
 
Abstract. A methodology to identify pipeline leaks by using 

neuro-fuzzy techniques is here presented. A neuro-fuzzy system is 
developed to classify the running mode and to detect operational 
and process transients during petroleum fluids transfer 
maneuvers. The existing relationship between the transients and 
the mass balance deviations are discussed. This strategy allows an 
improved identification abnormal deviation due to a leakage, 
obtained throughout thresholds adjusted by the neuro-fuzzy as a 
function of the running mode and the classified transient level. 
The methodology is applied to a small-scale LGP pipeline 
monitoring case where portability, robustness and reliability are 
amongst the most important criteria for the abnormality detection 
system. The results are very encouraging with relatively low 
levels of false alarms and obtaining increased leakage detection 
with low computational costs. 
 

Keywords: Pipeline leakage detection, Pattern recognition, 
Neuro -fuzzy Systems. 

I. INTRODUCTION 

Pipeline is an eff icient and economic transportation means 
for petroleum products. However, risks associated with 
accidental releases of transported product are still high [1]. 
This issue has motivated the development of many methods for 
leak detection, mainly based on process variables, i.e., 
pressure, flow rate and temperature, such as the volume 
balance method [2], or [3], where the importance of packing 
term in the transient flow is highlighted. 

In the present paper, the high correlation between the inlet-
outlet flow rate deviation and the operational transients is 
shown and it is the important fact considered defining the fault 
detection strategy. The applied strategy consists, at first, in the 
development of a classifier module that can identify the 
operational and process transients and to determine the current 
stage of the transfer process. Then, the output of this module is 
used by a Fault Detection module that will evaluate the inlet-
outlet flow rate deviation, in order to detect a leakage or an 
abnormal operation condition, with a low level of spurious 
alarms.  

A Fuzzy Inference System is used to solve the present 
problem by using a rule-base system developed from a 
database collected from a real process. The system was 
evaluated by a new data collected from the same process. And, 

good results have been obtained with increased leakage or 
abnormal situation detected. The low computational costs 
involved and low level of spurious alarms obtained are the 
most attractive items in the present system. 

II . PROCESS DESCRIPTION 

The petroleum products produced by a refinery are spread 
to distribution companies by pipelines. The Measuring Station 
(EMED) basically composes the control system that transfers 
petroleum derivatives to the buying companies. In general, 
main process variables arriving from the EMED, such as 
pressure, temperature, flow and density, are usually available 
in real time. In the destination, total flow, pressure and 
sometimes temperature are measured again. 

Real data collected from a small LGP (Liquefied Petroleum 
Gas) pipeline is used for the present developments. The 
considered pipeline has 8-inch diameter and 2,000 meters of 
extension. Pressure, temperature and flow rate transducers are 
installed on both ends of the pipeline. For the tests here 
conducted, an expert initially evaluated this database. After 
modifying to able abnormal situations simulations, each stage 
of the transfer process and the in-out flow deviations were 
classified. 

The present paper will focus in the monitoring of the LPG 
transference process, where often operational transients arouse 
larger complexity. During this transference process, the 
pipeline inner pressure gradually rises while the LPG receiving 
drum is fill ed. When the LPG drum is completely full , then 
transference process is switched to a new drum. At that 
moment, a sudden expansion is observed and an increase in the 
flowrate happens. During the drum filli ng process (steady state 
flow), there is only a small deviation in the total flow 
measured between the origin and the destination of the 
transference. The deviation is expected following mass 
balance model, and it is generated by the inherent uncertainties 
associated to the measuring process [4]. However, during the 
operational transient related to the receiving vessel switch 
procedure, the deviation here observed rises to significant 
values. This is mainly motivated by the line pack effect 
accounted by the mass balance model, due to diverse 
responses from measuring devices and by eventual lack of 
synchronism in the data acquisition system. 

Modeling these transients through deterministic methods is 
a rather diff icult task. In the next sections, the system will be 
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modeled and the correlation between data captured during 
distinct operational stages, which will support the Neuro-
Fuzzy System architecture and fault detection module 
development, will be analyzed. 

III . CORRELATION MODELING AND EVALUATING 

The mass conservation model states that any difference 
between the mass flowing in and out of a pipe, in a given time 
interval, must be analyzed as a function of the mass variation 
inside the pipe during this time interval. This mass variation is 
denominated line pack. If there is no leakage, the general 
equation might be presented as the function of the mass flow 
as shown in below: 
( ) dLPdtdQoQ =−                  (1) 

where, Qo = Volumetric flow measured in the pipeline's 
origin; Qd = Volumetric flow measured in the pipeline's 
destination and; dLP = Line pack during one measuring cycle 
interval. 
 

