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Abstract—In petroleum databases one usually has to deal with
problems like noise, high variance, unbalanced classes, missing
values, small or large number of cases, ambiguity or inconsisten-
cies, irrelevant and/or redundant features, etc. In consequence,
when the data are analyzed by means of data mining, machine
learning or soft computing techniques oriented to classification, it
is often the case that we must confront a discretization or a feature
selection process, or both. In this work we analyze two efficient
algorithms, one to discretize and the other to select a subset of rel-
evant features. The same criterion in the induction process is used,
both to discretize and to select the relevant features, and thesetwo
steps are performed in this particular order. The results obtained
(as measured by means of C4.5 error) suggest that this may be a
good way of tackling these important problems.

Index Terms—Petroleum Data Sets, Feature Selection, Dis-
cretization.

I. I NTRODUCTION

In the last decades, new petroleum processes have generated
large quantity of data with the objective of capturing specific and
more detailed behaviors. In this vein, methods as data mining, ma-
chine learning or soft computing are joining their efforts together
to traditional techniques (e.g. statistics) to analyze this big quan-
tity of data [9]. Petroleum datasets are themselves very interesting
to analyze due to the large quantity of problems that are present:
interpolation errors, noise, constant human manipulation, high
variance, unbalanced classes, uncertainty, vagueness, missing val-
ues, small number of cases, ambiguity, irrelevant and/or redun-
dant data, as well as characteristics related to economic, political
and environmental aspects that are also important to be consid-
ered.

When the data are analyzed by means of data mining, machine
learning or soft computing techniques oriented to classification, it
is often the case that we must confront a discretization or a feature
selection process, or both. In the real world most of the datasets
are composed by continuous data with some irrelevant and/or re-
dundant features. Many of the classification algorithms (inducers)
require discretized data to work, also is recommended to do some
feature selection process to take some advantages [4]. One of the
most important reasons to use soft computing or symbolic tech-
niques in the petroleum industry is economic. These techniques
can be used to simulate or understand chemical or geophysical
processes, obtain knowledge, explanations of cases, simulations,
pattern recognition analysis, etc. Certainly the economical cost
can be reduced and the results can improve the petroleum pro-
cesses. In the petroleum industry, we can observe several strate-
gic activities: Exploration, Drilling, Exploitation, Refining, Petro-
chemical Transformation, Storage, and Transportation [10]. Each
stage is composed of several and complex processes. When we talk

about petroleum datasets, we refer to the data acquisition gener-
ated in some part of a petroleum process. In this work only exam-
ples in exploration, drilling and exploitation were used due to the
facility of the information access and the available expert knowl-
edge.

Our proposal is focused on datasets where supervised
paradigms are applied. The main contribution is to combine two
effective algorithms, one to discretize and other to select relevant
features. In both cases, the criterion used by a classifier in the in-
duction process is also used to discretize and to select relevant fea-
tures. We successfully tried to improve the performance, at least
in the petroleum domain, over existing discretization and feature
selection algorithms. This work examines the main components
that are considered in these processes, and is organized as follows:
in the next two sections, we briefly review the discretization and
feature selection processes. Next, we describe the used petroleum
datasets and the experimental set up. Finally, we describe the ex-
periments performed and discuss the results.

II. D ISCRETIZATION

Discretizationis the process of converting continuously valued
data into discrete data by assigning ranges of real values (estab-
lished bycut–points) to an ordered set of discrete labels. The choice
of these intervals is a critical issue as too many intervals impair the
comprehensibility of the models and too few hide important fea-
tures of the variable distribution. Most often the user must specify
the number of intervals, or provide some heuristic rule to be used.
The discretization of the target variable values provides a different
granularity of predictions that can be considered more compre-
hensible. Discretization should significantly reduce the number of
possible values of the continuous attribute since large number of
possible attribute values contributes to slow and ineffective process
of inductive machine learning [3].

Discretization algorithms can be divided into two categories:
• Unsupervised algorithmsthat discretize attributes without

taking into account respective class labels. The represen-
tative algorithms are equal–width and equal–frequency dis-
cretizations.

• Supervised algorithmsdiscretize attributes by taking into ac-
count the class-attribute interdependence.

The method proposed in this work concerns automatically find-
ing the optimal number and width of these intervals by means of
Evolutionary Strategies [1]. The basic idea is to generate pop-
ulations of cut points and intervals that are evaluated by a fit-
ness function, which uses the same classification algorithm. In the
present case, the fitness function selected is the error of the C4.5
criterion. This criterion is used in the C4.5 algorithm for build-
ing decision trees, and it is based on the notion ofinformation gain
[12].



