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Abstract— The aim of this paper is to propose two methods of
introducing a variable for controlling cluster volume sizes. The
formulation is thus to define two new objective functions having
the control variable. The reason why two different formulations
are possible is described. The both methods have been motivated
from referencing two different aspects of the entropy-based
method of fuzzy ¢-means. Numerical examples show effectiveness
of the proposed methods.

I. INTRODUCTION

Fuzzy c-means clustering has been studied by many authors
and applied to a variety of real problems. Nevertheless some
fundamental problems remain unsolved yet. One of such
problems is to control cluster volume sizes. The aim of this
paper is to discuss this problem.

There are two types of objective functions of fuzzy c-means:
one is the well-known function proposed by Dunn [1] and
Bezdek [2] which we call here the standard method, while the
other uses an additional term of entropy (e.g., [3]) which is
called the entropy-based method. The latter has been extended
by Ichihashi et al. [4] to incorporate the covariance matrix
and the cluster volume size variables. The last method has
moreover been proved to have a close relationship with the
mixture normal distribution model [5]. On the other hand,
the fuzzy covariance variable has been introduced to the
standard method in a number of different ways [6], [7], but
consideration of the cluster volume size is not extensively
studied.

In this paper we consider two methods of introducing cluster
volume size variables to the standard method, observing two
features of the entropy-based method. As a result we have
different objective functions corresponding to these features.

There are two main approaches to the fuzzy c-means cluster-
ing. One is the alternate optimization of an objective function;
the other is to define the memberships, cluster centers, etc
by an algorithm of fixed point iterations. The latter has great
degree of freedom in choosing a part of calculation method
and is ad hoc, and hence we stick to the first approach of
alternate optimization, since establishing a new optimization
method will induce new derivatives of ad hoc algorithms.

We show illustrative xamples and compare effectiveness of
the proposed methods.
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Il. Fuzzy ¢-MEANS ALGORITHMS

Below we omit discussion of covariance matrix [7] for
simplicity, but the use of covariance variable to the methods
herein is straightforward.

A. Basic formulations of fuzzy c-means

Let the objects for clustering be points in the p-dimensional
Euclidean space: z, = (zj,...,2%)" (1 < k < n) and the
clusters be denoted by C; or simply by i (1 < i < ¢). The
membership matrix is U = (u;) (cxn)and v; = (v}, ..., 0F)
are cluster centers. Moreover put V' = (vy,...,uv.).

The basic alternate optimization algorithm of fuzzy c-means
is the iteration of FC1, FC2 and FC3 as follows [2].

Basic Fuzzy c-Means Algorithm

FCO. Set the initial value of V.

FC1. Solve [r]nilr\}[ J(U,V) and let U be the optimal solu-
(S

tion.

FC2. Solve m‘;n J(U,V) and let V be the optimal solution.

FC3. If the solution (U, V) is convergent, stop; else go to
FC1.

End of FC.

where M = { (ui) : wix € [0,1], Y5, uix = 1, Vk }. As
the objective function .J(U, V') the following two are discussed
here.
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The former is a well-known function by Dunn [1] and
Bezdek [2], which we will discuss later. On the other hand,
the solutions for the latter entropy-based objective function are



as follows.
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B. Variable for controlling cluster volume size

For the latter method using the entropy term [3], a gen-
eralized objective function has been proposed [4], where an
additional variable a = (ay,---,a.) for controlling cluster
volume sizes is used:

JU,V,a) = ZZuikak—vin

k=1 i=1
+ 27! ZZulk log a;luik (5)
k=1 i=1

The constraint for « is

A= {a : Zai =1a;>0,i= 1,...,c}
i=1
Then the alternate optimization is as follows.

An Extended Algorithm of Fuzzy c-Means
FC’0. Set initial value of V, a.
FC’1. Solve 11}16111\14 J(U,V, @) and let the optimal solution

be U.

FC’2. Solve min J(U,V,a) and let the optimal solution be
V. o

FC’3. Solve miﬂ J(U,V,a) and let the optimal solution be
_ aec
.

FC’4. If the solution (U, V, &) is convergent, stop; else go
to FC’1.

End of FC’.

