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Abstract— This paper provides an additive utility model, which
is expressed as a weighted sum of several von Neumann-
Morgenstern utilities, for decision problems of income streams.
First, it is shown that the values of weights for periods play
a role differently from the shapes of utilities, in comparison
with another additive model expressed as a weighted sum of
one von Neumann-Morgenstern utility. Secondly, by introducing
the concept of joint receipt into decision problems of this sort,
we make it possible to consider choices between income streams
with different numbers of periods.

I. INTRODUCTION

Several revisions [2], [4] of an additive utility model (e.g.,
in the context of conjoint measurement) had been provided for
decision problems of temporal sequences of outcomes, such as
income streams. The reason is not only that these problems are
important but also that the additive model can easily accept the
concept of weights for different periods and so enables us to
deal with the effect of temporal discounting. Let (g1, .., gn)
denote an n-year salary, where each g; ( = 1,...,n) is a
money lottery (i.e., an incentive wage) or a monetary outcome
for the ¢-th year. This paper presupposes a weighted additive
utility model written in the form

U(grs-- - 9n) = > mita(g0),
=1

where the w; are utility functions of von Neumann and
Morgenstern [3] and 7; are positive real numbers, interpreted
as weights of periods. But the most typical weighted utility
model [2], [4] is of the form

n
U(gl, e 7gn) = Z Wiu(gi)'
i=1

That is, one utility function w is used in this model. The
first aim of this paper is to verify the explanation ability of
our additive model (displayed earlier), in comparison with the
typical additive one (displayed later). In other words, we will
show that the role of the 7; is different from that of the wu;.
In general, these additive models consider only choices
between income streams with the same length of periods,
say with n periods. So the second aim of this paper is to
propose a framework so that income streams with the distinct
length of periods, say with n — 1 periods and with n periods
(n > 2), can be compared. The concept of joint receipt,
which was proposed by Luce [6], will be useful for this

purpose. By using the operation @ of joint receipt, we can
describe the situation of receiving two or more uncertain
alternatives simultaneously. For example, the n-year salary
(91,.-.,9n) is written as g1 @ - -+ @ g,. Also, many utility
representations [6], [9] have already been proposed for ¢
having different algebraic properties. But these representations,
without a substantial revision, cannot reflect the temporal effect
on the decision of income streams explicitly. Therefore we
adhere to the weighted additive model, but are willing to utilize
an algebraic property of @ so as to attain the second aim. By
assuming the existence of an element e acting like a right
weak identity, i.e., g1 D - D gh1 ~ g1 D - D g1 De
(where ~ is an indifference relation), it is possible to identify
g1P- - -Dgn_1 With g1 B - -Dg,_1De, and hence two elements
g1 P -®gn—1 and h1 & - - - P h,, become comparable, where
hy @ ---® h, is another n-year salary.

This paper is structured as follows. Section II gives ba-
sic concepts and notations, in which the von Neumann-
Morgenstern theory and axioms of the joint receipt operation
are included. Section III shows the uniqueness property of
our additive model (which is important for measurement of
utilities) and the axiom that enables us to derive the typical
additive model from our additive model. Section IV compares
the explanation ability of our additive model with that of the
typical additive model through a decision problem of two-year
salaries, and also considers choices between one- and two-year
salaries. Section V contains conclusions. The proofs of the
propositions in Section III can be found in the Appendix.

II. CONCEPTS AND NOTATIONS
A. The von Neumann-Morgenstern theory

Throughout this paper, R denotes the set of all real numbers.
Let X = {x1,...,2m,}, with m a fixed positive integer, be
a finite set of monetary outcomes. A (simple) lottery is a
probability distribution on X, i.e., > im, p(z;) = 1, p(x;) > 0
for all © = 1,...,m. Let 1y,,; denote a lottery such that
p(xz;) = 1 for z; € X. Every lottery g is expressed as a
convex combination Y ", p;1y,,}. The following expression
is also used:

g =(T1,P1; -5 T, Pm)-

Let G be the set of all lotteries on X. Clearly G is a nonempty
convex set.



Let = be a binary relation (preference or indifference) on
G. The strict preference > on G and the indifference ~ on G
are defined as follows: for all g, h € G,

g>=h
g~h

if and only if ¢ =% and not = g,
if and only if ¢ = h and h = g.

< and < denote the reversed relations of = and . The binary
relation = on G is a weak order if and only if it is connected
(g = horh=gforall g, h € G) and transitive (f > g and
g=h= f>=nhforall f g, h € G). Let = be a weak order
on G. The set G is bounded above (resp., below) in = if there
exists a largest element (resp., a smallest element) in G, i.e., an
element i € G such that h = g (resp., g = h) for all g € G.
The set G is unbounded in = when it is neither bounded above
nor bounded below.

A binary relation = on G satisfies independence if f >
g= A +{0=XNh=Xdg+ ({1 —XNhforal f, g heg
and all 0 < A < 1 in R. %= is continuous if, for all
f > gand all g = h, there exist 0 < A, 4 < 1 such that
M+ (1 =XNh = gand g = pf+ (1 —p)h. If = is a
weak order and satisfies independence and continuity, then it is
said that the von Neumann-Morgenstern axioms hold. The von
Neumann-Morgenstern axioms are necessary and sufficient for
the existence of a real-valued function u on G having the
properties: for all g, h € G and all 0 < )\ <1,

g=h & ulg) >u(h),
uAg+ (1=Nh) = Aulg)+ (1= Nu(h).