III. F EATURE SELECTION

The most important feature selection problem in terms of su-
pervised inductive learning is: given a set of candidate features
select a subset defined by one of three approaches: a) the sub-
set with a specified size that optimizes an evaluation measure, b)
the subset of smaller size that satisfies a certain restriction on the
evaluation measure and c) the subset with the best commitment
among its size and the value of its evaluation measure (general
case). The generic purpose pursued is the improvement of the in-
ductive learner, either in terms of learning speed, generalization
capacity or simplicity of the representation. It is then possible to
understand better the results obtained by the inducer, diminish its
capability of storage, reduce the noise generated by irrelevant or
redundant features and eliminate useless knowledge.

A Feature Selection Algorithm (FSA) is a computational solu-
tion that is motivated by a certain definition of relevance. How-
ever, the relevance of a feature –as seen from the inductive learn-
ing perspective– may have several definitions depending on the ob-
jective that is looked for. An irrelevant feature is not useful for
induction, but not all relevant features are necessarily useful for
induction [2].

The FSAs can be classified according to the kind of output they
yield:

• Those algorithms giving a (weighed) linear order of features.
• Those algorithms giving asubsetof the original features.
Both types can be seen in an unified way by noting that insubset

the weighting is binary.
In the present paper, the proposal presented is centered in FSAs

tackling the feature selection problem of typesubset. We use a
Sequential Floating Feature Selection (SFFS) [11], with a modified
stopping criterion (see below).

IV. PETROLEUM DATASETS USED

The experiments are composed by eight different petroleum
datasets in order to analyze the role of discretization and feature
selection. Representative datasets of each process were selected to
show some common problems in these analysis. For all datasets,
the names of the attributes have been changed to protect the in-
formation, however, an explanation of each problem domain will
be given. The datasets structure is commonly well–known by the
experts. See Table I for numerical details.

A. Pollution (POLL)

Some times, near the well’s neighborhood, a determinate area is
established to deposit pollution waste. The objective of this process
is to detect different pollution chemical elements in a specific zone
in various levels. The zone is delimited by thirteen sample points
that detect pollutants to four levels of ground. The zone was sam-
pled during three years in intervals of six months each. The class
attribute shows the pollution rate and is called Total Petroleum
Hydrocarbons (TPH). It is here divided in low, low–medium, high–
medium and high pollution.

B. Remediation (RMD)

An experiment was made to determine contamination levels us-
ing remediation method of placing straw and bacteria as main
component. The objective is to determine up to where the bac-
teria influence the hydrocarbon degradation. Four bathtubs with
polluting agents were covered by blankets to observe their lev-
els of degradation of contamination through time. The bath-
tubs were sampled during six months in intervals of one month.
The class–attribute shows the pollution rate and is called Total
Petroleum Hydrocarbons (TPH). It was divided in low–medium,
high–medium and high pollution.

C. Well Logs (WL)
Petrophysical properties can be obtained from logging instru-

ments that are lowered in the wells and by core analysis on reser-
voir rock material that is obtained from the well with a hollow
drill bit. Permeability is a critical petrophysical variable for both
petroleum geology and petroleum engineering. The experiment is
composed by six well logs obtained from Smackover Formation in
Big Escambia Creek field, Alabama, USA. Only the porosity and
spatial information were used to describe permeability. The class
was divided in poor, medium–low, medium–high, and high.

D. Lithofacies (LF)
In the reservoir characterization and reservoir simulation, the

facies properties that are most important are the petrophysical
characteristics that control the fluid behavior in the facies. The
lithofacie resumes the main mineralogic properties (texture, min-
eralogy, grain size, and the depositional environment that pro-
duced it) of the rock. The lithofacies are facies characterized by
the distribution of mineral grains and sedimentary rock types.
Several models have been used to estimate lithofacies from geo-
physical data, well logs and other defined curves. In this domain 4
datasets were considered. The lithofacies (class label) were deter-
mined by experts.

E. Pressure–Vapor-Temperature (PVT)
The term PVT stands for the relation between Pressure–Vapor–

Temperature. This dataset is constituted by seventeen chemical
compounds formed mainly by H, He, B, C, N, O, Ne, S, and Cl.
One record consists of the number of molecules of each chemi-
cal element that composed the compound, two constantsa and b,
molecular mass, boil temperature. The classes were divided in low,
low–medium, high–medium and high critical temperature.

