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Abstract: In this study, fuzzy reasoning numerical 
techniques were applied to integrate surface geochemical 
(headspace C1 to C6+ concentrations from soil samples) 
and geologic data in a Sub-Andean sedimentary basin. A 
methodology is proposed to compute anomalous regions 
combining Fuzzy c-Means clustering and fuzzy classifiers. 
The results of the proposed approach have allowed a good 
definition of areas anomalous areas, taking into account 
all the geochemical parameters in an integrated way. 

 
Index Terms: Fuzzy cluster analysis, Fuzzy classification, 
Fuzzy geo processing, Surface geochemistry. 

I. INTRODUCTION 

Surface geochemical methods use surface or near-surface 
occurrences of hydrocarbons (micro seepage) as clues to the 
location of oil and gas accumulations. The rationale of such 
methods is that hydrocarbons are generated and/or trapped at 
depth and leak in varying quantities to the surface. Surface 
geochemical surveys provide direct evidence of the existence 
of an active petroleum system, helping in the identification of 
most prospective areas and in the evaluation and ranking of 
exploration leads and prospects.  

During the last decades, a remarkable advance in analytical 
techniques has allowed the detection of minute traces of 
hydrocarbons. Conversely, interpretative methods have been 
mostly limited to straightforward statistical approaches that 
define background and anomalous hydrocarbon 
concentrations assuming a lognormal or normal distribution.  

In this study, fuzzy reasoning techniques were applied to 
locate surface geochemical (headspace C1 to C6+ 
concentrations from soil samples) data in a sub Andean 
sedimentary basin.  

Fuzzy reasoning techniques are a key for human-friendly 
computerized devices, allowing symbolic generalization of 
high amount of data by fuzzy sets and allowing its 
interpretation by domain experts [1].  

A fuzzy geo-processing methodology is proposed to 
compute anomalous regions (see Fig. 1). Firstly, clusters of 

similar geochemical values are computed by the fuzzy c-
means algorithm disregarding the location of the samples. In 
a second phase, a fuzzy classifier is trained to recognize the 
anomaly region generated by cluster analysis. The inputs to 
the classifier are sample’s coordinates and the outputs are the 
classes identified in the cluster analysis. Finally, a grid of 
geographic coordinates is generated to cover the whole 
domain and the fuzzy classifier is used to map the clusters 
into the grid.  
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Fig. 1: Fuzzy Geo-processing methodology.  

The paper is organised as follows: next section discussed 
the surface geochemistry for oil exploration. Section III 
presents the fuzzy clustering analysis with the Fuzzy c-Means 
algorithm. Section IV presents the fuzzy classifier, referred as 
geo-fuzzy classifier, which is used to locate clusters of 
similar headspace samples in the geographic domain. Section 
V presents the results computed with a data set from a sub 
Andean basin. Finally, the conclusions and future extensions 
of this work are highlighted. 

II. SURFACE GEOCHEMISTRY 

Surface geochemical for petroleum exploration is the 
search for surface or near-surface occurrences of 
hydrocarbons. It extends through a range of observations 
from clearly visible oil and gas seepage at one extreme to 



 

 

identification of minute traces of hydrocarbons (micro 
seepage) or hydrocarbon-induced changes at the other.  

The principal objective of a geochemical exploration 
survey is to establish the presence and distribution of 
hydrocarbons in the area, in order to help determining the 
location of petroleum accumulation in subsurface. If the 
objective is to evaluate individual exploration leads and 
prospects, the results of geochemical surveys can lead to 
better risk assessment by identifying those associated with 
strong hydrocarbon anomalies, thereby improving prospects 
on the basis of their probable hydrocarbon charge.  

