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Abstract— Most of the mathematical methods to decide the time
interval of inspection and the maintenance period are
established by reliability theory. However, most of these
methods are too complicated to be solved as a ready to use
numerical solution for any failure distribution. Moreover, in the
practical applications, the machinery plants must satisfy the
required conditions of these theoretical models, which is not the
case usually. In this paper, we propose a new decision-making
method of inspection time interval and maintenance period for
plant machinery maintenance by genetic algorithm (GA) when
plant machines are preserved by time based maintenance
(TBM). The balance between the frequency of inspection and
the returns from it is required to decrease unexpected
breakdown since faults are detected before they result in costly
breakdown. This new method aims to satisfy the reliability
model and to minimize the composite maintenance cost; by
taking in consideration the cost of losses due to failure and the
cost for the preventive maintenance.

Keywords— Time based maintenance, Inspection Interval,
Maintenance period, Reliability theory, Genetic algorithms

I. INTRODUCTION

The problem of choosing and optimizing maintenance
strategies is of foremost importance in plant management and
operation. An efficient strategy should aim at guaranteeing
the level of performance and availability of the system while
allowing for a reduction in the resource expenditure. During
the last three decades many papers dealing with preventive
replacement strategies have been proposed. Barlow and
Porschan [1] introduce the basic replacement models either
for periodic replacement strategies (age periodic strategy and
block periodic strategy). Those models have been extended
by many authors (see Cho and Parlar [2], Valdez-Flores, C.
[3], Sherif and Smith [4], Pierskalla and Voelker [5]).
Zuckerman [6] suggests inspecting the equipment at T, 2T, 3T,
etc. If the cumulative damage exceeds a given threshold
during a certain period, the equipment is replaced by a new
one. Chelbi and Ait-Kadi [7] develop a replacement strategy
for non-self announcing failure equipment based on a
conditional probability, which increases with the number of
inspections. Berenguer et al. [8] use a semi-Markov decision
process model to generate the inspection sequence based on
some given indicators. Makis et al. [9] develop a
Conditional-Based Maintenance in the context of incomplete
available information. The optimal strategy uses a control-
limit rule based on the age and the degradation level of the
equipment at the inspection instant. Most of the proposed

mathematical models to decide the maintenance time are still
complicated to be implemented as a “ready to use’” numerical
solution. Moreover, in the practical applications, the
machinery plants must satisfy the required conditions of
these theoretical models; which is not usually the case.
Considering the effects of system cost and life, the
arrangement of preventive maintenance activity becomes an
optimization problem. Although this problem can be resolved
by completely enumerating the possible answers to the search
space, it is exhaust in time and is inefficient for a large space.
In the last years, an increasing number of GAs was used to
treat the optimization in system reliability ([10] and [11]).
The tendency reveals that GAs are an efficient tool to rapidly
obtain the optimal solution of preventive maintenance policy.
Therefore, GAs are used in this work as a tool to implement
and optimize the joint inspection replacement periodicity.

In this paper, we propose a decision-making method of the
optimal periodic preventive maintenance and replacement for
plant machinery and equipment by genetic algorithms
technique. The main objective is to improve the performance
of replacement and inspection strategies by considering a
joint periodic inspection and replacement strategies, mainly
for equipment whose state can only be known through
inspection. The mathematical model governing the proposed
strategy take into account the failure distribution of the
lifetime, the costs incurred to perform each maintenance
action (inspection, minimal repair, replacement) and also the
cost of production loss due to the idle time between the
failure occurrence and the failure detection of the equipment.
This model expresses the expected total cost (ETC) per unit
time over an infinite horizon. The optimal strategy is the one
that minimizes the ETC. The most merit of the method
proposed here is that by applying GAs, we can decide the
inspection and the maintenance period for a plant machine

following a generalized failure rate ﬂ(t), in both continuous

and discrete time.
II. BASIC THEORY OF THE PROPOSED METHOD

The mathematical models used for the determination of the
maintenance inspection and replacement periodicity, are
established by the reliability theory. In the present work, the
optimization strategy is not only based on the reliability
criteria, it is also decided by the composite maintenance cost
relating to the cost ratio. Which mainly include the losses due
to failure and costs for the preventive maintenance.