TABLE I
CHARACTERISTICS OF PETROLEUM DATASETS USED IN THE EXPERIMENTS

(cont/nom= NUMBER OF CONTINUOUS/NOMINAL FEATURES, Maj. Class=

MAJORITY CLASS).

Attribute Type Missing Maj.
Dataset cont nom Class values Cases Class

POLL 61 4 4 49.3% 192 52.5%
RMD 11 3 3 11.9% 280 40.0%
WL 4 2 4 0.0% 981 48.9%
LF-2 22 1 10 0.0% 3050 52.6%
LF-5 25 1 5 0.0% 2335 50.6%
LF-23 21 1 4 0.0% 1282 49.9%
LF-25 25 1 7 0.0% 1931 55.6%
PVT 4 18 4 0.0% 355 34.0%

V. EXPERIMENTAL SETUP

Due to confidentiality of the information, some modifications
were done to the datasets. The attribute names were changed to
A1, . . . , An and the class names to0, 1, 2, . . . , n, where 0 means
the lower value andn the higher value. The missing values were
substituted by “?”, in order to be treated as any other value (see
below).

An important decision is that there exist two ways of setting up
the involved experiments: 1) first discretize and then select rele-
vant attributes or, 2) first select relevant attributes and then dis-
cretize them. We choose the first case, because it has some advan-
tages: there is an evident loss of information when the discretiza-
tion is made (e.g. originally different values are now consider as
equal). When a posterior feature selection process is realized, this
loss of information is then taken into account. Should we first se-
lect features, the posterior discretization process could alter the



relations between attributes. On the other hand, some feature se-
lection algorithms that work effectively on discrete data can be
used [8].

Our proposal considers the use of two tools: an evolution strate-
gies discretization algorithm [13], using C4.5 error as fitness func-
tion (ES–C4.5) and the sequential floating feature selection (SFFS–
C4.5) [11] (also using C4.5 error as the criterion to select subsets
of relevant features).

In each selection step, SFFS performs a forward step followed
by a variable number (possibly null) of backward ones. In essence,
a feature is first unconditionally added and then features are re-
moved as long as the generated subsets are the best among their
respective size. The algorithm is so-called because it has the char-
acteristic of floating around a potentially good solution of the spec-
ified size. The original stopping condition of the algorithm needs
the setting of a desired number of features. Since this number
is unknown a priori, we modified it so that the algorithm stops
whenever a number of consecutive floating steps do not yield an
improvement. For the present experiments, this number is set to
three, based on preliminary experimentation.

VI. EXPERIMENTS AND DISCUSSION

To realize the evaluations, we use theJ48 algorithm, a java ver-
sion of the original C4.5 release 48 by means of the the Weka tool
[14].

A. Experiments on discretization
To establish the same criterions to evaluate the results, the first

step was discretize the whole dataset and afterwards, we evalu-
ated, by means of C4.5 error, the discretized datasets using 5–fold
cross–validation and using training set as test set.

We discretize in four forms: i) using the discretization made for
the C4.5 algorithm, ii) simultaneous discretization using evolution
strategies (ES–C4.5),iii) MDLP [5] and, iv) ChiMerge [6].

ChiMerge method is based on the statisticalχ2 approach for
supervised discretization. The algorithm begins by placing each
numeric value into its own class and merge them according to aχ2

test applied to neighboring classes. The hypothesis tested is that
two adjacent classes are independent, which is based on the com-
parison between the expected and observed frequencies of values
found in the corresponding classes. The merging procedure is ap-
plied until a χ2-threshold is reached. The significance level was set
to 0.9.

The Minimum Description Length Principle (MDLP) is based
on a recursive entropy minimization heuristic for controlling the
generation of decision trees. For evaluating each cut point, the
data are discretized in two intervals and the resulting class infor-
mation entropy is calculated. A coding scheme is defined which
enables the comparison of information gains obtained with dif-
ferent cut points of the studied attribute, in terms of their codi-
fied lengths. Then, they are accepted or rejected according to the
MDLP criterion.

For the missing values treatment, in MDLP and ChiMerge case,
if a numerical attribute has missing values, an additional category
was created for them, and the above discretization procedure is ap-
plied just to the instances for which the attribute’s value is defined,
in other words, the calculation would simply omit this attribute
[14].

