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Abstract --- Matsumoto [1] proposed two general principles, an 

output-driven operation and a memory-based architecture, 

giving the brain its auto-designing capacity and consequently its 

potential to acquire algorithms. We introduce these two 

principles while suggesting a design for this embodiment by 

introducing computational models, suggest brain-like computer 

characteristics and recommend future research directions. 

 

 

1. Introduction 

Living organisms exchange materials and energy, as well 

as information by means of its continuous existence. In such a 

complex system, this flow condition produces a 

non-equilibrium state. The emerging fluctuations determine 

the global outcome of the system. Thus, living organisms 

self-organize by spatial-temporal development, as it is a 

system that is both non-linear and in a state of 

non-equilibrium. A "brain" is a system behaving openly in a 

spatial-temporal dimension, attempting to generate a 

functional information process.  

Matsumoto [1] hypothesized that two general principles 

govern the auto-designing ability of an artificial intelligent 

machine, the so-called “brain-computer.” These two general 

principles are the output-driven operation and the 

memory-based architecture. 

The output-driven operation principle stipulates that input 

signals change the information structure within the system 

during an output operation. According to this principle, 

learning is output-driven. Throughout this process, input 

signals are utilized by the system to select an output most 

suitable to its surrounding, resulting in an enhanced learning 

efficacy. Input signals deposit their recording traces in the 

system according to the memory-based principle, irrespective 

of whether the stimulation is strong enough to drive an output. 

The recording traces are then consolidated during an 

output-driven operation.  Thus, the combination of an 

output-driven operation and a memory-based architecture 

provides the brain-computer with the potential to acquire its 

learning algorithm with the property of predictability. The 

learning algorithm, once acquired according to the 

output-driven operation principle, is stored as a memory.  

With the evolution of more complex and heterogeneous 

neurocomputational brain-like architectures, the two 

principles have become significant in allowing the 

brain-computer to self-develop robust, flexible and 

predictable functions [2].  

 

2. Brain-like computer system theory 

Key characteristics of the brain information processing 

system are its massiveness, parallel-distributed computation 

and efficiency. Tens of billions of neurons in a brain system 

act and decide system outputs in real-time while having little 

or no contact with each other. The comparison can be made 

with a neuron to a man living on the earth. It is suggested that 

world stability would still occur even if man would only 

communicate with clusters of 1000 humans, out of a possible 

6 billion inhabitants. A brain is so mysterious and attractive 

system.   



This type of system excels in its design flexibility and its 

innate ability to extend its own functionality. Theoretically, 

the system engineering aspect can be applied to a sociological 

model, as well. Therefore, our focus in this paper is to 

primarily concentrate on the discussion of the brain system 

theory with models derived from the theory generated in this 

article based upon our past progress in this field. 

 A system can be identified as a “creature” if it can 

construct by itself a non-linear state of non-equilibrium. A 

creature organizes configuration and mechanism by itself by 

taking the material/energy and the information selectively in 

the organism. The drive, which guides a selective flow of 

material/energy, we identify as a physiological drive, and the 

drive, which guides a selective flow of information as a 

linking drive. Based upon specific creature-made ethics, a 

creature can acquire in a self-organized approach the 

configuration pattern and mechanism as information in a 

direction filling up these drives.  

We proposed two general principles for biological 

information processing, the output-driven operation and the 

memory-based architecture, both of which are carried through 

up to the evolved brain from an original creature at every 

hierarchy step [2] [14]. It is thought that a constitution 

characteristic of biological information processing system is a 

hierarchical structure – as a related neighbor, the brain system 

constitution is also a hierarchical structure when based upon 

this theory. In other words, (1) once the information 

processing algorithm is acquired and consolidated as a 

long-term memory, the memory is kept. New algorithms will 

be memorized, in a laminated way, on the existing memory as 

a hierarchically structured memory. (2) Acquisition method of 

information processing algorithm by output-driven operation 

is valid with every level of brain hierarchical structure (brain 

system, neural network, neural cell etc.).    

In the following sub-sections, we describe and discuss 

our theoretical models for a brain system level and a neural 

network level.  

 

 

2.1. System model 

A multi-agent system approach is proposed in order to 

achieve a flexible intelligent system [3]. The brain is a 

large-scale multi-agent system composed of many neurons 

when considered as an information processing system. 

Although the mechanism of the brain system constitution has 

not been elucidated yet, we have many indications coming 

from brain science by investigating both the phylogenetic and 

ontogenetic development process of a brain.  

Mammalian brain, with its dual structure of archicortex 

and neocortex, developed as a phylogenetic evolutionary 

process from the frog to the mammal stage. In other words, 

the mammalian brain added a new type of structure called the 

neocortex onto the old frog brain. The number of layers in the 

neocortex increases with each evolution from rodent to human 

[4]. The neocortex has strong connections with the archicortex 

in structure and a strong correlation in its functionality. 

