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Abstract – In this paper, two types of fuzzy set model for 
ambiguous comparative judgment which does not always 
hold transitivity and comparability properties were 
proposed. The first type of the model is a fuzzy theoretic 
extension of the additive difference model for preference 
for explaining ambiguous preference strength. The second 
type of the model is a fuzzy logistic model for explaining 
ambiguous preference in which preference strength is 
bounded such as probability measure. In both the models,  
multi-attribute weighting parameters and all attribute 
values are assumed to be asymmetric fuzzy L-R numbers. 
For each model, the parameter estimation method using 
the fuzzy regression analysis was proposed. Numerical 
examples for comparative judgments were also 
demonstrated. Lastly, theoretical and practical 
implications for the proposed models were discussed. 
 
  I. INTRODUCTION 
  There are two types of human judgment procedures. One  
is referred to as absolute judgment in which an evaluator is 
asked attractiveness of the object for evaluation (e.g., “How 
much do you like this brand on a 0-100 scale”). The other 
procedure is referred to as comparative judgment in which an 
evaluator is asked which alternative is preferred (e.g., “ Do 
you prefer Brand A to Brand B ?” or “How do you estimate a 
probability of choosing Brand A over Brand  B when you 
compare Brand A with Brand B ? ”). 
  The aim of this paper is to establish a model of ambiguous 
comparative judgment and to provide the data analysis 
method for the model. Comparative judgments in social 
situations often involves ambiguity concerning the confidence. 
People may not be able to make judgments without 
representing some confidence intervals. In order to measure 
the ambiguity (or vagueness) of human judgment, the fuzzy 
rating method has been proposed and developed [1]. In the 
fuzzy rating method, respondents select a representative rating 
point on a scale and indicate lower or upper rating points if 
they wish depending upon the relative ambiguity of their 

judgment.  For example,  the fuzzy rating method would be 
useful for measuring perceived temperature  indicating the 
representative value and the lower or upper values. This rating 
scale allows for asymmetries, and overcomes the problem, 
identified by Smithson[2], of researchers arbitrarily deciding 
the most representative value from a range of scores. By 
making certain simplifying assumptions (not uncommon 
within fuzzy set theory), the rating can be viewed as a L-R 
fuzzy number, hence making possible the use of fuzzy set 
theoretic operations [1,3].  
  In this study, fuzzy set models which explains ambiguous 
comparative judgment are proposed. Since ambiguous 
comparative judgment may not always hold transitivity and 
comparability properties, parameters due to biased responses 
which may not hold transitivity and comparability properties 
were assumed in the proposed model.  The author proposes 
two types of the fuzzy set model for ambiguous comparative 
judgment. The first type of the model is a fuzzy theoretic 
extension of the additive difference model for preference for 
explaining ambiguous preference strength which does not 
always assume boundaries of a judgment scale such as a 
WTP measure (Measure for Willing To Pay). The second 
type of the model is a fuzzy logistic model of the additive 
difference preference for explaining ambiguous preference in 
which preference strength is bounded such as probability 
measure (e.g., a certain interval within a bounded interval 
from 0% to 100%). Since judgment of a bounded scale such 
as probability judgment causes a methodological problem 
when the fuzzy linear regression method is used, the fuzzy 
logistic function is proposed to prevent the problem.  In 
both the models, multi-attribute weighting parameters and all 
attribute values are assumed to be asymmetric fuzzy L-R 
numbers. For each model, the parameter estimation method 
using the fuzzy regression analysis was proposed. That is, the 
fuzzy linear regression model using the least square method 
[4,5] is proposed for the analysis of  the former model, and 
the fuzzy logistic regression model[6] is proposed for the 
analysis of the latter model. Numerical illustrations of 



 

psychological experiments are provided for examining both 
types of the models and the analyses. 
  