In this section, after defining the strategy, the working
assumptions and the used notation, the mathematical model
will be developed and the existence and uniqueness
conditions of an optimal periodic strategy will be established.

A. Notations and Assumptions

The considered equipment is subject to sudden failures and
when failure occurs it has to be maintained or replaced. In
order to reduce the number of failures, preventive
maintenance can be scheduled to occur at specified intervals.
However, a balance is required between the amount spent on
the preventive actions and their resulting benefits from
failure reduction. It will be assumed, not unreasonably, that
we are dealing with a long period of time over which the
machinery is to be operated and the intervals between the
preventive maintenance are relatively short. Moreover, our
mathematical model is developed under the following basic
assumptions:
v" The failure of the machine can only be detected
through inspection;
v' The inspection operation is perfect and the
replacement is immediate if failure detected;
v Failure completely halts production or generates
waste products;
v The time for inspection and repair is negligible;

v Repair if occurred, makes the system as good as new.

Thus, the failure time pdf remain the same.

The following notations will be used throughout the paper:

C (T ) Expected Total Cost per unit time (ETC)

C ; Cost of scheduled inspection and preventive maintenance
C, Cost of replacement if the machine is found to have failed
Cd Cost of losses due to failure until inspection

f ( x) Probability density function of the machine’s life time

F (x) Cumulative distribution function of machine’s life time
A (x) Failure rate of the machine,

R(7).F (t) Reliability, Unreliability functions of machine,

T Inspection interval

T" Optimal inspection period (minimizing the ETC)

u= j tf ()dr  Mean time to failure of machine

.., (x) Two-parameters Weibull distribution

(24 Scale parameter of Weibull pdf

n Shape parameter of Weibull pdf

B. The Reliability model

In this work, the development of the mathematical model and
its implementation are based on the reliability theory, and
inspired by the first proposed block replacement policy by
Barlow and Porschan [1] as well as Osaki [ 12] who presented
important results about the existence of an optimum policy.
During the determination of continuous time domain
preventive maintenance period, we focus on the case where

the reliability function of machinery plant follows the
Weibull distribution. The reason for this is that previous
practical studies have shown that this distribution fits a large
number of machinery. The Weibull distribution is represented
in Eq.(1).

W, (x)= %(gjrl exr{—[gjq}, se0 (D

Where 77 is the shape parameter which determines the shape

of the pdf and & is the scale parameter, both parameters are
estimated from the life examination data. Depending on the
shape parameter the failure rate function is increasing or
decreasing. We assume that the aging effect in the machinery
develops with a value for the shape parameters7 >2. The

effects of machinery component aging are counterbalanced
by maintenance actions, performed with period 7, which
rejuvenate them. In practice, during the period 7, the failure
rate increases only slightly. The Weibull distribution shifts
the failures to later times, closer to the end.

Preventively replacing or maintaining critical components
within the equipment at appropriate times can enhance
system’s reliability. Deciding the best time depends on the
strategy’s overall objectives, such as cost minimization or
availability maximization. In this work, we consider that after
a corrective or a preventive maintenance intervention, the
equipment acquire the same reliability as a new one.

C. The composite maintenance cost model

Plant management is inevitably affected by economic
constraints. In order to quantify the consequences of a given
management action in economic terms it is common practice
to introduce a profit (cost) or energy function which contains
the factors affecting the plant from an economic point of
view. The maintenance cost models are investigated for
deciding the preventive maintenance period. The optimal
policy once obtained guarantees a decided compromise
between maximizing availability and minimizing the
expected total cost. When this is the case we need to consider
only one cycle of operation and develop its corresponding
model. The maintenance policy is one where preventive
actions occur at fixed intervals of time, faulty parts
replacements occur when necessary, and we want to
determine the optimal periodicity of the preventive
interventions to minimize the total expected cost per unit of

timec(T).

