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Abstract – This paper proposes a hybrid approach to the 
modelling of actual plants. Genetic Algorithms are used to 
estimate and tune some of the physical parameters and, if 
required some variables also, of a mathematical model of 
a process to obtain the required outputs. The approach 
has been verified on a Multiple-Effect Evaporator (MEE) 
in the sugar industry. The results confirm the potential of 
the technique, which may be applied in situation where 
fairly accurate mathematical models are available but are 
not predicting the outputs as evidenced in practice. If 
some accurate plant data are available, the approach 
presented in this paper can be used to optimise some of 
the parameters of the model so that the model may 
provide correct predictions. 
 

I. INTRODUCTION 
 

The advent of the digital computer and the parallel 
development of software have dramatically changed the 
possibilities in design and development of systems since 
several decades, in particular in control applications. Indeed, 
simulations on the digital computer enable systems to be 
studied at relatively low cost and without the embarrassment 
associated with on the field experimentation. However, to be 
able to use a computer for simulation requires a model of the 
problem that can be implemented on the digital computer.  

Models of actual systems can be analytical or 
empirical. Analytical or mathematical models are based on 
well-established physical and/or chemical laws, such as mass, 
momentum and energy conservation laws, equations of states 
for gases, etc. A mathematical model of a dynamic system is 
defined as a set of equations that represents the dynamics of 
the system accurately or, at least, fairly well [1]. However, a 
mathematical model is not unique to a given system. A 
system may be represented in many different ways and, 
therefore, may have many mathematical models, depending 
on one’s perspective. Empirical models, on the other hand, 
are based on input and output data. The use of neural 
networks, for instance, to model processes fall into that 
category [2]. The empirical model is very often a black box 
model that tries to map the input data to the output ones. For 
these black box models to be valid, huge amount of 
information about all the inputs and outputs must be 
available. In addition, such models are obscured to a person 
and a model obtained and validated for a particular system 
cannot be applied, at least not easily, to another of the same 
family. 

However, very often, complete input output data 
about a system are not available, or some of the data are not 
trustworthy but an analytical model that describes accurately 
enough the dynamics of the system is available. In such 
cases, physical parameters about the system must be known 

to be able to use the analytical model to predict the output or 
outputs given the inputs. 

The performance of a mathematical model in regard 
to the prediction of the values of the output variables might 
not be satisfactory even if the values of the physical 
parameters of which the model is constituted were available. 
Indeed, in deriving an analytical mathematical model of a 
plant, a compromise is often made between the simplicity and 
the accuracy of the model. There are reasons for developing a 
simple model among which are limited amount of time and 
computing power. Nonetheless, the mathematical model, 
theoretically, might be representing the dynamics of the plant 
adequately enough. The discrepancy between available plant 
data and the predicted model data most probably is because 
of the assumptions made to simplify the model. 
Consequently, for the mathematical model to be useful, some 
of the physical parameters must be estimated. 

This paper proposes a hybrid approach to the 
modelling of dynamic systems. The approach exploits the 
advantages of both the analytical mathematical modelling and 
the empirical modelling. The Genetic Algorithms (GA) is 
used to estimate and tune some physical parameters and 
variables of a mathematical model. The approach is applied 
to a multiple-effect evaporator (MEE) in the sugar industry. 
The MEE process is particularly suited to show the 
usefulness of this approach because of the difficulty of 
estimating the physical parameters due to the severe 
interactions of mass ad energy across the whole process. 

This paper is organised as follows. Section II 
describes the MEE process on which the proposed approach 
is tested. Section III presents a mathematical model of the 
MEE. In section IV, the approach using GA to extract the 
plant parameters and to tune the model is presented. In 
section V, results are given with some discussion while 
section VI presents some conclusions. 

 
II. MULTIPLE-EFFECT EVAPORATION PROCESS 

 
A. Principle of Multiple Effects 
 When juice is heated by steam in an evaporator, a 
quantity of juice steam, approximately equal to the amount of 
steam condensed in the condensation chamber, is produced. 
This juice steam, which is at a lower temperature and 
pressure, can be utilised in turn as heating steam for a second 
evaporator. The juice steam from the latter evaporator can be 
used to heat a third evaporator and so on. This is the principle 
of multiple-effect. The number of effects is equal to the 
number of unit evaporators. To provide the necessary 
temperature difference for heat to flow from the first to the 
last effect, the last effect is connected to a vacuum pump. 
Thus, the pressure along the effects decreases monotonically 
from the first to the last. 