The underlying assumption of all near-surface geochemical 
exploration techniques is that hydrocarbons are generated 
and/or trapped at depth and leak in varying but detectable 
quantities to the surface. This has long been an established 
fact, and the close association of surface geochemical 
anomalies with faults, productive fairways, and specific leads 
and prospects is well known. It is further assumed, or at least 
implied, that the anomaly at the surface can be reliably 
related to a petroleum accumulation at depth (Fig. 2). 
Hydrocarbon gases diffuse and flow from deep-seated 
petroleum accumulations through the sedimentary rock and 
reach the surface, being absorbed by the soil particles. 
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Fig. 2: Surface geochemical prospecting.  

III. FUZZY C-MEANS CLUSTER ANALYSIS 

In the first step of the proposed methodology, a cluster 
analysis is performed to find similar patterns in the 
geochemical data. The geochemical data, regardless of their 
location are used as input to the Fuzzy c-means algorithm as 
described next. 

A. Fuzzy c-Means Algorithm 

The Fuzzy c-means (FCM) algorithm proposed by Bezdek 
[2], is the well known fuzzy version of the classical 
ISODATA clustering algorithm. 

Consider the data set ( ){ }NttT ..1,)( == x , where each 
sample contain the hydrocarbons’ concentration data, 

represented by the vector pRt ∈)(x . The algorithm aims to 
find a fuzzy partition of the domain into a set of K  clusters 
{ }KCC K1 , where each cluster iC  is represented by its 

center’s coordinates vector p
i R∈w .  

In the fuzzy cluster analysis, each sample in the training set 
can be assigned to more that one cluster, according to a value 

))(()( ttv
iCi xµ= , that defines the membership of the sample 

)(tx  to the cluster iC . 
The FCM algorithm computes the centers’ coordinates by 

minimizing the objective function J  defined as: 
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where 1>m , generally referred as the “fuzziness parameter”, 
is a parameters to adjust the effect of membership values and 

)),(( itd wx  is the Euclidean distance from the sample )(tx  
to the cluster center iw . 

The membership of all samples to all clusters defines a 
partition matrix as:  
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The partition matrix is computed by the algorithm such 
that: 
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The FCM algorithm computes interactively the clusters 
centers coordinates from a previous estimate of the partition 
matrix as: 
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The partition matrix is updated as: 
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The FCM algorithm is described as follows: 
 
0. Set 1>m , 2≥K  and initialize the cluster centers’ 

coordinates randomly, initialize the partition matrix as 
(5). 

1. For all clusters ( )Ki ≤≤2 , update cluster centers 
coordinates as (4). 

2. For all samples ( )Nt ≤≤1  and all clusters 
( )Ki ≤≤2 , update the partition matrix as (5). 

3. Stop when the norm of the overall difference in the 
partition matrix between the current and the previous 
iteration is smaller than a given threshold ε ; 
otherwise go to step 1. 



 

 

The FCM algorithm computes clusters centers’ coordinates 
and the partition matrix from the specification of the number 
of clusters K , that must be given in advance. In practice, the 
FCM algorithm is executed to various values of K , and the 
results are evaluated by a cluster validity function, as 
described next. 

B. Cluster validity 

Many cluster validity criteria have been proposed in the 
literature in the last years ([4], [5] and [6]). Validity indexes 
aim to answer two important questions in cluster analysis: (i) 
how many clusters are actually present and (ii) how good the 
partition is. 

The main idea present in many of the validity indexes is 
based on the geometric structure of the partition, such that 
samples within the same cluster should be compact and 
different clusters should be separate. When the cluster 
analysis assigns fuzzy membership functions to the clusters, 
“fuzziness” must be taken into account in such a way that the 
less fuzzy the partition is the better it is. 