Amygdala complex (AM), the center of vital human life 

support systems such as the emotional system / eating system 

/ autonomy system / or visceral mechanism in the old brain, is 

thought to play, in particular , an important role in the 

build-up of a neocortex system.  

There is a direct information pathway from the thalamus 

to the AM. This pathway contributes fast output decisions for 

biologically important stimulus [5] [6]. The speed of the 

decision is rapid. The response latency from stimuli in the 

right amygadala through to the superior collicullus and 

pulvinar nuclei has been measured to be lower than 40ms [7]. 

The superior collicullus (SC) is on an old visual information 

pathway obtaining visual sensory input from retinal ganglion 

cells, performing coarse and rapid information processing 

such as attention control in humans [8]. SC activates emergent 

behavior such as escape by this rapid decision making. AM is 

known as a biological evaluation system and sending 

information to the neocortex directly by projection [9]. The 

understanding of this projection method would be an 

important factor in the development of neocortex functions. 

For example, the anterior part of the inferior-temporal 

cortex (IT) in the neocortex is known for processing visual 



object recognition. The result of visual object recognition in 

IT is sent to the AM, where emotional meaning is added [5]. 

Finally, the result is sent to the basal ganglia (BG) to select 

and activate a relevant behavior in the context [10]. However, 

an innate visual perception function would not present itself 

in the IT spontaneously, as it is an acquired developmental 

process. 

It is thought that the brain is formed phylogenetically in 

an ontogenetic process by the old brain. By designing 

“projection from AM to IT” beforehand into the ontogenetic 

development process, AM, which is functionally developed 

earlier than the neocortex, can transmit coarsely interpreted 

signals to the IT. The signal constructed by AM could 

navigate the neocortex information processing structure 

development process. In fact, there is a projection from a 

large part of IT to AM in infancy. It is known that the 

projection confines itself to the anterior part of IT as a baby 

matures and develops. However, when the anterior part of IT 

is ablated in infancy, locus to project on AM becomes the 

posterior part of IT [11].  

On this basis, we have proposed “the development model 

that organizes functions in a new brain based on the functions 

in an old brain” [12] [2] (Fig.1), “the processing model that 

provides a top-down semantic hypothesis from an old brain to 

a new brain” [13] (Fig.2), and “the learning model that 

performs simultaneous learning of perception and action 

based on a decision made by an old brain” [14] (Fig.3).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Phylogenetic development model of cortex. 

 

 

 

 

 

 

 

 

Fig. 2. Bi-directional processing system model. 

 

 

 

 

 

 

 

 

 

Fig. 3. Motor control learning system model. 

 

2.2. Module-based computational architecture 

The above-described system model connects learning and 

processing from each subsystem, and enables a more efficient 

processing in a whole system. It enables quick judgment and 

processing under incomplete information in a creature. On the 

other hand, we still have to include the facts that the brain 

information processing system is burdened by its massiveness 

and parallel-distributed computation problems. In this section, 

we argue for models of brain modules to determine these two 

characteristic.  

The brain consists of different anatomical parts. It is 

presented as such because of the many different neurons and 

networks assembled as a subsystem hierarchically based on 

the phylogenetic development as in fig.1. However, the 

neuronal constitution and network are similar anatomically. 

An analogous network configuration becomes a cluster and 

constitutes a subsystem of each hierarchy. The smallest 

network configuration that can be built is called a “module” 

here.  
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If it is a neocortex, the module is a column configuration, 

if it is a lamella structure, it is the hippocampus, and if it is a 

lamina configuration, it is the cerebellum. Because this is 

such a hardware based architecture, it is suggested that a brain 

system does not merely perform parallel distributed 

processing. It is believed that a brain system executes the 

processing steps making use of its character embedded in a 

module.  

We first introduce a neocortical computational module 

model proposed by [13] [15] in 2.2.1, then a basal ganglia 

computational module and neuron model proposed by [14] in 

2.2.2. 

 

2.2.1. Neocortical columnar module 

The neocortex accomplishes a similar six layered 

configuration in all areas while the cytoarchitecture 

configuration varies to some extent by area. It is known that 

pyramidal neurons in layer II, III of the neocortex transmit a 

signal to higher level areas, while pyramidal neurons in layer 

V, VI transmit to lower area levels [16]. In addition, from the 

understanding of neocortex neural circuit functioning, it is 

observed that a signal from higher areas arrives at the apical 

dendrite of the neuron which subsequently sends information 

from the lower to the higher area [17]. We assumed the 

neocortex column configuration a module unit, based on the 

latest knowledge [13] (fig.4). 

 

 

 

 

 

 

Fig. 4. Cortical columnar module model. 

 

Neural network mechanism in a column module enables 

a symbolic description, since it has representation as a 

memory and is packed within a module. There is a description 

of the module itself in the memory of a module, gained from 

information and control inputs. The relationship between 

modules is learned by experience. A module receiving 

contradicting information becomes inhibited, a module 

behaving consistently with another activates mutual 

information flow, and when the input received is of a global 

control signal type, they become bound and synchronized. 