  Ⅱ．MODEL OF AMBIGUOUS COMPARATIVE 

JUDGMENT 
A. Definition 1  Set of Multidimensional Alternatives: 
  Let X =  X1 × X2 × …. × X ｎ  be  a finite set of 
multidimensional alternatives with elements of the form  
Xj = (Xj1, Xj2,…,Xjn), Xk = (Xk1, Xk2,…,Xkn),…, Xo= (Xo1, 
Xo2,,…,Xom) where Xjm (l=1,..,o; m=1,..,n) is the value of 
alternative Xj on dimension m.   Note that the components 
of Xj may be ambiguous linguistic variable rather than crisp 
numbers. 
B. Definition 2  Classic Preference Relation: 
  Let f  be a binary relation on X , i.e., f  is a subset of  
X×X.  
  The relational structure < X, f  > is a weak order if and 
only if for all Xj, Xk, Xl, the following two axioms are 
satisfied. 
 1). Connectedness (Comparability): Xj,f Xk  or  Xkf Xj, 
 2). Transitivity: If Xj, f  Xk and Xk f Xl, then Xj, f  Xl. 

However, the weak order relation is not always assumed in 
this paper. That is, transitivity or connectedness may be 
violated in the preference relations. 
C. Definition 3  Fuzzy Preference Relation: 
 Since a classical preference relation  f  is a subset of  X
×X, f  is a classical set often viewed as a characteristic 
function c from X×X  to {0,1} such that  

  c(Xj f Xk) =   　　　
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 (Note. “iff” is short for “if and only if”). {0,1} is called 
valuation set.  If the valuation set is allowed to be real 
interval [0,1], f  is called a fuzzy preference relation. That 
is, the membership functionμf is defined as 
 μf：X×X  → [0,1]. 
D. Definition 4   Ambiguous Preference Relation: 
  Ambiguous preference relations are defined as a fuzzy set 
of X×X ×S, where S  is subset of one dimensional real 
number space . S is interpreted as domain of preference 
strength. S may be bounded, for example, S= [0,1]. The 
membership functionμa is defined as: 
  μa：X×X ×S → [0,1]. 
  Ambiguous preference relation is interpreted as a fuzzified 
version  for a classical characteristic function  c(Xj f Xk). 
Therefre, ambiguous preference relation for Xj f Xk  
is represented as a fuzzy set v(Xj f Xk). For simplicity, 

v(Xj f Xk) will be assumed as an asymmetrical L-R fuzzy 
number (See Figure 1). 

μa(Xj f Xk,) 

 １           Ambiguous preference relation    

                            as fuzzy set : v(Xj f Xk) 

 

       

  0 

        Preference strength   s ∈ S  

  Figure 1 An example of ambiguous preference relation  

 

E. Additive Difference Model of Ambiguous Comparative 
Judgment 
  Ambiguous preference relation v(Xj f Xk)  for Xj f Xk  is 
represented as the following additive difference model using 
L-R fuzzy number. 
  v(Xj f Xk)＝ 

)()( 1110 kmjmjkmkjjkjk XXAXXAA −⊗++−⊗+ K       ….(1) 

where ⊗ ,＋, and － is  product , additive, and difference 
operation based on the extension principle for fuzzy set, 
respectively . 

  A parameter 0jkA  involves a response bias due to 

presentation-order , context effects and a scale parameter of a 

dependent variable.  The parameter 0jkA would be larger 

than 0kjA if Xj is more salient than Xk.   This model can be 

reduced to Fuzzy Utility Difference Model [7 ] if multi- 
attribute weighting parameters are assumed to be crisp 
numbers,  and  to Additive Difference Model [8]  if  
multi-attribute weighting parameters and values of 
multi-attributes are assumed to be crisp numbers. 
F. Logistic Model of Ambiguous Comparative Judgment 
  Let an ambiguous preference relation which is bounded 
(e.g., fuzzy probability in [0,1])  be p(Xj f Xk)  for Xj f Xk. 

 p(Xj f Xk)  is represented as the following logistic  model 
using L-R fuzzy number. 
   Log ( p(Xj f Xk) Θ（１ －p(Xj f Xk)）＝ 

)()( 1110 kmjmjkmkjjkjk XXAXXAA −⊗++−⊗+ K         (2) 

where Log,Θ , ⊗ ,＋ , and －  is  logarithmic, division, 
product , additive, and difference operation based on the 
extension principle for fuzzy set, respectively . 
G. Explaining Non-Comparability and Intransitivity 
  Non comparability and intransitivity properties are 



 

explained if a threshold of comparative judgment is assumed 
and necessity measure of fuzzy comparative relation since 
the existence of threshold indicates intransitivity and a 
necessity measure for fuzzy relation does not always lead 
comparability.  That is,  
  Xj

f Xk   iff  Nes ( v(Xj
f Xk) ＞ θ )      …(3). 

  or   
 Xj

f Xk   iff   

  Nes ( p(Xj f Xk) Θ（１ －p(Xj f Xk)）＞Pθ )  …(4).  
where Nes (.) is a necessity measure, and θ,Pθ is 

threshold parameter for the additive difference model and 
the logistic regression model, respectively.  
  Assuming the above relation of (3) or (4), it is clear that 
intransitivity and non- comparability hold in the comparative 
judgment. 
  

