of the light are set to (90,25) with high intensity, 

while the dot-lined area that surrounds the light is the goal 



(Fig. 3). In task C, the light setting is the same as that in task 

B, though the goal is located at the center of the environment. 

Because the goal of task C is opposite the light in task B, the 

behavior toward the goal in task B interferes with the 

learning in task C  

Fig. 2 Task A environment. See text for details. This is a 

screen of the Khepera simulator. 

Fig. 3 Task B environment. See text for details. 

Fig. 4 Task C environment. See text for details. 

We tried two task change cases to evaluate system 

adaptation ability by reusing previously learned knowledge. 

Case I The agent acquires knowledge by learning task A, 

and reuses the knowledge when it encounters task B. 

Case II The agent reuses the knowledge learned in case I 

when it encounters task C. 

Because all the knowledge derived from task A can be 

reused in task B, an agent can adapt to task B if it acquires 

and properly combines some additional knowledge. In task C, 

however, some of the knowledge from the task B can be 

reused, but some interferes the adaptation. 

3.2 Implementation of the learning system 

We divide the Khepera’s front sensors into six groups by 

direction and type. We prepare six input SNNs for the groups 

and six intermediate SNNs that contain two neurons. The 

input SNNs normalize the sensory information. Three output 

SNNs correspond to the actions: move ahead, turn right, and 

turn left. We have prepared the following two transfer 

functions for the neurons (a=1,b=1,c=2). 

 f(x) = exp(-ax)  (1) 

 f(x) = -1/{1+exp(-bx+c)} (2) 

The equation xi = Σj | yj-wij | determines the inputs of the 

transfer function in the intermediate and the output SNNs, 

where the i-th SNN receives the j-th SNN's output yij and the 

weights of the connection are wij.

Weights are initialized with positive small numbers. We 

prepared the following three learning rules for the weights 

inside the SNN: 

Δw = η(x - w)  if x > 0.5   (i) 

Δw = η(x - w)  if x < 0.5   (ii) 

Δw = η(x - w)            (iii) 

whereηis a learning rate (η= 0.1). The weights are updated 

at every step. The action of the agent is decided as a result of 

the competition between the output SNNs. 

The structure matrix is a 1515  regular matrix, and the 

system includes 15 SNNs. Each element of the matrix has a 

value within [0 , 1] and designates the feature of a SNN as 

follows. If the diagonal element is less than 0.5, the transfer 

function of the corresponding SNN is (1), otherwise (2). 

Each element of the upper-triangle part of the matrix assigns 

the connection between SNNs and the learning rule of each 

connection; c < 0.6 designates no connection, 0.6≦c < 0.7 

designates the learning equation (i), 0.7≦c < 0.8 designates 

(ii), 0.8≦c < 0.9 designates (iii) and 0.9≦c designates fixed 

weights. 

3.2.1 Task settings 

The fitness of each individual is decided by average 

number of steps for six trials. The agent updates the weights 

throughout the trials. A trial ends when the agent reaches the 

goal, collides with an obstacle, or reaches timeout steps 800. 

The parameters of GA are as follows: 20 for the population, 

0.1 for the mutation rate, and 2 for the number of elites. One 

crossover point is used on the row of the structure matrix, 

and pairs for the crossover are selected randomly. Mutation is 

applied to every element of the matrix with a probability of 

0.1. If the mutation operation removes a connection, the 

system removes the corresponding SNN weights, whereas if 



the mutation operation generates a connection, the system 

generates a new SNN and initializes the weights randomly. 

Without mutation, weights are carried over generations. 

In case I, task A switches to task B when the 31st 

generation starts. The system reuses the knowledge derived 

from task A at the first generation of task B, and the system 

keeps on searching. Case II is similar to case I. To 

demonstrate the efficiency of knowledge reuse, we compare 

case I with a case in which the same agent starts and 

continues learning in task B for 50 generations. 

3.2.2 Results 

Fig.5 shows the result of case I ; the transition of average 

steps by the best individual. The agent adapted to task B at 

the first generation following the task switching. Fig.6 shows 

the result of the task B-only case. The superior speed of our 

method is demonstrated by comparing these two figures. The 

peaks, indicated by O in figure 5, were caused by collisions 

with the corner near the goal. 

Fig.5 The result in case 1. The navigation agent acquired 

knowledge of task A in about the 14th generation and adapted 

to task B in the 1st generation of the search. 

Fig.6 The result of task B, without reusing the knowledge 

from task A. The agent acquired the knowledge for task B at 

about the 16th generation. 