Modules are arranged on the neocortex like a 

two-dimensional array.  They are mapped roughly by a 

control input given by a subsystem having a semantic space 

such as the AM.  

When a neuron expresses the same temporal information, 

it is used as structural knowledge such as in the frame model 

[18]. On the other hand, it is used as logical knowledge when 

it expresses information with a different time period. 

Bi-directional reasoning that includes structure and logic 

functions in this way (deduction / induction). 

A system can carry out the knowledge processing which, 

for example, was based on a hypothesis developed by the 

system theory in 2.1 describing the neural circuit module 

which can acquire this knowledge structure. We suggest that 

this process gives the neocortex a fast initial hypothesis when 

we put it forward from the AM since the AM output pathway 

sends a coarse semantic signal to the neocortex. Hierarchical 

processing has a major problem called combinatorial 

explosion. Higher modules have to combine results from the 

lower modules as a whole process of understanding. However, 

this problem is considerably reduced with our initial 

hypothesis, generation by AM driving, since the number of 

results linked, is limited by the initial hypothesis. 

 

2.2.2. Basal ganglia computational module 

The basal ganglia act as a rapidly learning system 

possessing a non-linear motor control selection. We propose a 

model based on our understanding of the mutually inhibited 

GABAergic connections and monoaminergic projections (fig. 

5).  

Although the structure of the basal ganglia could lead to 

unstable activity due to its open network architecture, its rapid 

learning properties would work to approach stable points for 

the initiating and switching processes between motivated 
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behaviors. The behavioral quality, however, generally tends to 

be coarse due mostly to the animal body’s poor performance 

in fine tuning its behavior compared to machines. This is 

because the rapid learning property of the basal ganglia 

should modify the memory in a shorter period, based and 

accumulated on its previous memories.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Basal ganglia module model. 

 

The correspondence between neural activities and rapid 

learning was solved by using the basal ganglia model. Here, 

we basically adopted the actor-critic system model [19] and 

realized it based on our proposed neuron model [14] (Fig.6).  

 

 

 

 

 

 

 

 

 

Fig. 6. Neuron model. 

 

We included the modulation aspect in the neural model 

equation for the historical memory. The most novel idea on 

modulation in our model is the introduction of modulation 

fluctuation effects. Because the monoamine is a diffusing 

neural transmitter, it causes fluctuations in the neurons 

receiving this signal. The fluctuation triggers spiking behavior 

in the spatio-temporal topological distance between neurons, 

leading to the self-organization of the neural network 

connection. In the original actor-critic model [19], the authors 

introduced eligibility as an artificial factor in the learning 

temporal information process. Eligibility has a direct effect on 

the behavior of the predictive neuron in the critic subsystem, 

corresponding to that of a dopamine neuron in the basal 

ganglia [20]. Since eligibility is essential for TD-learning but 

biologically implausible in the brain architecture model, we 

introduced the new idea of a predictive neuron having the 

potential to learn temporal information based on synaptic 

history. Our new model is not only biologically plausible, but 

also demonstrates more selective learning because of its 

output-driven learning rule of synaptic efficacy. 

 

3. Discussions 

A brain system theory was presented including several 

derived models. It is evident from this discussion the brain 

remains complex and ambiguous. Essential concepts still to 

be completely elucidated are confined to the following: (1) 

learning control, (2) grounding of knowledge, and (3) 

processing method. 

 

Learning control  

We have proposed a system theory comprised of several 

modules performing different learning algorithms. Remaining 

still unclear is the method in which directional functionality 

could be imparted to these modules. Although we have 

introduced motivational signals propagating with a single 

purpose to each sub-system, this approach is only successful 

for a global direction and does not achieve a locally optimal 

direction. We suspect from these results that there should be 

more parameters controlling local learning profiles in a real 

brain system. 

 

Grounding of knowledge  

Symbol grounding is a major problem in artificial 
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intelligence systems [21]. Our proposed model resolves some 

of the problems by introducing a bi-directional interaction 

between the environment and the system which also has 

bi-directional internal processing between its modules  

However, we cannot demonstrate that the developed 

knowledge is firmly grounded before producing a system 

performing a wide variety of functions using multi-modal 

sensory inputs. In this sense, a concentrated and focused effort 

will be required to establish a test bed such as a robot to 

achieve this purpose. 

 

Processing method  

Whether we follow the biological processing system such 

as the spiking neuron processing or equivalently, numerical 

processing remains a controversial discussion. Since the later 

is well understood and established in current computing 

architecture, we can easily demonstrate the desired 

functionality by designing relevant software. On the other 

hand, spiking processing has many unclear areas still to be 

determined. We believe an intermediate stage is required to 

establish a clear direction towards real brain-like computing. 
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