 Ⅲ．FUZZY DATA ANALYSIS FOR THE AMBI- 

GUOUS COMPARARIVE JUDGMENT MODEL 
A. Analysis of the Additive Difference Type Model 
 A set of fuzzy input-output data for  i-th observation is 
defined by: 

( );21;210 ,,,,,,,; mikkiikmijjiijijkijk XXXXXXXY KK …(5).  

where Yijk indicates ambiguous preference represented by 
fuzzy L-R number, and Xijk  is  Xjk  for observation i.  
  Let  Xijk.  be   Xij. － Xik  , where -  is 

difference operator based on the fuzzy extension principle,  

and  denote  Xi.  for abbreviation of  Xijk. in the following 
section.  
 Therefore a set of fuzzy input-output data for i-th observation 
is re-written by: 

 ( )miiiii XXXXY ,,,,; 210 K , ni ,,2,1 L=     ………… (6). 

where  Yi is a fuzzy dependent variable, and  Xim is a fuzzy 
independent variable represented by L-R fuzzy numbers. For 
simplicity, we assume that Yi and Xim are positive for any 
membership value, α∈(0,1). 

The fuzzy linear regression model (where both input and 
output data are fuzzy numbers) is represented as follows: 

 

mimii XAXAAY ⊗++⊗+= K110          ……..(7). 
 

where 10 =iX ,  jA ( )mj ,,1,0 L=  is fuzzy regression 

parameter represented by L-R fuzzy number, and ⊗ is the 
product operator based on the extension principle. 

   It should be noted that although the explicit form of the 

membership function of  iY  can not be directly obtained, 

the  α-level set of  iY  can be obtained from the result of 
Nguyen’s theorem[9]. 

Let ( )
L
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In above equation (9), ( ) ( )
L
ij

L
j xa αα  is a product between 

lower value of  α-level fuzzy coefficient for j -th  

attribute and α-level set of fuzzy input data Xij.  ( ) ( )
R
ij

L
j xa αα , 

( ) ( )
L
ij

R
j xa αα  or ( ) ( )

R
ij

R
j xa αα  is defined in the same manner 

respectively. 
 To define the dissimilarity between a predicted value and an 
observed value of the dependent variable, we adopt the 
following indicator D i ( )α 2. 

 Di ( )α 2 =( ( )
L
iy α - ( )

2)L
iz α +( ( )

R
iy α - ( )

2)R
iz α   ….. (11). 

 
 Definition by equation (11) can be applied to interval data 
as well as L-R fuzzy number. That is, the equation (11) 
represents a sum of squares for distance between interval 
data. 

To generalize, a dissimilarity indicator representing a 
square of distance for L-R fuzzy numbers can be written as 
follows:  

Di
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j 0
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where αj= jh/k, j=0,..,k, h is an equal interval, and wj  is a 
weight for j-th level. 
   In the case of triangular fuzzy number with wj =1, the 
above equation is approximately represented as: 
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The proposed method is to estimate fuzzy coefficients 
using minimization of sum of Di

2  respecting  i. That is, 
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The estimated coefficients can be derived through the 
quadratic programming method. The proposed fuzzy least 
square method is also shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Fuzzy least square regression analysis 
 for input and output data  
 

B.  Analysis of the Logistic Type Model 
 A set of fuzzy input-output data for i-th observation is 
defined by: 

( );21;210 ,,,,,,,; mikkiikmijjiijijkijk XXXXXXXP KK    (21).  

where Pijk indicates ambiguous preference represented by 
fuzzy L-R number, and Xijk  is  Xjk  for observation i.  
  Let  Xijk.  be   Xij. － Xik  (where  –   is 

difference operator based on the fuzzy extension principle),  

and  denote  Xi.  for abbreviation of  Xijk. in the following 

section. Therefore, a set of fuzzy input-output data for  i-th 
observation is re-written by: 

 ( )miiiii XXXXP ,,,,; 210 K , ni ,,2,1 L=              (22). 

where  Pi is a fuzzy dependent variable, and  Xim is a fuzzy 
independent variable represented by L-R fuzzy numbers. For 
simplicity, we assume that Pi and Xim are positive for any 
membership value, α∈(0,1). 