B. Condenser 
 The juice steam from the last effect is usually sent to 
a direct contact condenser. This steam is not re-circulated in 
the factory and is therefore lost. The vacuum pump required 
to raise the necessary vacuum is connected to the condenser. 
The hot water exiting from the condenser is sent to a cooling 
pond where the temperature of the water is reduced before 
being recirculated in the condenser. 
C. Vapour Bleeding 
 A sugar factory is a big consumer of low pressure 
heating steam; the latter is required by the juice heaters to 
heat the raw juice coming from the mills and the clarified 
juice, and in the vacuum pans. There is a gradual decrease in 
temperature and pressure along the MEE. The MEE thus 
offers a complete range of vapour temperatures, which can 
satisfy different heating purposes. Since many heating 
apparatus in the factory requires only low-pressure steam, it 
is more economical to bleed vapour from the intermediate 
effects in a MEE instead of using live steam. Thus, the 
heaters and the MEE are dependent. 
D. Presentation of MEE Station 
 The MEE process considered in this paper is 
depicted in Fig. 1. It consists of five effects (Roberts) with 
vapour bleeding from the second, third and fourth effects 
only. The heating steam in the first effect is exhausted from 
the turbo-alternator in the factory. The juice steam from the 
last effect is sent to a direct-contact condenser. The major 
part of the vapour bleeding takes place in the second effect, 
which supply the vacuum pans with heating steam, in 
addition to a juice heater. 

 
Fig.  1. Multiple-Effect Evaporator Station 

 
III. MODEL PRESENTATION 

 
A. Analytical Mathematical Model 

 
Fig.  2. First two Effects Illustrating Mathematical Modelling 

 The overall model of the MEE station is obtained by 
the concatenation of the models of each evaporator. The 
model of the evaporator is built from mass and energy 
balances. This approach provides a lot of flexibility of 
developing general unit models because the model of any 
MEE station can be built up. However, the order of the 
resulting models is generally high and some form of model 
order reduction becomes necessary [3]. 
 One intuitive way to reduce the order of the model is 
to make reasonable assumptions. The following basic 
assumptions have been made: 
1. The heat-of-solution effects of the juice/syrup in the 

effects are assumed negligible. 
2. Zero boiling point rise in the solution due to hydrostatic 

pressure. 
3. Saturated steam in all vapour space. This enables the use 

of steam tables directly. 
4. Identical conditions throughout the steam chest and 

connected vapour space. 
5. No subcooling of the steam condensate streams so that 

the heat transfer to the solution hold-up is only the latent 
heat of condensation and which is much easier to 
determine. 

6. The heat losses to the environment are negligible. 
7. Zero concentration of solute in the overhead vapour 

streams so that the vapour is pure and saturated. 
8. Negligible heat capacity in the evaporator vessels and 

piping so that the dynamics of the tube bundle in each 
evaporator may be neglected. 

9. The mass of juice/syrup in the concentration chamber of 
an effect is constant. 

10. Phase equilibrium between vapour and juice/syrup exists 
at all time. 

 A mass balance around the liquid holdup in the 
tubes gives 

Fi i iF F O= +                           (1) 

where 

FiF  = mass flow rate of juice feed into an effect 
(kg/s) 

iF  = mass flow rate of juice/syrup out of effect 
(kg/s) 

iO  = mass flow rate of overhead juice steam out of 
effect (kg/s) 

 
A mass balance on the overhead vapour flow gives 

1  1 4i i iO VP S i+= + = −        (2) 

where 

iVP  = juice steam deduction (kg/s) 

1iS +  = juice steam consumption by next effect 
(kg/s) 

 
A solute balance around the liquid holdup in the 

concentration chamber gives 

( )i i Fi Fi i i
d W B F B F B
dt

⋅ = ⋅ − ⋅                (3) 

where 



iW  = mass of liquid in concentration chamber (kg) 

iB  = brix of juice/syrup leaving effect (mf) 

FiB  = brix of juice/syrup entering effect (mf) 
 

from which the brix of the juice or syrup from each effect can 
be determined. 