Adding the uncertainty of the measuring devices, it can be 
rewritten as follows: 

�

dt

dLP
dQoQ +=− )(                (2) 

where, ε = flow measuring devices uncertainty. 
 

Assuming no leakage, from the Equation (2) above, it can 
be concluded that in steady state flow, the difference between 
the origin and the destination flow is equal to the measuring 
devices' uncertainty, and; during operational transients, the line 
pack is added to the measuring devices' uncertainty. 

Figure 1 shows the typical behavior of different parameters 
in LPG transference, where (a) flow, (b) pressure and (c) 
deviation between origin and destination flow is depicted. 
Often operational transients in this process occur during the 
receiving drum switch procedure, and increased deviation is 
measured between the measured flowrates during these 
operations. And, it is emphasized in the present study. 
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Figure 1. Typical behavior of LPG transference in terms of (a) 

flow, (b) pressure and (c) deviation. 

Figure (2) shows the detailed behavior of these variables 
during a drum switching operation. The hydraulic unbalancing 
and differences between the flow measuring devices' 
responses, in the origin and in the destination (turbine and 
ultra-sonic, respectively), are emphasized. 
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Figure 2. Detailed behavior of (a) flow, (b) pressure and (c) 
deviation during the switch operation. 

 
In a conventional pipeline leakage detection system based 

on the mass balance model, if the above mentioned transient 
situation is not treated in an adequate manner, it usually 
generates a large number of false alarms [5]. Due to this 
problem, some variables, capable of identifying the casual 
operational transients, can be redefined as presented in 
Equations (3), (4) and (5). 

Transient measured through average volumetric flow 
(Transqm): 
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Transient measured through the origin-destination 

differential pressure variation (Transdp): 
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Transient measured through the modified hydraulic 
coeff icient variation (Transcoef): 
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From the variables defined above, the correlation between 
the temporal series (Deviation x Transcoef; Deviation x 
Transdp and Deviation x Transqm) is found. The correlation is 
thus defined as in Equation (6): 
 

Y.�X�

(X,Y)
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cov=                 (6) 
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The result is shown in Figure 3, using the same data as in 

Figure 1. 
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Figure 3. (a) Deviation and variables capable of identifying the 

casual operational transients, along with the correlation 
between these variables and the deviation: (b) Transdp. 

 
As the correlation is relatively high, around 0.8, the 

deviation can be associated to any variable that represents a 
process transient. It should be highlighted that the correlation 
is computed through the series in Figure (3), which gathers the 
steady state flow and operational transients.  

This statistic allows two main conclusions for the developed 
system: a) in the steady state flow, the correlation between the 
deviation and the transient is low and the deviation is 
statistically predictable, considering the low variance observed 
in the series, and; b) during operational transients, the 
correlation between the deviation and the transient is high, 
allowing the "isolation" of this condition for a specific 
treatment. 

IV. ARCHITECTURE OF THE SYSTEM 

The architecture of the proposed system is divided into two 
modules (Figure 4). For the first module, initially the time 
series of measured process variables for transference is 
analyzed. And, based on the expert knowledge neural net 
structure is defined . In the second module, the developed nets 
in the first module are used to evaluate the process in real time. 

The analysis of the transfer process is done by applying two 
neuro fuzzy nets (NFN), each one with four layers and built i n 
accordance with definitions in [6]. The aim of the first NFN is 
to classify the operational state of the pipeline through 
observation of the mean flowrate of the transfer and the 
transient level observed in the process. The second NFN 
evaluates the deviation in the volume balance in the pipeline 

by using results from the first net. Figure 5 shows the basic 
architecture of the NFN. In the next sections the NFN will be 
shown.  
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Figure 4. General architecture of the NFN system. 
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Figure 5. Layers of Neuro-fuzzy 

 
A. Layers Definitions 

Four layers compose the defined NFN. The first layer is 
composed by neurons activated with characteristic functions of 
input variables. The mean flowrate of the transfer process 
(Qm) and the transient calculated from the difference between 
pressures at inlet and outlet of the pipeline (transdp) defined 
by Equation (4) is used to NFN for State Identification. In the 



NFN for Deviation Evaluation, the deviation in the volume 
balance (desv) and fuzzy output generated by the NFN for 
State Identification (Evalphase) referred  to actual state of the 
pump. The Figures 6 and 7 show fuzzy functions used to 
define several li nguistic variables associated to each input 
variable. 

The parameters of the fuzzy functions (transdpa..g, qma...g 
e desva...g) are defined by statistical analysis of time histories 
and they are based in the observed functions max, min, 
standard deviation and means. These parameters are detailed 
in [7]. 
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Figure 6. Input and output variables associated to the State 

Recognition Neuro Fuzzy. 
 
