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Abstract— This paper aims at proposing clustering algo-
rithm based on Learning Vector Quantization (LVQ) and
Self-Organizing Maps (SOM) using the inner product. Fur-
thermore, a kernel function employed in nonlinear transfor-
mation into a high dimensional feature space in the support
vector machines is considered for LVQ clustering and SOM.
Two numerical examples of the clustering are shown and
effects of the inner product and the kernel function are
discussed by comparing to other methods of fuzzy c-means.

I. INTRODUCTION

Clustering of numerical data forms the basis of many
classification and system modeling algorithm. One of the
most popular technique in cluster analysis is the Clustering
by Learning Vector Quantization (LVQ) [5]. The LVQ
algorithm have been considered in the framework of Self-
Organizing Maps (SOM) [5].

It is well-known that the above method provide linear
cluster boundaries. Namely, the boundary between two
clusters obtained by these methods are linear. However, it
is also known that real-world examples request us methods
of separating classes having nonlinear boundaries.

To obtain nonlinear cluster boundaries, a powerful
method is the use of kernel functions employed in the
support vector machines [1], [10], where original data are
mapped into a higher dimensional feature space. Using
this technique, data are classified linearly in the feature
space but in the original data space the boundary appear
nonlinear.

In this paper, we propose an LVQ clustering algorithm
based on the inner product, instead of the most known the
Euclidean distance, using a kernel function. Moreover, we
visualize how the data is separated in the feature space by
SOM using the kernel.

Two numerical examples are shown and we discuss
effects of the kernel and the inner product. First is an
illustrative numerical example. We show effectiveness of
the kernel function and we visualize how the data is
separated in the feature space by SOM using the kernel in

this example. Second example is based on real data. We
compare effectiveness and efficiency of the present method
with other algorithms in foregoing studies [2], [5], [7], [8].

II. LVQ CLUSTERING

Clustering by learning vector quantization (LVQ) is
based on competitive learning [3], [5] and this algorithm
is also a standard technique of unsupervised classification
as same as k-means and fuzzy c-means [2].

Objects to be clustered are denoted by xk =
(x1

k, . . . , xp
k) ∈ Rp, k = 1, . . . , n, a vector in the p-

dimensional vector space. Objects are also called pattern
vectors. The number of clusters is taken to be c, as in
many literature [2], [6]. Cluster centers are denoted by
mi(t), i = 1, . . . , c, t = 1, 2, . . .; mi is also called a
reference vector. The symbol t shows a time variable.
In the algorithms below x(t) is taken from the objects
{x1, . . . , xn} randomly and repeatedly.

Here, we call the following algorithm LVQC (Clustering
by LVQ).

Algorithm LVQC.

LVQC1. Set initial value for mi, i = 1, . . . , c (for
example, select c objects randomly as mi, i =
1, · · · , c). Normalize xk : xk ← xk/‖xk‖, k =
1, . . . , n. Repeat LVQC2 and LVQC3 for t =
1, 2, . . . until convergent.

LVQC2. Let

ml(t) = arg max
1≤i≤c

〈x(t),mi(t)〉. (1)

LVQC3. Update m1(t), · · · ,mc(t):

ml(t + 1) :=
ml(t) + αx(t)
‖ml(t) + αx(t)‖ , (2)

mi(t + 1) := mi(t), i �= l. (3)

Object represented by x(t) is allocated to Gl.
End of LVQC.



In this algorithm, 〈·, ·〉 indicate the inner product, ‖ · ‖
indicate the norm of data space and the parameter α(t)
satisfies

∞∑

t=1

α(t) =∞,

∞∑

t=1

α2(t) <∞, t = 1, 2, · · · . (4)

For example, α(t) = Const/t satisfies these conditions.

III. SELF-ORGANIZING MAPS

SOM [5] is a method of unsupervised learning whereby
spatial relations of objects (patterns) are represented. The
hexagonal array of the second layer is used in this paper.
Given an input pattern, reference vector that have the
maximum inner product to the input vector is the winner
ml. The nodes in the neighborhood Nc of ml are all
modified. The radius of Nc is reduced with the time.
The algorithm of SOM is similar to LVQ except that the
neighborhood is used.

Algorithm SOM.

SOM1. Generate initial nodes mi(1), i = 1, · · · ,K．
Repeat SOM2 and SOM3 for t = 1, 2, · · · until
convergence.