In this work, the recently proposed PBM index [6] is used 
to evaluate the number of clusters in the data set. The PBM 
index is defined as a product of three factors, of which the 
maximization ensures that the partition has a small number of 
compact clusters with large separation between at least two 
of them. Mathematically the PBM index is defined as 
follows: 
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where K  is the number of clusters; 1E  is the sum of the 
distances of each sample to the geometric center of all 
samples 0w  as: 
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KE  is the sum of within cluster distances of K  clusters, 
weighted by the corresponding membership value: 
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and KD  that represents the maximum separation of each pair 
of clusters: 
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The greater the PBM index is, the better is the cluster fuzzy 
partition. As other indexes, the PBM index is an optimizing 
index, such that it can be used to search the best number of 
clusters. The PBM index has achieved a good performance in 
several data sets [6] when compared with the Xie-Beni index 
[4]. This index is thus used as a validity index of the 
methodology presented in this work. 

IV. RULE-BASED FUZZY CLASSIFIER 

In the second step of the proposed methodology, the 
clusters generated by the FCM algorithm are used as classes 

to train a rule-based fuzzy model of the anomalies. The 
resulting fuzzy classifier is referred as geo-fuzzy classifier 
since it computes the membership to classes { }KCC K1=C , 
form the geographic coordinates vector ( ))(),()( 21 tytyt =y  
given as input. 

A. Geo-Fuzzy Classifier 

Each coordinate )(tyi  is described by a fuzzy partition 
{ }inii AA ,,1 K=A  where iijA A∈  is a fuzzy set. The 

number of fuzzy set for each coordinate is set the same to 
simplify the computations.  

Strong normalized and triangular fuzzy partitions are used 
to represent each input variable. Trapezoidal membership 
functions are used for the two fuzzy sets at each end of the 
domain, as shown in Fig. 3, to deal with off-limit points. 
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Fig. 3: Construction of the geographic fuzzy set. 

The fuzzy rule base relates input fuzzy sets to the classes, 
in rules like: 

kjjk cfwithCisclassthenBistif ϕ=)(y  (10)

The fuzzy set kB  in rule (10) represents the combination 
of the fuzzy sets in the partition of each coordinates (see Fig. 
3) and defines a geographic region. For a given input 

( ))(),()( 21 tytyt =y , all the combinations of fuzzy sets in 
each fuzzy partition must be considered in such a way that 
the model is complete, i.e. it produces an output for whatever 
input values. In Fig. 3, the combination of two fuzzy 
partitions of 5 fuzzy sets each is shown. 

Each component )()( ttu
kBk µ=  of the fuzzification vector 

)(tu  is computed as: 
....1,)),(())(()( 21 21

njitytytu
ji AAk == µµ  (11)



 

 

The confidence factor [ ]1,0∈kjϕ  in rule (10) represents the 
rule certainty. The confidence factor weight all rules in the 
fuzzy rule base. The value kjϕ  represents how much the term 

kB  is related to the class jC  in the model described by the 
rule base.  

The rule base can be represented by the matrix [ ]kjϕ=Φ , 

of which each line is related to a geographic fuzzy sets kB  
and each column is related to a class jC . 

The rule base weights are the kernel of the model described 
by the fuzzy rules (10) and its determination is computed as 
described next. 

B. Rule Base Identification 

The rule base weight are computed from a data set T ′ , 
where each sample Nt ..1=  is a pair ( ))(),( tt vy , of which 

)(ty  is the coordinates vector and ( ))()()( 1 tvtvt KK=v  is a 
row in the partition matrix (2) computed by the FCM 
algorithm. Each sample t  in the data set T ′  is related to the 
hydrocarbons’ concentration data in the sample t  of the data 
set T . 

Each rule in the rule base is a sub-model that assigns a 
class (computed in fuzzy cluster analysis) to the 
corresponding region of the domain. Each rule base weight 

kjϕ  can be seen as a measure of how frequent the class jC  

occurs in the region kB . Under this interpretation [3], the 
rule base weights are computed as: 
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where )(tuk  is the membership of the register t  to the 
geographic fuzzy set kB , computed as (11) and 

))(()( ttv
jCj xµ= , i.e. the membership of the hydrocarbons’ 

concentration data in the register t  to the cluster jC . 