Aggregation neurons are logical ones of AND and OR types 

defined in [6]. 
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Where, S is the corresponding maximum s-norm and T is 

the corresponding t-norm of the product.  
The second layer corresponds to the aggregation of fuzzy 

values of the input. Logical operator AND is used in the 
aggregation. All neurons in the first layer are connected to the 
second layer. For the NFN for State Identification, 12 neurons 
were generated in the second layer and, for the NFN for 
Deviation Evaluation 25 neurons were created. 

Logical neurons of OR type composes the third layer. In this 
layer, only relevant connections to solve the problem were 
created, and they were defined by rules developed by an 
expert. Each neuron of this layer represents an output class for 
each NFN. The output variable of the first NFN is associated 
with the operational state of the transfer operation. This 
variable was denominated Phase-Evaluation.  There are five 
linguistic terms associated with the system output: Blocked 
(B), Start-up and Shutdown (SuSd), Operational Transient 
(OT), Steady State (SS) and Operational Problem (OP). The 
output variable of the second NFN is the fuzzy linguistic 
variable DEVIATION, to which are associated five linguistic 
terms, corresponding to each of the failure diagnoses: 
Measuring Error Alarm, Measuring Error, Normal, Leakage 
Alarm, Leakage. 

The fourth layer is denominated defuzzyfication layer and it 
consists of an isolated neuron which the activation function 
evaluates the maximum of input values from the third layer. 
The output defuzzyfication corresponds to the associated value 
of the linguistic output variable. 
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Figure 7. Input and output variables associated to the 

Deviation Evaluation. 
 

B. Procedure to Generate the Nets 
Following steps were applied to develop the nets and 

updating procedure of adopted weights during the process. 
This algorithm has been adapted from [6] and [7]. 

The specific functions defined in the item A were specified 
for each input variable. 

 



C. Generation of Connections  
Connection between neurons in different layers is now 

defined. Initially, connections for neurons between first and 
second layers were generated. For the connection with the 
third layer, rule bases defined by an expert were used [6]. The 
corresponding weights between first and second layer neurons 
were initiated with unitary value. And, the weights to 
aggregate the rules were initialized with zero. In order to 
obtain faster convergence in the process, initial attributed 
values for the weights can be optimized, however it was not 
the purpose of the present work. 

 
D. Algorithm to Updating Weights  

Punishing and rewarding proposal presented in the [6] was 
adopted here to update weights. The basic of this procedure is 
for each right step, the weight of each main involved neurons 
for the solution receives a positive increment. And, for each 
error occurred the value of these weights suffer a reduction. 
The following routine to update the weights were adopted: 

- choose an point in the time series of date and interval; 
- determination of activation neurons by this point; 
- realize the fuzzyfication process; 
- choose winner class and compare with the expected result 

(previously classified by the expert); 
- update weights from the result of previous step; 
- choose the next time series interval until to finish 
evaluation of the data bank; 
- verify the obtained results; 
- re-initiate the cycle until the convergence or until the 

iteration reach the maximum allowed. 
 

V. RESULTS 

LPG transference data set was obtained from an oil refinery. 
From this data set, three pumping operations previously 
classified as classical by an expert were used.  

The proposed neuro fuzzy system was obtained from an 
approximately 15000 points database. After training of the 
system, it was tested with a set of 3000 points obtained from 
LPG transfer data of an actual maneuver. In this data trend 
leakage was simulated for developed system test purpose. 

.During the test phase, the system was used to evaluate 
another real pumping operation, also classified by the expert.  

The NFN that classify the operational state of the pipeline 
transfers were correct in 99,14% and 95,25% of the realized 
tests. An example of the result is shown in the Figure 8 where 
good answer could be obtained that for small l eakage of 2% 
and 4%. 

VI. CONCLUSIONS 

The results obtained by the system are satisfactory, 
considering the low computational cost involved. It can be 
incorporated to the plant control and supervising system, with 
no need of a dedicated system. Establishing a new supervisory 
routine can eliminate the small variations’ error through the 
process’ continuous supervision. 

Obtained results show that in typical classifying problems, 
neuro fuzzy nets have advantage if compared with 
deterministic models due to their capacity to learn general 
solution of a give problem from actual collected data and 
simpli fied rules. 

In the present model, instantaneous fault detection was 
studied. The introduction of accumulated variables could make 
possible detection of smaller amount of leakage faster than in 
the present study. If combined with the present model can 
contribute to increase operational safety of transfer process in 
fluid transfers by pipelines. 
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Figure 8. Comparison of the system and the expert evaluation for the (a) Phase Determination and the (b) Deviation 
Evaluation 
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