For all experiments, the ES–C4.5’s parameters were the same.
Based in previous experiments, we use the next value parame-
ters to evolution strategies algorithm: Initial σ = (0.001,0.1), Total
number of generations = 40, Desired Fitness = 0, Initial children
µ = 150, Initial parents λ = 350, Criterion to generate populations
= (µ,λ), Criterion to initialize the generations = λ–Random. For
more detail of these parameters see [13]

The results obtained can be seen in Table II. In general terms,
ES–C4.5 gave satisfactory results for nearly all datasets. The most
important results were obtained in Pollution (POLL), Well Logs

TABLE II
CLASSIFICATION ERRORS OBTAINED WITH SOME DISCRETIZATION

ALGORITHMS APPLIED TOC4.5 (5–CV= 5–FOLD CROSS–VALIDATION .

Train = REPRESENTS TO USE THE TRAINING SET AS TEST SET. Arity =

MEAN NUMBER OF CATEGORIES PER ATTRIBUTE).

Data Disc. C4.5 Arity
Set Method 5-CV Train

C4.5 30.16 12.29
POLL MDLP 32.40 21.78 1.46

ChiMerge 32.96 22.34 1.56
ES-C4.5 24.02 10.61 1.36

C4.5 11.42 6.42
RMD MDLP 14.28 12.85 3.71

ChiMerge 14.64 7.14 7.14
ES-C4.5 11.42 5.00 2.71

C4.5 1.60 0.06
LF-2 MDLP 2.19 1.40 6.56

ChiMerge 2.26 1.37 6.65
ES-C4.5 15.54 6.54 2.00

C4.5 1.75 0.04
LF-5 MDLP 1.54 0.68 7.80

ChiMerge 1.71 0.94 6.50
ES-C4.5 1.11 0.17 1.80

C4.5 2.34 0.54
LF-23 MDLP 2.65 1.40 5.00

ChiMerge 2.34 1.01 5.90
ES-C4.5 1.32 0.31 1.77

C4.5 1.91 0.20
LF-25 MDLP 2.22 1.24 6.92

ChiMerge 1.60 1.08 6.50
ES-C4.5 0.93 0.36 1.76

C4.5 15.47 8.24
WL MDLP 13.74 13.23 6.25

ChiMerge 16.80 14.56 5.5
ES-C4.5 10.89 8.85 4.5

C4.5 12.11 7.60
PVT MDLP 8.45 8.45 2.75

ChiMerge 9.85 5.07 4.00
ES-C4.5 7.04 4.78 2.50

(WL) and Pressure–Vapor–Temperature (PVT). For the case of
LF-2, the only one with worse performance, in a subsequent ex-
periment we increased the number of generations until 200. The
new error was reduced from 6.54 % to 0.45% for the train set and
from 15.54% to 1.11% for 5-CV.

The results thus show that ES–C4.5 is very effective, robust, and
capable of outperforming classical discretization techniques in the
data mining, soft computing or machine learning fields. Moreover,
this increased performance is obtained with discretizations having
a much smaller number of categories/attribute (arity), therefore,
with much simpler models. This is crucial when the results are
interpreted by human experts (humans have difficulty handling
more than 7-9 categories simultaneously).

B. Experiments on Feature Selection
For the Feature Selection experiments, we tried to select a sub-

set with the more relevant features in each data set. We use as
reference the error given for ES-C4.5. Afterwards, we compare
the well–known Relief algorithm [7] versus our modified version
of (SFFS) [11].

Briefly, Relief chooses randomly an instanceA and determines
its near hit and its near missin relation to S. The former is the
closest instance toA among all the instances in the same class of



TABLE III
CLASSIFICATION ERRORS OBTAINED WITHRELIEF AND SFFS-C4.5APPLIED TO THEC4.5ALGORITHM (OF = ORIGINAL FEATURES. FS Method=

FEATURE SELECTION METHOD USED. /FS= FEATURESSELECTED). THE NUMBER AFTER AN SLASH IS THE ARITY USED.