Next, we investigate the knowledge-reuse state in case I. 

The structure matrix for task A had 93 effective elements. In 

task B, 12 of those elements were reused. These elements are 

related to obstacle detection and action selection, indicating 

that the agent reused the knowledge derived from task A in 

task B. In task A, the agent went ahead when no obstacle was 

detected. If an obstacle was detected, the agent performed 

“avoiding obstacles” by using a left-hand strategy and 

reached the goal. Then, in task B, the agent could perform 

“avoiding obstacles,” learned in task A, to get near the goal 

area without learning; the agent only had to learn the 

behavior “approaching light” to reach the goal. Thus, the 

knowledge learned in task A, “avoiding obstacles,” reduced 

the learning time in task B.  

When the agent that has the knowledge of task A performs 

task B without learning, the agent does come near the goal 

area. It cannot, however, approach the goal because the agent 

does not have the knowledge “approaching light,” since task 

A does not give the agent “approaching light.” 

Fig.7 shows the result of case II. The agent adapted at the 

19th generation after the change to task C. The learning was 

slower than in case I because the agent had to acquire the 

knowledge “avoiding light” and inhibit the knowledge 

“approach light”. 

Fig.7 The result of case Ⅱ. The agent adapted at the 19th 

generation after the change to task C. 

3.3 Evolutionary Robotics 

We can categorize ER into two methods. One method uses 

genetic programming to acquire the calculation process 

directly, whereas the other method optimizes weights or 

learning rules of a neural network. We adopted the latter 

method because this method is similar to ours, and many ER 

researchers have also adopted it. 

We prepared a feed-forward neural network that has input 



and output layers. The IR sensor and the light sensor signal 

are provided to the input layers, while the output layer has 

three neurons corresponding to the actions of move forward, 

turn left, and turn right. The neuron that is fired by 

competition between them decides the action of the agent. 

We used a post-synaptic indirect encoding that does not 

encode weights directly but encodes learning rules and rates 

into genes (Floreano, 2000). 

Learning rules are as follows: 

Δw = η(x - w)  if x > 0.5 

Δw = η(x - w)  if x < 0.5 

whereη is the learning rate (0 <η  < 1.0) and is 

compromised in the gene. 

Similarly to case I of our method, the agent adapts task A 

and acquires the gene of the elite. The final knowledge in 

task A is reused to generate the genes for task B. The fitness 

function and the condition for trial termination are the same 

as in our method. The parameters of GA are as follows: 20 

for the population, 0.1 for the mutation rate, and 2 for the 

number of elites. All genes are generated randomly. One 

crossover point is used, with the crossover point and pair 

selection decided randomly. Learned weights are reset at 

every trial termination. 

Fig.8 shows the transition of the maximum fitness in case I. 

The agent adapted task A faster than our method, but it could 

not adapt to task B. Consequently, we cannot evaluate the 

performance of case II. 

Fig.8 The result of ER in case I. See text for details. 

3.4 Reinforcement Learning 

We chose the actor-critic (λ) from many RL methods due 

to its adaptability to a continuous space and learning speed. 

We used the world coordinates (x,y,θ) for the learning tasks 

to avoid the perceptual aliasing problem, though the tasks 

become easier than with our method and that of ER. 

Actor-critic (λ) is a learning method of TD learning. We 

used the NRBF (Normalized Radial Basis Function) (Sato, 

2000), where the base functions are Gaussian, to learn the 

state value and the action preference. 

The agent learns linear parameters to the output of NRBF 

because the learning of nonlinear parameters to the output of 

the state value destabilizes the learning of the state value. The 

bases are deployed randomly within the task environment in 

advance. 

The knowledge for task solving in this experiment is the 

NRBF parameters. This knowledge is reused in a new task by 

taking over the parameters derived from the tasks undertaken 

before. If additional bases need to be added to new state 

spaces for new tasks, the learning system adds new bases 

there at once before the new task starts. When the agent 

reaches a goal, a reward is given. The condition for trial 

termination is the same as in our method. 

In task A, 200 bases are deployed randomly in the state 

space (x,y,θ). The agent learns task A for 5,000 trials and 

acquires the knowledge of the task. This knowledge consists 

of the parameters of the state value and action preference, 

and is reused in task B. Before task B begins, 50 bases are 

added to the additional state space. Task C requires no such 

additions. The agent thus performs 5,000 trials in tasks B and 

C respectively. We compare the result with that of our 

method. In this RL experiment, we evaluate the agent by the 

number of goals reached for every 100 trials.  