An energy balance around the liquid holdup in the 
evaporator gives 

( )i i Fi Fi i i i vi i
d W h F h F h O H Q
dt

⋅ = ⋅ − ⋅ − ⋅ +     (4) 

where 

Fih  = Enthalpy of juice/syrup entering effect (J/kg) 

ih  = Enthalpy of juice/syrup leaving effect (J/kg) 

viH  = Enthalpy of juice steam leaving effect (J/kg) 

iQ  = Heat flow from condensation to concentration 
chamber (J/s) or (W) 

 The heat flow from the condensation chamber to the 
concentration chamber is given by the transport equation 

( )i i i si iQ U A T T= ⋅ −                       (5) 

where 

iU  = overall heat transfer coefficient ( )2W m K  

iA  = overall heat transfer area ( )2m  

siT  = temperature of heating steam ( )°C  

iT  = temperature of liquid in concentration chamber 

( )°C  
The juice steam consumed by the next effect is 

given as 

,  2...5i
i

ci

QS i
λ

= =                         (6) 

where  

ciλ  =  latent heat of condensation ( )J kg  
and is a function of the temperature assuming saturated 
conditions 

( )1 ,  2...5ci if T iλ −= =                     (7) 

The juice enthalpy for sugar cane juice is assumed to 
be of the simple form 

h c T= ⋅  
where c  is the specific heat capacity. The enthalpy is given 
as [4] 

( )24186.8 25.1208 0.07536 0.03349 100h T B T B T B Tα= ⋅ − ⋅ ⋅ + ⋅ ⋅ − − ⋅ ⋅

                         (8) 

where it is seen that it is a function of the sugar 
concentration, B , and the temperature, T . α  is the purity 
of the juice and is assumed constant at 90% in this paper. The 
following expressions can therefore be written [5] 

dh h dB h dT
dt B dT T dt

∂ ∂= ⋅ + ⋅
∂ ∂

                       (9) 

( )4186.8 25.1208 0.15072 0.03349 100h B B T P B
T

∂ = − ⋅ + ⋅ ⋅ − ⋅ − ⋅
∂

                          (10) 

( )225.1208 0.07536 0.03349 100h T T P T
B

∂ = − ⋅ + ⋅ − ⋅ − ⋅
∂

                                   (11) 

After substitution, the equations (3) and (4) can be expressed 
more appropriately as 

( )Fi Fi i i ii

i

F B B O BdB
dt W

⋅ − + ⋅
=                  (12) 

( ) ( )i i
Fi Fi i Fi i i vi i i i

i ii

i
i

i

h hF h h B B O H h B Q
B BdT

hdt W
T

   ∂ ∂⋅ − − ⋅ − − ⋅ − + ⋅ +   ∂ ∂   = ∂⋅
∂

                           (13) 

Since phase equilibrium has been assumed, the 
pressure is always equal to the vapour pressure of the liquid 
in the concentration chamber. Since sugar cane juice/syrup is 
a multi component liquor, the vapour pressure depends on 
both temperature and concentration and is given as 

( ),i i iP f T B=                              (14) 

where 

iP  = vapour pressure in effect ( )Pa  
 
B. Multieffect Model Building 

To construct a complete process model of a MEE, 
algebraic configuration relationship must be written for each 
process stream connecting the units [3]. Thus, we have 

1  1 4Fi iF F i+ = = −                          (15) 

1  1 4Fi iB B i+ = = −                         (16) 

1  1 4Fi iT T i+ = = −                         (17) 

1  1 4si iT T i+ = = −                         (18) 

 It can thus be seen that the brix and the temperature 
are state variables of the model. The presented model, which 
is a non-linear one, is implemented directly into Simulink 
using available blocks. Relations (7) and (14) are 
implemented using look-up tables developed from data 
obtained from a saturated steam table and [6] respectively. 
These equations are solved at each integration step. 
 From the above mathematical model, it can be seen 
that the performance of the model in predicting the outputs 
depend on many effects because of the clear interactions that 
exists among the effects.  
 



IV. SIMULATION OF MATHEMATICAL MODEL WITH 
PLANT DATA 

 
The values of variables and constants obtained from 

an actual MEE in industry are shown in Table I and II, 
respectively. The heat transfer coefficients (HTCs), which in 
reality depend on several process factors, such as juice and 
steam flow rates, have been considered, for simplicity, as 
constant in this paper. 