In this inspection problem, it is obvious that the time of
inspection is a renewal point. Using the renewal reward
theorem, the long run expected cost per unit time is given by

The total expected cost in the Cycle _ N(T) )
The time length of one Cycle T

There are two possible cycles of operations. In the first cycle,
the machine is found to be in good state upon inspection at
time 7. However, in the second cycle, a failure is detected
after inspecting the machine at the end of the inspection
period. Then, the average maintenance cost per cycle can be
decomposed in two portions as Eq.(3)

N(T)=N,(T)+N,(T) 3)

()=




It is clear that the average cost of a good cycle is equal to
C, since the machine is found to be in good state after the
inspection at time 7, and also clear that the probability of a
good cycle is P{X >T}=R(T) . Eq.(4) shows the average
cost of a good cycle.

N,(T)=C,R(T) 4)
However, in a failure cycle, the machine can break down at
any time X <T Thus, the average cost would
be E[C,(T-X)|X <T]+C,+C, . where E[:] denotes the

expectation. The probability of a failure cycle
ISP(X <T}y=F(T)» S0
[C, (T =x) 7 (x)ax (&)
N(T)=F (T)| *—— 4 C,+C,

F(T)

=F(T)(C,+C,)+F(T)(‘dT—(“d]'xf(x)(1x
Using Eq. (4) and (5), we obtain in Eq.(6) the ETC per time
unit.

C(T):% G +C, (1-R(T))+C4[T-J:.R(x)dxﬂ (6)

The problem is to determine the optimal inspection period
T (0<T* Sw) which minimizes the total composite

maintenance cost per unit of time. If it exists it will

verify aC(T*) _o- Thus Differentiating ¢ (7) with respect to
or
T in the above Eq.(6) we obtain:

ac(r) _p(1) )

Where
D(T)=C, [xf (x)dx+C, (17 (1) + R(T))-(C, +C,) B

Theorem: Existence and uniqueness of T
Suppose that ;imtf(f)=0 , there exists a unique optimal

inspection interval 7 , minimizing the total expected
maintenance cost per unit of time C(T), verifying Eq.(9)
C(T")=C,F(T")+C, f(T") )

Proof: From Eq.(8), it is obvious that D(0)=-C, has a

negative value. By the assumption ;. () = 0 the following

11—

result holds D(4w0) = uC,—(C,+C,). We can distinguish two
cases:
v 1If Cu—~G+C)<0wichmeans Gu<C+C, , then 7" =co .

This is predicable since inspection and repair cost
exceeds the cost of downtime due to failure.

v I Cu—(C+C,)>0& Cu-C +C, then, there exists
at least one optimal inspection interval 7", minimizing
the total cost per unit of time C(T), and T ’
satisfying D(T‘) =0,

C,u~C+C, (10)

-
Cdjxf(x)dx+ch*f(T*)=C,R(T*)—(c,+cr) (11)
Substituting Eq.(11) to Eq.(6), we obtain Eq.(9). The
uniqueness of the solution is also proved for Weibull,
Exponential, Log-convex and Log-concave life time density
functions.

II1. PRINCIPLE OF THE PROPOSED GENETIC ALGORITHM MODEL

Traditional optimization methods such as gradient descent
technologies, Newton’s method and various types of
mathematical — programming, usually require some
information about the derivative and possibly second
derivative information at each point evaluated in the solution
space. These are used to determine the next direction of
search. This information is not possible to calculate
theoretically when the decision variables are discrete, and
analytic approximations would be exceedingly cumbersome,
especially in a stochastic framework. A recent study by Goit
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Fig.1 The flow diagram of genetic algorithms

and Smith has shown that GAs can efficiency solve a wide
range of redundancy allocation problem.

Some of the many advantages of GAs apart from their easy
adaptability and ability to solve diverse problem are:

1. GAs search from a population of potential solutions, rather
than from a single point. This explicit parallelism helps the
GAs in determining close to global optimum solutions
without the danger of being trapped in a local optimum.
There is also an implicit parallelism (Schema Theorem) that
gives the GAs its power in searching very large solution
domains.