Fig.9 shows that about 2,000 trials were necessary for the 

learning of task B in case I. It corresponds to 17 generations 

in our method. The result of case II is not shown because we 

could not increase the goal rate any way in task C. 

Fig.9 The result of RL in case I. Task A is switched to task B 

at the 5,000th trial. The goal rate converges at about the 

2,000th trials after the switching. 



4. Discussion 

Our method is able to immediately adapt to the task because 

it can self-organize the configuration of SNNs and search for 

combinations of them. Since some SNNs compose a group of 

SNNs that are used in other tasks also, the building-block 

gene corresponding to the group reduces the number of 

possible combinations in a new task. Therefore, the agent 

only had to acquire the knowledge for task B that was not 

included in the knowledge for task A. That is why the agent 

could adapt to task B immediately. In case II, the agent 

altered some SNNs to inhibit the knowledge “approaching 

light” in task C. This demonstrates how flexibly our method 

can recompose SNNs if necessary. 

Size and hierarchy of knowledge are two reasons why ER 

and RL learned a task more slowly or could not learn the task 

at all in the case of knowledge reuse. The basic ER method 

learns a neural network; however, ER cannot acquire partial 

processes, e.g. obstacle detection, and it cannot use the 

processes hierarchically. Therefore, it is difficult to both add 

and inhibit knowledge by this method. The knowledge of RL 

is the parameters of state value or action preference, and the 

knowledge is restricted to a small size. Therefore, it takes 

much re-learning time to add or inhibit knowledge. If we 

reduce the number of parameters, the perceptual aliasing 

problem occurs, making the learning task even more difficult. 

From ER’s point of view, the proposed system may be one 

type of ER method. We, however, consider our system is 

different from ER because almost no ERs approach the 

problem from the perspective of knowledge reuse between 

tasks.

5. Conclusion & Brain Like Computation 

In this paper, we proposed a learning system that reuses 

knowledge from former tasks by controlling the topology of 

a neural network and constructing module-like sub-neural 

networks in a self-organized manner. We compared our 

learning system with ER and RL and evaluated its efficiency. 

Intelligent agents in the real world have insufficient time 

to adapt to different tasks, and such agents should 

aggressively reuse knowledge acquired in past tasks. For the 

purpose, brain acquired ability of meta learning that assemble 

learning circuit corresponding to task requirements. This is 

what brain learning essentially differs from other learning 

system, and should be a principle of brain intelligence 

emergence. Motivation is one of important factors that drive 

the meta learning system, as is pointed by Gen Matsumoto. 

But the motivation is just a part of whole system and does not 

give concrete mechanism for intelligence emergence in brain. 

However, we know little of brain meta learning system. In 

the situation, this paper revealed ability of proposed system 

to be able to realize the meta learning behavior. More 

practical application is necessary to demonstrate 

effectiveness of the meta learning system. 

REFERENCES

[1] Baird, L., Residual Algorithms: Reinforcement Learning 

with Function Approximation, Proc. of Twelfth Int. Conf. 

on Machine Learning, pp. 30-37 , 1995 

[2] Bishop, C.M., Neural Networks for Pattern Recognition,

1995. 

[3] Floreano, D., Urzelai, J., Evolutionary robots with on-line 

self-organization and behavioral fitness, Neural 

Networks, 13, 431-443, 2000 

[4] Nolfi, S., Floreano, D., Evolutionary Robotics, 2000 

[5] Ogawa, A., Omori, T., Looking for a suitable strategy for 

each problem –Multiple-tasks approach to 

navigation-learning tasks-, Proc. 2nd Int. workshop on 

Epigenetic Robotics, pp. 125-132, 2002 

[6] Ogawa, A., Omori, T., The Acquisition of Space Search 

Procedure Depending on Agent Structure, Proc. of 1st 

Int. Symp. on Measurement, Analysis and Modeling of 

Human Functions, pp. 210-215, 2001 

[7] Omori, T., Ogawa, A., Two hypotheses for realization of 

symbolic processing in the brain, Proc. ICONIP2001, pp. 

1114-1119, 2001 

[8] Sato, M., Ishii, S., On-line EM Algorithm for the 

Normalized Gaussian Network, Neural Computation, 12, 

407-432, 2000 

[9] Toga, A.W., Maziotta, J.C., Brain Mapping -The systems-,

2000 

[10] Russell, S.J., Norvig, P., Artificial Intelligence: A 

Modern Approach, 1995 

[11] Sutton, R.S., Barto, A.G., Reinforcement Learning: An 

Introduction, 1998 