TABLE I 
VARIABLES CONSIDERED IN MULTIPLE-EFFECT EVAPORATION 

PROCESS 

 
The mathematical model of the MEE presented in 

the earlier section has been simulated with the data 
summarised in Table I and II above. The quality of the model 
as a tool for predicting the performance of the MEE and its 
use for the design of control systems shall be assessed based 
on the accuracy of the prediction of the values of the output 
variables compared with the corresponding plant data. In 
particular, the model must predict accurately enough the 
output variables, especially the state variables temperature iT  

and the brix iB , given the inputs in Table I. 
TABLE II 

CONSTANTS CONSIDERED IN MULTIPLE-EFFECT 
EVAPORATION PROCESS 
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Fig.  3. Comparison of actual brix measured at factory with 

brix predicted by model with plant data. Solid lines represent 
actual brix measured at factory. Dotted lines are the brix 

predicted by the model before GA tuning. 
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Fig.  4. Comparison between actual temperatures measured at 
factory with temperature predicted by model with plant data. 
Straight lines represent actual temperature. Dotted lines are 
the temperature predicted by the model before GA Tuning. 

Figs. 3 and 4 shows the results for brix and 
temperature, respectively. It can clearly be seen that the 
model with the raw parameters obtained from factory cannot 
predict the values of the output variables accurately. It can be 
observed that all the predicted temperatures are above the 
actual values at steady state. However, there is only a small 
discrepancy between the predicted brix of the first effect and 
the actual measured brix but a big one for the fifth effect. It 
can thus be concluded that small deviations of the brix from 
the desired value are amplified along the MEE. This is where 
the adjustment of the physical parameters of the MEE 
becomes complicated because of the severe interactions 
among the units.  

One of the critical physical parameter that needs to 
be adjusted is the HTC of the effects. Unfortunately, because 
of the interactions among the variables, tuning the HTCs 
alone would not guarantee the accuracy of the model. 
Therefore, it was decided to trust only some of the plant data 
while assuming others inaccurate. Since temperatures, 
pressures and brix of each effect are easily measured at the 
factory, it was assumed that these data are trustworthy and 
are taken as reference. On the other hand, the steam flow into 
the first effect, the juice steam flow from the fifth effect and 
the juice steam bled off from the second, third and fourth 
effects are considered inaccurate. All other variables and 
constants were left unchanged. 

 
V. GA PLANT PARAMETER EXTRACTION AND MODEL 

OPTIMISATION 
 
A. Using Genetic Algorithms to Estimate Plant Parameters 

and Variables 
 

The model parameter selection boils down to an 
optimisation problem where the temperatures, pressures and 
brixes of each effect are optimised by finding the optimum 
values of HTCs and vapour flow rates. To be able to use a 
GA to tune the model, it is necessary to define a codification 
for the model parameters and a fitness function. 
1) Codification of Problem for Optimisation by GA: There 

are nine parameters (4 HTCs and 5 steam flows) to 
optimise. These nine parameters are concatenated to 
form a chromosome. Real numbers are used to code the 



chromosome [7], [8]. Table III shows the order of the 
parameters in the chromosome together with the lower 
and upper limit between which the GA is allowed to 
evolve the parameters. The GA parameters are: 
Maximum number of generation = 50, Population size = 
40, Generation Gap = 0.9, Crossover Rate = 0.7 and 
Mutation Rate = 0.1. 

 

TABLE III 

CODIFICATION OF CHROMOSOME FOR GA 
 

 
 

2) Fitness Function: To evaluate the effectiveness of each 
set of parameters, the process simulation has been used. 
The simulation was run for 3000 seconds, just sufficient 
to allow the transients to die out and the variables to 
reach steady state. To find the optimum values of the 
parameters, the steady state values of brix, temperature 
and pressure from the plant data must be reached. Then 
the GA must minimise the error between the actual plant 
data and the predicted model data. The smaller the error, 
the better would be the parameters the GA has evolved. 
This is a multiobjective optimisation problem. In order to 
solve this problem using a simple GA, the reference 
objectives were reformulated as a single minimax 
function [9]. 

 
B. Parameters and Variables of Tuned Model 
 
 Table IV gives the HTCs and the steam flow rates 
identified by the GA. Table V gives the values of brix, 
temperature and pressure predicted by the model before and 
after tuning. In addition the reduction in the error with respect 
to the reference values are given. 
 