2. GAs use objective function information directly, with no
need for derivatives of other information. The objective
function can involve any type of numeric or non-numeric
variables, or other data structure, as long as a coding scheme



can be devised to represent the parameter set. GAs take their
analogy from the physical world. GAs operate by creating an
initial population of solutions, often represented as bit strings,
that evolve over successive generation. The solutions with
high fitness are mated with other solutions by crossing parts
of a solution string with another. In addition, the solution
strings are also muted. Over time, operations of weeding out
poor fitness solutions and reproducing by crossing high
fitness solutions at random points act to randomly-sample in
a large part of the huge state space very efficiently. GAs
search solution-spaces effectively by recombining and
maintaining useful schema (building blocks) in the
population. Each population member samples all the possible
schema to which their bits belong. For example, the bit-string
10110 samples the region of space 1#### (# represents either
0 or 1). It also samples #0###, etc. In this way, extensive
schemas in the space are implicitly sampled. This inherent
expletive sampling ability of genetic is called ‘implicit
parallelism'. This refers to the sampling of numerous
schemas and the effective resembling of schema since good
schema is maintained in the population over generations.
GAs have discontinuities for high-dimension stochastic
problems, with many non-linearity or discontinuities. They
are suited for the characteristics of optimization problems:
multi-model domains with some epistasis (one part of the
solution or structure is affected by another). The optimum
inspection time interval and the optimum preventive
maintenance period in our method are the final schema of the
designed algorithm (see Fig. /). The individuals correspond
to the different and possible maintenance periods and
inspection schedules. During this process we have to evaluate
the fitness for each individual referred also as a genotype.
Adapting and giving the significance to the genotypes is done
by defining its correspondent phenotype.
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Fig.2 The PM and inspection scheduling procedure

A. Implementation of the genetic algorithm model

As we explained in the previous sections, the decision
models for the optimum plant maintenance policy are too
complicated to be solved as a numerical expression of
solution. The implementation of the presented decision-
making method is conducted using genetic algorithms. In this
section we present the main steps of this implementation.
Fig.2 presents the PM and inspection scheduling procedure
using GAs. This procedure is done taking in consideration
the following remarks:

a) If the machinery reaches the end of its life cycle T, than
the system is not reliable. Consequently, there is no need for
more Maintenance. R(z) =0,>T

b) The life duration of the machinery is divided into a finite
and discrete number of equal periods or units of time.

c) The gene length, which is one of the basic parameters in
the algorithm, is obtained after the determination of the
equipment life limit.

B. Genotype encoding and fitness

In this study, the genotypes used in the genetic algorithms are
expressed by a set of binary codes. The transformation into
the corresponding phenotypes is generated using the Eq.(12)
and Eq.(13) respectively for preventive maintenance period
and inspection interval generation.

t,=(k=1)xATx4,  k=12--,N (12)

N
t=Y A4, x2"" (13)
k=1

Where Akis the value of the genotype in the & bit and N its

length. In the GA method, genotypes are evolved by the
uniform crossover and mutation with rates proportionally
correlated to the system’s failure rate. The generation of this
process has as result the design of an elite genotype that
corresponds to our optimum maintenance period. The
evolution of the algorithm is conducted by the maximization
of the fitness of each population. In the other side, the
objective of the described method is to optimize Maintenance
period and inspection time interval mainly by minimizing the
composite maintenance cost; we considered then the fitness
as an inverse proportional function of the cost.

IV. SIMULATION RESULTS

In the previous sections, we explained the foundation of the
proposed decision-making method and we discussed the
different used models. In this section, we apply the proposed
method and we present the simulation experiment for the
time continuous optimal maintenance period and the discrete
time preventive maintenance period. A total of 60 sets of
equipment was considered, the life examination of the
collected data has shown that failures occurred in 24 sets.
The forecasting of the failure time distribution function from
the measured values and the corresponding failure rate are
shown in figures fig.3 for the continuous time strategy.



Tabl. Input parameters
C; C, Cy a n
6.510°JPY 1510°JPY 910°JPY 3 4.1918

The analysis and examination of the life data has allowed the
determination of the input parameters, shown in table 1. The
failure rate in this case study is increasing with time. The
termination of GAs is either fitness-error of two successive
generations less than 0.0001 or reaching the number of
maximum generation.