The fuzzy logistic regression model (where both input 
and output data are fuzzy numbers) is represented as follows: 

mimiiii XAXAXAPP ⊗++⊗+=−Θ K1100))1(log(  (23).        

where ))1(log( ii PP −Θ is estimated fuzzy log odds, Θ is the 

division operator based on the extension principle, 10 =iX ,  

jA ( )mj ,,1,0 L=  is fuzzy regression parameter represented 

by L-R fuzzy number, and ⊗ is the product operator based 
on the extension principle. 
  It should be noted that although the explicit form of the 
membership function of  ))1(log( ii PP −Θ  can not be 
directly obtained, the  α-level set of ))1(log( ii PP −Θ   can 
be obtained from the result of Nguyen’s theorem [9]. 
  Let  ( )

L
iP α  be  the lower  bound of dependent fuzzy 

variable, ( )
R

iP α  be the upper bound of the fuzzy dependent 
variable. Then, α level set  of the fuzzy dependent variable  
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  Therefore,  the α level set of  the left term in (23)  is 
as  follow:  
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  The parameter estimation method is basically as same as 
the fuzzy linear regression method and more concrete 
procedure is described in [6]. 
 

 Ⅳ．NUMERICAL EXAMPLE OF THE DATA 

ANALYSIS METHOD 
A. An Example of the Additive Difference Model 
  Subject and Procedure  A subject is a 43 years old adult. 
The subjects rated differences of WTP (willing to pay) for 
any two different computers (DELL) which have three types 
of attributes information (Hard disk: 100 GB and 60 GB; 
Memory: 2.80 GHz and 2.40 GHz; New Product or Used 
Product). The subject compared a certain alternative with 
seven different alternatives. The subject answered 
representative values, lower values, and upper values for 
WTP values (Price (Japanese yen) of the willing to pay for 
the difference) using fuzzy rating method. The subject also 
rated desirability of each attribute information (Hard disk: 
100 GB and 60 GB; Memory: 2.80 GHz and 2.40 GHz; New 
Product or Used Product) using the fuzzy rating method. The 
fuzzy rating scale of desirability ranged from 0 point to 100 
point . 
 

 
 
 

 Analysis and Results The fuzzy coefficients were obtained 
by the fuzzy linear regression analysis using the least squares 
under constraints, as shown in Table 1 and Table 2. The 
dependent variable of Table 1 was same as in Table 2. 
However, the independent variables are objective values 
measured by crisp numbers in Table 1, but,  the independent 
variables were fuzzy rating values measured by a L-R fuzzy 
number in Table 2 . According to Table 1 and 2,  the 
preference strength concerning comparative judgment was 
greater influenced by whether the target computer was new  
or used .  The impact of attribute for hard disk was smaller 
than new-used dimension.    
B. An Example of the Logistic Model 
  Subject and Procedure  A subject is a 43 years old adult. 
The subjects rated ambiguous probability of preferring of a 
certain computer (DELL) with seven different computers. 

    Table 1. Results by Fuzzy Regression Analysis 
    (The independent variables are crisp numbers) 
 

 Attribute Value  
 Hard Disk(L)   Lower 78.5  
 Hard Disk (M) Representative 85.7 
 Hard Disk (R) Upper 986.8 

Fuzzy Memory(L) Lower 0.0 
Coefficient Memory(M) Representative 0.0 

 Memory(R) Upper 0.0 
 New or Used（R） Lower 22332.5 
 New or Used （M）  Representative 22332.5 
 New or Used（L）  Upper 22332.5 
 0jkA (L)   Lower 25450.8 

 0jkA (M)   Representative 29420.1 

 0jkA (R) Upper 33111.2

 
      Table 2. Results by Fuzzy Regression Analysis 
   （The independent variables were fuzzy L-R numbers） 
 

 Attribute Value   
 Hard Disk(L)   Lower   33.9  
 Hard Disk (M) Representative   33.9  
 Hard Disk (R) Upper   33.9  