SOM2. Let

ml(t) = arg max
1≤i≤K

〈x(t),mi(t)〉. (5)

SOM3. Update all nodes in the neighborhood Nc of
the winner ml.

ml(t + 1) :=
ml(t) + αx(t)
‖ml(t) + αx(t)‖ , (6)

mi(t + 1) := mi(t), i �= l. (7)

End of SOM.

IV. KERNEL TRICK

Kernel trick is well known technique in the Support
Vector Machines - SVM [1], [10] by which nonlinear
classification is effectively realized.

Studies in SVM often employ a high dimensional fea-
ture space H for having nonlinear classification bound-
aries. Here H is in general an infinite dimensional inner
product space. For this purpose a mapping Φ : Rp → H

is used whereby an object x is mapped into H:

Φ(x) = (φ1(x), φ2(x), · · · ). (8)

Although x is a p-dimensional vector, Φ(x) may have
infinite dimension.

In the nonlinear classification method an explicit form
of Φ(x) is unavailable, but the inner product is denoted
by

K(x, y) = 〈Φ(x),Φ(y)〉. (9)

The function K(x, y), called a kernel function, is assumed
to be known.

For example,

K(x, y) = exp(−cnst ‖ x− y ‖2), (10)

K(x, y) = (1 + 〈x, y〉)d (11)

are frequently used. The first is called the Gaussian kernel,
while the second is called the polynomial kernel.

In this paper the Gaussian kernel is used.

A. LVQ Clustering Using a Kernel

Instead of the measure 〈x(t),mi(t)〉 in the data space,
the next measure in a high dimensional feature space is
considered:

sik = 〈Φ(xk), wi〉. (12)

It should be noted that wi is the reference vector in the
high dimensional feature space. Hence updating formula
of LVQC is as follows.

wl(t + 1) =
wl(t) + αΦ(xl)
‖wl(t) + αΦ(xl)‖ . (13)

Since we do not know a explicit form of Φ(x), we cannot
explicitly use wi. Hence the algorithm should be rewritten
using sik and the kernel function instead. We therefore
calculate sik(t + 1) using sik(t).

For simplicity, put α = α(t), Kkk = K(xk, xk), and
Kkl = K(xk, xl). Then,

sik(t + 1) = 〈Φ(xk), wi(t + 1)〉
= 〈Φ(xk),

wi(t) + αΦ(xl)
‖wi(t) + αΦ(xl‖〉

=
〈Φ(xk), wi(t)〉+ α〈Φ(xk),Φ(xl)〉

‖wi(t) + αΦ(xl)‖
Here, using ‖wi‖ = 1, we have

sik(t + 1) =
sik(t) + αKkl√

1 + 2αsil(t) + α2Kll

(14)

which is the updating formula for sik. Allocation of an
object xk to a cluster should use maximum of sik, i =
1, . . . , c.

We now have the kernel-based LVQ clustering algo-
rithm:

Algorithm K-LVQC.

K-LVQC1. Initialze sik, i = 1, · · · , c, k = 1, · · · , n.
K-LVQC2. Calculate

slk(t) = arg max
1≤i≤c

sik(t) (15)

and allocate xk to cluster l.
K-LVQC3. Update sik by (14).
End of K-LVQC.



B. SOM Using a Kernel

Formula of SOM using a kernel function can be derived
in a similar manner to K-LVQC. The updating equation
is

sik(t + 1) =
sik(t) + αKkl√

1 + 2αsil(t) + α2Kll

. (16)

Notice that the value of wi is unnecessary; only the
position of wi in the grid is used.

Algorithm K-SOM.
K-SOM1. Initialize sik, i = 1, · · · , c, k = 1, · · · , n.
K-SOM2. Calculate

slk(t) = arg max
1≤i≤c

sik(t). (17)

K-SOM3. Update sik for all nodes i in the neighbor-
hood Nc of the winner wl using (16).

End of K-SOM.

V. NUMERICAL EXAMPLES

Two examples were tested, of which first is an illus-
trative and capability of the present algorithm to handle
nonlinearity was tested; the second is based on real data
on which different algorithms were compared.

A. An Artificial Data

An artificially generated 150 points on three dimen-
sional space was analyzed. The result by the algorithm
LVQC is shown in Fig. 1 and the result by the algorithm
K-LVQC is shown in Fig. 2, where two clusters are
represented by � and +. In Fig. 1, it shows that the
original data were not divided into the two classes. It is
moreover obvious that the methods of ordinary k-means
and fuzzy c-means cannot separate the ring around the
ball and the ball within the ring. In contrast, Fig. 2 shows
the effectiveness of the kernel-based method for having
nonlinear boundary between clusters. Unlike the original
data space, the two classes can be linearly separated in
the high dimensional feature space, although we cannot
observe the feature space directly.