C. Geo-Fuzzy Processing 

In the third and last step of the methodology, a grid of 
testing points ( ))(),()( 21 tztzt =z  is generated to create a 
map of the clusters of concentration data into the geographic 
domain. The grid is represented by a testing set 

( ){ }MttT ..1,)( ==′′ z , where M  is the number of registers 
in the grid.  

The geo-fuzzy processing aims to compute the output of 
the geo-fuzzy classifier to each point of the grid, i.e. the class 
membership vector ( )))((,)),(()(ˆ

1
ttt

KCC zzv µµ K= , where 

))(( t
jC zµ  is the output membership value of the grid 

coordinates )(tz  to the class jC .  

The fuzzification vector )(ˆ tu  is computed for every point 
in the grid. Each component of the fuzzification vector is 
computed as product of the membership of each coordinate 
value to the respective fuzzy partition: 

....1,)),(())(()(ˆ 21 21
njitztztu

ji AAk == µµ  (13)

The class membership vector is computed from the input 
membership vector )(ˆ tu  and the rule base weights matrix Φ . 
Using the sum-product composition operator for the fuzzy 
inference, the class membership vector )(ˆ tv  can be 
computed as a standard vector matrix product as: 

Φ= ).(ˆ)(ˆ tt uv  (14)
The number fuzzy sets as so as the number of points in the 

grid controls the accuracy of the map generated. 

V. RESULTS AND DISCUSSION 

This section presents the results of the application of the 
proposed methodology to a real data set composed of 

350=N  samples containing headspace concentration of 
8=p  hydrocarbons (C1 to C6+) and their respective UTM 

coordinates. The data set was collected in a sub Andean 
basin. 

A. FCM Cluster Analysis 

The FCM cluster analysis was performed with the PBM 
validation index to determine optimal the number of clusters 
in the data. As it can be seen in Table 1, for many values of 
the fuzzy parameter m  the validity index always indicates 4 
clusters in the data set. Thus, the classification was 
performed considering four classes. 

Table 1: Determination of the number of clusters. 

2.1=m  4.1=m  6.1=m  8.1=m  0.2=m  
0.3508 
0.3078 
0.6428 
0.5301 
0.4245 
0.4627 
0.3870 
0.3588 
0.3191 

0.3415 
0.2912 
0.5850 
0.4787 
0.3948 
0.3227 
0.3409 
0.3229 
0.2850 

0.3234 
0.2633 
0.5013 
0.4044 
0.3893 
0.3468 
0.3074 
0.2643 
0.2485 

0.2958 
0.2299 
0.3983 
0.3239 
0.2650 
0.2782 
0.2542 
0.2306 
0.2024 

0.2606 
0.1957 
0.2778 
0.2406 
0.2298 
0.2111 
0.2219 
0.1867 
0.1605 

 
The results shown in Table 1 show that for greater values 

of the parameter m , the PBM index is lower, since the 
partition is more “fuzzy”. The fuzzy partitions allow that a 
register be assigned to more than one class allowing gradual 
transitions between clusters. The geo-fuzzy classifier was 
thus adapted to classify the clusters generated with 2.1=m . 

B. Classification results 

The geo-fuzzy classifier was computed from the results of 
cluster analysis to map each cluster into the geographic 
domain. For this application, the rule base was generated 



 

 

using 10=n  fuzzy sets to each coordinate, resulting in 100 
rules like (10) and a grid of 62500 )250250( ×  points 
regularly spaced within the domain.  

The results are shown in Fig. 4 to Fig. 7, where class 
membership is represented by a degree of colors: the green 
(light gray in the B&W printing) represents null (0.0) 
membership and the red (dark gray) represents full (1.0) 
membership.  

The figures also show the location of the registers. As it 
can be seen, for the regions that are not covered by any point, 
the membership to all classes is always zero. 
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Fig. 4: Map of the cluster 1. 
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Fig. 5: Map of the cluster 2. 