Fuzzy Memory(L) Lower   0.0  
Coefficient Memory(M) Representative   0.0  

 Memory(R) Upper   0.0  
 New or Used（R） Lower  446.1  
 New or Used（M）  Representative  446.1  
 New or Used（L）  Upper  446.1  
 0jkA (L)   Lower 36082.1  

 0jkA (M)   Representative 36082.1  

 0jkA (R) Upper 48004.0  

     
 
Three types of attributes information (Hard disk: 100 GB 
and60 GB; Memory: 2.80 GHz and 2.40 GHz; New Product 
or Used Product) were manipulated as the same as in the 
previous judgment task. The subject answered of 
representative values, lower values, and upper values of their 
probabilities using fuzzy rating method. 
  Analysis and Results The fuzzy coefficients were 
obtained by the fuzzy linear regression analysis using the 
least squares under constraints, as shown in Table 3 and 
Table 4. However, the independent variables are objective 
values measured by crisp numbers in Table 3, but,  the 
independent variables were fuzzy rating values measured by 
a L-R fuzzy number in Table 4 . According to Table 3 and 4,  
the bounded preference strength  was greater influenced by 
whether the target computer was new  or used . Interestingly,   
the impact of attribute for memory was slightly greater than 
in the finding in Table 1 and 2. 
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Figure 3.  Example of fuzzy rating  



 

      Table 3. Results by Fuzzy Logistic Regression Analysis 
        (The independent variables are crisp numbers) 

 Attribute Value  
 Hard Disk (L) Lower 0.000 
 Hard Disk(M)  Representative 0.000 
 Hard Disk (R) Upper 0.009 

Fuzzy Memory(L) Lower 1.781 
Coefficient Memory(M) Representative 1.781 

 Memory(R) Upper 1.881 
 New or Used（R） Lower 1.791 
 New or Used（M）  Representative 2.097 
 New or Used（L）  Upper 2.777 
 0jkA (L)   Lower 0.847 

 0jkA (M)   Representative 1.201 

 0jkA (R) Upper 1.443 

 
   
     Table 4. Results by Fuzzy Logistic Regression Analysis  
      (The independent variables are fuzzy L-R numbers) 
 

 Attribute Value  
 Hard Disk(L)   Lower 0.000 
 Hard Disk (M) Representative 0.000 
 Hard Disk (R) Upper 0.000 

Fuzzy Memory(L) Lower 0.008 
Coefficient Memory(M) Representative 0.008 

 Memory(R) Upper 0.008 
 New or Used（R） Lower 0.043 
 New or Used（M）  Representative 0.043 
 New or Used（L）  Upper 0.043 
 0jkA (L)   Lower 1.806 

0jkA (M) Representative 1.806  

0jkA (R) Upper 1.806 

    

V. Conclusion 
   In this study,  fuzzy set models for ambiguous compa- 
rative judgments which do not always hold transitivity and 
comparability properties were proposed. The first type of the 
model is a fuzzy theoretic extension of the additive difference 
model for preference for explaining ambiguous preference 
strength. This model can be reduced to Fuzzy Utility Differ- 
ence Model [7 ] if multi-attribute weighting parameters are 
assumed to be crisp numbers,  and  to Additive Difference 
Model [8]  if  multi-attribute weighting parameters and 
values of multi-attributes are assumed to be crisp numbers. 
The second type of the model is a fuzzy logistic model for 
explaining ambiguous preference in which preference 
strength is bounded such as probability measure. In both the 
models, multi-attribute weighting parameters and all attribute 
values are assumed to be asymmetric fuzzy L-R numbers. 
For each model, the parameter estimation method using the 
fuzzy regression analysis was proposed. Numerical examples 

for comparative judgments were also demonstrated. Since 
both the models require different evaluation methods, 
comparisons of psychological effects of the both methods 
will be needed in the future study.  
   In this study, the least square methods were used for data 
analyses of two models. However, the possibilistic linear 
regression analysis by Sakawa [10] and the possibilistic 
logistic regression analysis by Takemura [6] can be applied 
for  the data analysis of the  additive difference type model 
and the logistic type model, respectively.  The proposed 
models and the analyses for ambiguous comparative 
judgments will be applied to marketing research, risk 
perception research, and human judgment and decision 
making research.  The empirical research using the 
possibilistic analysis and the least square analysis will be  
needed to examine the validities of the models. 
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