A. Continuous time Preventive maintenance period

The maximum measured value for reliability limit is 95%,
the projection of this limit on the time axis sets the length of
the cycle. The range of the calculated preservation cycle is
[0, 7853] hour. If we consider plant machinery operating an
average of 8 hours/day, 5 days/week, then this life time cycle
correspond to duration of 49 months. The final output of the
genetic algorithm in this case indicates that the optimum
preventive maintenance corresponds to an optimum period of
2355 hours that can be approximated to T = 15Months with
an optimum ETC of ¥5.3 Millions.
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Figure fig.3 shows the failure time distribution function, we
can see clearly that the calculated failure times follow the
same trend as the measured data. As expected an increasing
failure rate.

It can be seen that the incremental differences of the fitness
in Fig.4 change suddenly around 112 fitness value, this
correspond to periodical inspection/replacement

T €[750,1300] hours with almost unchangeable ETC (¥8.9

Millions). This is explained by the inflection in the failure
rate. Finally the effectiveness of this method is verified in
Fig.5 for the continuous time preventive maintenance.

B. Discrete time Preventive maintenance period

The study of repairable systems subjected to failures
constitutes an essential issue in the reliability literature. Until
recently, most of the research on discrete time repairable
systems is performed using homogeneous Markov chain.
When phase type distributions were used [13], most models
assumed exponential distributions for operating and repair
times for simplicity. However, the exponential distribution
presents some limitations. Neuts et al. [14] study a single unit
system with operating and repair times following phase type
distributions. However, phase type distributions are still
limited to cases with rational Laplace transform.

In this section, the previously presented preventive
maintenance strategy and its GA implementation were
adapted to simulate a discrete time periodic
inspection/replacement policy. The use of the GAs allows us
to avoid the mathematical limitations of distributions and
transformations.
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Fig.6. Discrete time Preventive Maintenance cost
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We apply this method to a system represented by a general
distribution. The result of the number of failure within each
sampling time used in the performed simulation and the
corresponding rate of failure are shown in fig.7. All the
sampling intervals used for the life examination were made
with a sampling period of 1000 hours. As explained
previously, since the maximum measured value for reliability
limit is 95%, we obtain a [0~ 9999] [Hour] cycle. The final

output of the genetic algorithm in this case indicates an
optimum preventive maintenance period of 1900 hours,

T" =1year and an optimal ETC= ¥2.9 Millions.

As expected the failure rate is increasing and we can see a
decrease in the number of failure explained by the optimal
maintenance periodicity. Optimizing the maintenance period
using GAs allows us not only to deal with Weibull model
cases that have any values of m and m, but also with discrete
cases in which the optimality is hardly obtained by analytical
methods. As shown in Fig 7, As the GA evolutes approaching
the optimum, the first time of inspection is occurring. This
means that it is better to take the longer interval until first
inspection. The reason is that failure rate increases at any
time and as time passes, machinery becomes easier to fail as
closing the end of inspection time.

The results we obtained by the method proposed in this paper
and the effectiveness is also verified in Fig.6. for the discrete
time periodically inspection/replacement strategy.

V. CONCLUSIONS

In the economically competitive world it is increasingly
important to consider the cost factors associated with safety
related systems in addition to those of production systems.
The operation and management of a plant requires proper
accounting for the constraints coming from reliability
requirements as well as from budget and resource
considerations.

Most of the mathematical methods to decide the inspection
time interval by reliability theory are too complicated to be
solved. Moreover, in the practical applications, the machinery
plants must satisfy the required conditions of these
theoretical models; which is not the case usually. In order to
overcome these problems, in this paper, we have proposed a
decision-making method for optimizing inspection interval
and maintenance period to minimize the maintenance cost by
reliability theory and genetic algorithm (GA). The most merit
of the method proposed here is that we can decide the
preventive maintenance period for plant machinery that have
failure rate conforms to any distribution; therefore, we may
say the method is more practical. The effectiveness of this
method has been verified by simulation resultants in both
continuous and discrete times.
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