Cluster 3

7.7 7.8 7.9 8 8.1 8.2 8.3

x 105

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5
x 105

 
Fig. 6: Map of the cluster 3. 
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Fig. 7: Map of the cluster 4. 

The interpretation of each cluster can be done from their 
centers’ coordinates, shown in Table 2. The columns of Table 
2 indicate the hydrocarbons’ concentrations (C1 to C6+) that 
were used in the cluster analysis expressed in ppm (parts per 
million) units. 

Cluster 1, of which the map is shown in Fig. 4, presents the 
higher concentrations for all gases (from C1 to C6+), 
supporting the interpretation of a subsurface source for these 
hydrocarbons (e.g. a oil and gas field). 

 
 

Table 2: Hydrocarbon concentrations on clusters’ centers, expressed in ppm units. 

 
Methane 

(C1) Ethane (C2) 
Propane 

(C3) 
i-Butane 

(iC4) 
n-Butane 

(nC4) 
i-Pentane 

(iC5) 
n-Pentane 

(nC5) 
Hexane + 

(C6+) 
Cluster 1 651.3375 91.9572 34.7065 2.7693 11.9485 3.4243 5.3249 2.9407 
Cluster 2 97.6568 9.9916 3.5075 0.0156 1.2170 0.0784 0.7412 0.3487 
Cluster 3 159.4038 25.1123 10.6860 1.0798 3.7594 1.1578 1.7204 0.9486 
Cluster 4 1077.8756 9.5655 3.7722 0.1427 1.2930 0.3128 0.7485 0.3062 
 



 

 

Cluster 2, shown in Fig. 5, is the most common 
concentration of the samples with lower concentrations of 
hydrocarbons, indicating the absence of significant sources in 
subsurface or the existence of permeability barriers between 
the sources and the surface. 

Cluster 3 represents intermediary concentrations between 
cluster 1 and 2. Finally, cluster 4 concentrations are almost 
similar to cluster 2, presenting only outliers values for 
variable C1, indicating a possible contribution of biogenic 
gases generated by the degradation of organic matter in the 
soil. 

The samples can be grouped according to their higher 
membership values. The absolute and relative number of 
samples grouped in each cluster is shown in Table 3. 

Table 3: Number of samples of each cluster. 

 Number Relative 
Cluster 1 21 6.00% 
Cluster 2 242 69.14% 
Cluster 3 59 16.86% 
Cluster 4 28 8.00% 

 
Results in Table 3 are similar to the area of higher 

membership regions in Fig. 4 to Fig. 7. Cluster 2 is the most 
common cluster, grouping 69.14% of data, while clusters 1 
and 4 are the ones which regroup the least number of samples.  

These results may be an indication of an anomaly region in 
cluster 1, but they must further confirmed by a detailed 
geologic studies. 

VI. CONCLUSIONS 

This work presented a fuzzy geo-processing methodology 
to map surface geochemistry similar data. In the first step, the 
groups of similar geochemistry data are computed by a fuzzy 
cluster analysis with the FCM algorithm. Geochemistry data 
are presented by headspace hydrocarbon concentration, 
without their respective coordinates. 

In the second step, a fuzzy classifier is then used to map the 
clusters into the geographic coordinates. The inputs to the 
fuzzy classifier are the UTM coordinates of the geochemical 
registers; the outputs are the clusters recognized by the cluster 
analysis. The rule base computed by the learning algorithms 
represents a model of the anomalies location. 

The results of the methodology have allowed a better 
definition of anomalous areas, taking into account all the 
geochemical parameters in an integrated way (instead of 
considering concentrations of each gas independently), 
providing an encouraging alternative to standard geo statistic 
techniques. 

The extension of this work is in the direction of the 
integration of other fuzzy cluster analysis algorithms as so as 
the comparison of the results with standard geo statistics 
techniques. 
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