A way of visualizing configuration of points in the high
dimensional feature space is to use SOM. Fig. 3 shows the
result of applying algorithm K-SOM to this example. In
this figure � and + are nodes nearest to the corresponding
objects. As expected, the two classes are almost linearly
separated in this figure. Thus visualization of the objects
in the high dimensional feature space is successful in this
figure.

It has been shown that such ‘a ring around a ball’ data
can be successfully separated by a kernel-based crisp k-
means algorithm [4] and a kernel-based fuzzy c-means
algorithm [8]. The result in Fig. 2 implies that the K-
LVQC algorithm is also successful in separating such data
classes.

Fig. 1. Result by LVQC to ‘a ring around a ball’ data.
Parameters are (c = 2, α = 0.5)

Fig. 2. Result by K-LVQC to ’a ring around a ball’ data.
Parameters are (c = 2, α = 0.05, cnst = 20)

B. A Real Data

Iris data is well-known data set in statistics. We used
this data set to compare different clustering algorithms
with proposed algorithms. The data set has been down-
loaded from [9].

The Iris data set has 4 dimensional vectors of 150
objects in which 3 different types of Iris are included. In
addition to the LVQC and K-LVQC algorithms based on
the Euclidean distance and the inner product considered
here, four other methods of fuzzy c-means, i.e., the stan-
dard fuzzy c-means sFCM [2] and entropy-based fuzzy
c-means eFCM [7] without a kernel function, the standard
fuzzy c-means with the kernel K-sFCM [8] and the
entropy-based fuzzy c-means with the kernel K-eFCM [8]
were tested.

Table I shows the number of misclassified objects and
processor time until convergence by these eight methods.
The processor time is average of 100 trials with different
initial values in each methods. It is seen that the proposed
method is better than the other methods and the use of the
kernel is effective in the real data set. Furthermore, the
processor time of K-LVQ is much less than K-sFCM or
K-eFCM.



Fig. 3. Result by K-SOM to ‘a ring around a ball’ data.
Parameters are (c = 2, α = 0.05, cnst = 20)

TABLE I

NUMBER OF CLASSIFICATION ERRORS AND PROCESSOR TIME IN

IRIS DATA BY DIFFERENT METHODS

algorithm num. of errors processor time (sec)

LVQC (I.P) 9 1.5 × 10−3

LVQC (E.D) 14 1.4 × 10−3

sFCM 15 1.4 × 10−2

eFCM 16 7.8 × 10−3

K-LVQC (I.P) 5 4.2 × 10−2

K-LVQC (E.D) 9 2.6 × 10−2

K-sFCM 11 37.3
K-eFCM 10 12.5

I.P : Inner Product, E.D : Euclidean Distance

Fig. 4 shows the result of applying algorithm K-SOM
using the inner product to the Iris data. In this figure, � is
Iris-setosa, + is Iris-verginica and 
 is Iris-versicolor. It
is seen that the three classes are almost linearly separated
in this figure. We can’t get such a result in the method
which K-SOM using the Euclidean distance (Fig. 5).

VI. CONCLUSION

In this paper we have proposed LVQ clustering algo-
rithm and SOM algorithm based on the inner product.
Moreover nonlinearities in unsupervised automatic classi-
fication have been dealt with by employing kernel trick
in the support vector machines. In the first numerical
example, capability of the present algorithm K-LVQ in
separating nonlinear classes has been shown; K-SOM
moreover visualizes the data configuration in the high di-
mensional feature space. In the second numerical example,
effectiveness of the inner product and kernel-based method
has been shown.

Future studies include consideration of variations of the
LVQ and other algorithms based on competitive learn-
ing [5] where kernel-based algorithms can be derived.
Various data sets should be tested to examine effectiveness
of nonlinear separation of clusters.

Fig. 4. Result by K-SOM using the inner product to
the ‘Iris data’. Parameters are (c = 3, α =
0.4, cnst = 20)

Fig. 5. Result by K-SOM using the Euclidean distance
to the ‘Iris data’. Parameters are (c = 3, α =
0.05, cnst = 0.8)
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