TABLE IV 

COMPARISON OF HTCS AND STEAM FLOW RATES OBTAINED 
FROM FACTORY AND IDENTIFIED BY GA 

 
 

What is striking in these results is that although the 
values estimated by the GA are not exactly equal, as 
expected, to the values obtained from the factory, the order of 
the magnitude of both the HTCs (U ) and the steam flow 
rates (VP ) relative to each other is maintained. As for the 
results of the tuned model, they are much better as evidenced 
by the drastic decrease in error (Table V). 

TABLE V 

REDUCTION IN ERROR BETWEEN PREDICTED AND REFERENCE 
VARIABLES AFTER TUNING MODEL BY GA OVER 50 

GENERATIONS 
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Fig.  5. Output of GA tuned model for brix. 

Fig. 5 and fig. 6 shows the predictions of the tuned analytical 
model of the MEE and the actual measured outputs. Now it 
can be observed that the GA tuned model approximates better 
the actual plant. The curves for both temperature and brix get 
closer to the actual plant data. This clearly shows that the new 
values of HTCs and the vapour flow rates into and out of the 
effects are better suited to the present mathematical model 
than those obtained from the factory.  
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Fig. 6. Model: GA Tuned. Output: Temperature. Solid lines: 

Actual Plant Data. Dotted lines: Predicted Model Data 



C. Shifting Model of MEE to new Operating Point 
 

With high performance control systems, the control 
variables of the MEE can be maintained tightly at optimum 
setpoints. The main controlled variable in the MEE of a sugar 
factory is the brix of the syrup at the exit of the last effect. 
For economic reasons, the brix should be as high as 
permissible thus giving maximum possible evaporation. This 
renders the vacuum pans more efficient because less water 
then needs to be evaporated in them [10]. However, the brix 
should not be too high because then sugar will start 
crystallising inside the tubes. It is recommended that the final 
brix should be 72% for economic reasons as mentioned above 
but also because of other reasons [4]. In addition, since a 
MEE in the sugar industry works under vacuum, the 
temperature in the last effect is usually around 55 0C. 

Having obtained the HTCs and the vapour bled off 
from each effect, they are now assumed to remain constant as 
long as the juice feed at the first effect does not change 
significantly. To raise the brix B5 to 72% while maintaining 
the temperature 5T  at 55 0C, the GA is again used to find the 

new corresponding optimum values of 1S  and 5O . The 
objective function is to minimise the error between the 
required B5 and 5T  and the actual values predicted by the 
model. Since there are two objective functions, the minimax 
strategy is again applied. However, this time the chromosome 
of the GA is made up of a concatenated string of 1S  and 5O  
only. The limits of the two parameters and the GA parameters 
are as before. After 50 generations of evolution, the GA came 
up with 1S  = 9.3818 kg s  and 5O  = 3.1755 kg s . 

Obviously 1S  and 5O  are higher because the setpoint of the 
brix5 is set higher so that more water needs to be evaporated. 
To evaporate the additional water to achieve the higher brix 
more exhaust steam may be admitted into the first effect, the 
vacuum at the fifth effect may be increased or both operations 
may be done simultaneously but to different degrees. From 
the results, it can be seen that the GA has come up with the 
last solution by increasing both the steam 1S  and the 

overhead vapour flow rate 5O , which makes sense. 
 Table VI summarises the values of some of the 
variables in the MEE at the new operating point. 

TABLE VI 

NEW STEADY STATE VALUES FOR MULTIPLE-EFFECT 
EVAPORATOR 

 

V. CONCLUSIONS 
 

This paper has presented a hybrid approach towards the 
derivation of the modelling of processes. Most mathematical 
models are based on certain assumptions, which render them 
inaccurate to some extent. To be able to use these models in 
simulation, physical parameters about the model must be 
known. However, although the model might be capturing the 
major dynamics of a plant fairly well, the outputs for given 
inputs might be very deceiving because the available physical 
parameters might not be appropriate for the chosen level of 
abstraction of the mathematical model. This is where the 
hybrid approach using GA is relevant. 

Unlike the derivation of black-box models which require 
large quantities of input-output data, the proposed approach 
require only some data, which can be considered to be 
accurate enough, to estimate and tune some parameters of a 
mathematical model that is guaranteed to represent 
sufficiently the essence of the plant. In this paper the 
proposed approach has been verified on a MEE station which 
has a lot of interactions and several parameters and variables. 
The results showed that the approach could indeed be very 
useful. In addition, the technique could be used to find the 
values of variables at other operating points. 
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