The optimal solutions are shown below, where @, 7;, &; are
written as u;, v;, «;, respectively without confusion.
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I1l. CLUSTER SIZE VARIABLES IN THE STANDARD
METHOD

Let us introduce a variable for controlling cluster volume
sizes into the standard method. We have two different ap-
proaches for this purpose.

A. First method

Notice that the solution U for (1) is
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where r = 1.
The first idea is to compare solutions of the standard and
the entropy-based methods. Namely, what we wish is to alter

the above solution to the next form
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We therefore employ the next objective function:
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For simplicity, put d;;. = ||zx — v;]|*>. Then the solutions of

FC’2, FC’3, FC’4 are as follows, where r = —1—.
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B. Second method

Second method is based on a different idea. We observe that
the solution (8) of the size variable for (2) is a simple average
of the membership values for the cluster.

To find an objective function in which the alternate op-
timization derives this form of the solution is the second
approach.

For this purpose, general values of the parameter m are
unusable but we should employ the particular value of m = 2.



We propose the next function:

o

JUV,a) = D (ui)’di
k=1 i=1
Z Z uik log oy (14)
k=1
with the same constraint A = {a : > o = 1,a; >

0,7=1,...,c

A simple application of the classical Lagrange multiplier
solution to this objective function without considering the
nonnegative property of u;, and «; leads to
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However, the nonnegative property sometimes fails in these
equations and hence the solution requires more calculation in
general.

Generally, there exists an index set I(k) for an object z:

I(k) ={Jj
Then the solution for w;; is
L=AYierm dj_kl loga;  Aloga;
dit ¥ jern) i dit
instead of (15) (cf. [8]). Thus, how to find this index set is the
problem to be solved. This problem is not easy in general and
it is necessary to use an advanced optimization algorithm, but
in the case of ¢ = 2, the solution is greatly simplified:
l. Calculate w1y and wuoy by (15).

Il. If w1 < O (resp. usr < 0), then put wy = 0 and
g = 1 (resp. usy = 0 and uyy = 1).
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1V. NUMERICAL EXAMPLES

Three illustrative examples in Figures. 1-3 have been tested.
For such large and small clusters, the standard method of fuzzy
c-means will have misclassifications; a part of a large cluster
will be judged to belong to a smaller cluster, which can be
theoretically proved [9], since the classification rule induces
the Voronoi regions.

Although the first and the second examples look similar, the
second is more difficult to classify; the single link method [10]
cannot separate the two clusters in the second example.

Table | compares the results of the standard fuzzy c-means
and the two methods proposed herein. Ten trials with different
initial values were tested for each of the three methods. The
success in Table 1 means no misclassified points and the
number of success out of the ten trials are shown in the table
as N. of succ. The initial values were random selection of a
hard partition of clusters.

The two methods here were applied to the three examples.
For the first method, the results were successful without any

misclassified objects (Figs. 4-6). The second method was
successful for the first and the third examples, but there were
misclassifications in the second example.

For the second method, we have used the simple algorithm
at the end of the last section for the first two examples which
has two clusters. In contrast, we have tested all possible I(k):

I(k) € {{1,2,3},{1,2},{1,3},{2,3}, {1}, {2}, {3}}

and checked the resulting memberships are nonnegative. For
such admissible memberships, we took the optimal solution
of the minimum value of the objective function.

V. CONCLUSION

We have proposed two methods of introducing an additional
variable for controlling cluster volume sizes into the standard
method of fuzzy c-means, while such variable has already been
used in the entropy-based method. The first approach uses the
form of the memberships in the entropy-based method while
the second approach employs the solution form of the size
variable in the entropy-based method. In the both cases they
are referring to the entropy-based method.

A problem in the second method is that sometimes the
solution is sensitive to the parameter A\. Moreover the second
method requires a more complicated calculation method when
the number of clusters is more than two. An efficient algorithm
has been developed for a similar problem [8], but no such algo-
rithm for the second method herein has been found yet. Thus
our recommendation at present is the first method, although
there are rooms for further study of the both approaches. For
example, an efficient and elegant algorithm for the second
method is an interesting theoretical problem to be studied.
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Fig. 3. Third example of three clusters