Data OF FS 5-CV Train
Set Method ChiMerge MDLP ES-C4.5 ChiMerge/FS MDLP/FS ES-C4.5/FS

C4.5 32.96 32.40 24.02 22.34 21.78 10.61
POLL 65 Relief 33.85 32.40 24.02 24.47 21.78 10.61

SFFS-C4.5 30.72 29.60 24.02 13.96/31 14.50/57 10.61/60
C4.5 13.92 14.28 8.57 7.14 12.85 3.92

RMD 14 Relief 13.57 13.57 8.57 7.85 11.42 3.92
SFFS-C4.5 13.57 12.50 8.57 7.14/4 10.35/5 3.92/8

C4.5 2.26 2.19 1.11 1.37 1.40 0.45
LF-2 23 Relief 2.55 2.42 1.11 1.47 1.31 0.45

SFFS-C4.5 2.22 2.81 1.11 1.37/18 1.04/18 0.45/18
C4.5 1.71 1.54 1.11 0.94 0.68 0.17

LF-5 26 Relief 1.71 1.51 1.11 0.94 0.64 0.17
SFFS-C4.5 1.84 1.49 1.02 0.72/21 0.68/21 0.51/21

C4.5 2.34 2.65 1.32 1.01 1.40 0.31
LF-23 22 Relief 8.04 2.65 1.32 5.73 1.40 0.31

SFFS-C4.5 3.27 2.26 2.65 2.80/5 0.78/22 0.31/17
C4.5 1.60 2.22 0.93 1.08 1.24 0.36

LF-25 26 Relief 1.60 2.22 1.55 1.08 1.03 0.88
SFFS-C4.5 1.60 1.86 0.93 0.82/21 0.93/21 0.36/21

C4.5 16.80 13.74 10.89 14.56 13.23 8.85
WL 6 Relief 16.70 13.84 10.89 14.76 13.23 8.85

SFFS-C4.5 16.59 13.84 10.89 14.35/4 13.23/3 8.85/5
C4.5 9.85 8.45 7.04 5.07 8.45 4.78

PVT 22 Relief 9.85 8.45 7.04 5.07 8.45 4.78
SFFS-C4.5 9.29 8.73 7.04 5.63/17 8.45/16 4.78/17

A. The latter is the closest instance toA among all the instances
in a different class. The importance (relevance) of each feature
is then incremented (decremented) proportionally to its ability to
separateA from its near miss (near hit).

Due to the fact that Relief gives results in a weighed form and
SFFS in binary form, we first obtained the optimal feature subset
sizek as established for SFFS, and then we select the firstk fea-
tures in the order given by Relief. The results are shown in Table
III.

Most of the times, the results given by Relief and SFFS–C4.5
were quite similar. Nevertheless, for LF-5 Relief archived better
outcome and for LF-25, SFFS-C4.5 algorithm obtained the best
results. For the others databases the results given by both algo-
rithms were exactly the same. This is pretty interesting, given that
one of the most important problems of feature selection algorithms
is to choose the number of attributes. In the same way, an impor-
tant advantage of those algorithms is that they provide rankings
of features which help us to identify the contributions of each ones
over the dataset.

Finally, we would like to mention that during these experiments
we observed that the final errors given by ES–C4.5 and SFFS–C4.5
were, most of the times, better than those archived by C4.5 in its
original version in the same situations. In average, the model was
reduced in 78.2%.

VII. C ONCLUSIONS

When petroleum data are analyzed by means of data mining,
machine learning or soft computing techniques oriented to classi-
fication, it is often the case that we must confront a discretization
or a feature selection process, or both.

In this paper, we proposed a method to discretize and to select
a subset of relevant features. The main contribution is to use the
same criterion applied in the induction process to discretize and
to select the relevant features. The results obtained (as measured

by means of C4.5 error) suggest that this may be a better way of
tackling these important problems. We suggest that applying dis-
cretization and afterwards feature selection, give us better results
that the opposed sequence. It has some advantages: there is a
loss of information when the discretization is made (e.g. different
values are consider as the same class). When a posterior feature
selection process is realized, this loss of information is taken into
account.

When continuous feature selection algorithms are used, some-
times it is difficult to choose the number of features to be selected.
In this way, previous discretization can help us to have a bias about
this selection. Briefly, when some discretized attribute contains
only one value, it can be considered as irrelevant [13]. In the same
way, we observed that Relief (weighing) and SFFS–C4.5 (subset)
can give us interesting advantages. When both algorithms are
used, SFFS–C4.5 helps us to choose the number of attributes that
better suits Relief and Relief lets us to know the contribution of
each feature over the data set.

For comparison purposes, in the experiments carried out
through this work, we have applied the same parameters and con-
figuration to all data sets and algorithms; however, when carrying
out further experiments we found out that if we personalize the
parameters the results given by ES–C4.5 can be pretty improved.

Finally, we would like to mention that during these experiments
we observed that the final errors given by ES–C4.5 and SFFS–C4.5
were, most of the times, better than those achieved by C4.5 alone
in its in the same situations.
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