The former is the order-preserving property and the latter is
the linearity property (in the convexity operation). Such a u is
unique up to a positive affine transformation i.e., u — au +
B, a > 0, B € R. Let =’ be also a binary relation on G
satisfying the von Neumann-Morgenstern axioms, and let u’
be a function having the two properties. If g = h < g =" h
for all g, h € G, then it follows that v’ = au + §. Two
utilities connected in this way are called equivalent. See, for
example, [5] for a comprehensive survey of the von Neumann-
Morgenstern theory.

Henceforth a function satisfying the order-preserving and
linearity properties is referred to as a von Neumann-
Morgenstern utility. This function is extended from G to X
by defining the utility of outcome x to be the utility of the
degenerate lottery 1g,3: u(x) = u(ly,y) for all z € X.
Then the linearity property leads a von Neumann-Morgenstern
utility to the expected-utility form for all simple lotteries

9=t piley €G:
u(g) = ZPZU(%) (D
=1

When a decision maker’s utility over monetary outcomes,
i.e.,, u(x) defined above, is (strictly) concave, his or her
preference is said to be (strictly) risk averse. When u(z) is
(strictly) convex, the decision maker’s preference is said to
be (strictly) risk seeking. Here the adverb “strictly” is used

to exclude the preference based on a mere expectation, i.e.,
u(g) = E(g)(= >, pix;). Fig. 1 shows a strictly concave
utility by the black line and a strictly convex utility by the gray
line. Henceforth in this paper, we use the terms “risk averse”
or “risk seeking” to mean strictly risk averse or strictly risk
seeking. It is seen that either

u(g) <u(E(g)) or u(g) > u(E(9g))

holds depending on whether the preference is risk averse or
risk seeking.

u

Fig. 1. A concave utility and a convex utility.

B. Joint-receipt semigroup

A joint receipt operation & is an operation joining two or
more lotteries. For example, g & h indicates the simultaneous
receipt of two lotteries g and h, called their joint receipt. Note
that outcomes of lotteries in each joint receipt do not always
appear at the same time. Let G be a set such that the joint
receipt operation  is a binary operation on it, i.e., & is a map
of G x GG into G. Assume that G is endowed with a weak order
7. In this paper, joint receipts of degenerate lotteries substitute
for those of pure outcomes, ie., 13 @ 1gy (z, ¥y € X)
substitutes for x @ y. This substitution for joint receipts of
pure outcomes is not used in Luce’s [6] approach. But his
axioms guarantees that 1(,y @ 1y, is indifferent to x & y.

Definition 1: (G, 7, @) is said to be a joint-receipt semi-

)~

group if and only if for all g, h, f, [ € G,
Al. Weak order: 7 is a weak order.
A2.  Weak associativity: (f ®g) D h~ f D (g® h).

A3. Weak monotonicity:
gzh e fegef Zfehef.

In particular, if weak commutativity holds, i.e., if g & h ~
h @ g, then a joint-receipt semigroup (G, =, @) is said to be
commutative; otherwise it is said to be non-commutative.
Cho and Luce [10] gave empirical evidence supporting
the commutativity of & for money gains or losses by their
experiments. But Luce [6] suggested that it might be wise

to consider addition rules different from = &y = = + y;



Marchant and Luce [9] explored the axioms so as to define &
as generalized additions, which includes the non-commutative
case, and specified the forms of utility functions. Moreover,
Luce [6] examined the associativity of & for pure outcomes, by
comparing behavior of utility models related to empirical data
[7]. This paper assumes that & is weakly associative but not
commutative. The reason is as follows. We shall now interpret
@ in the context of “making an agreement.” Let x > y and
z be positive real numbers. Let x @ y denote to make the
agreement of $x this year and $y next year as a two-year
salary. Usually, = @ y will not be indifferent to y & x. For the
associativity, we give the parenthesis the meaning of a prior
agreement. Let (z @ y) ® 2 mean that a decision maker first
reaches the agreement of $2 and $y for the first two years and
then reaches the agreement of $z for the last year. Similarly,
x®(y®~z) means that the decision maker reaches the agreement
of salaries for the latter two years prior to the agreement for the
first year. If the decision maker is informed of the specification
of every salary in a joint receipt previously, then he or she will
consider (z ® y) @ z to be indifferent to x @ (y @ z), because
both the joint receipts are actually equivalent contracts.

ITII. ADDITIVE UTILITY MODELS

Throughout the rest of the paper, foreachi =1,...,n, n >
1, let »=; be an unbounded weak order on G that satisfies
the von Neumann-Morgenstern axioms, and let u; be a von
Neumann-Morgenstern utility on (G, =;) such that u;(f;) =
1, u(e;) = 0 for fixed f;,e; € G. Let G" = Gx---xG
(n copies), the i-th G of which is endowed with »=;. Let
G* = [J;2,G" and let 7, be a weak order on G*. The
restriction of - to G" is written as =". Here =! is equal
to 3=1. By identifying (g1,...,g,) with g1 ®- - - ® g,,, one can
see that & is a binary operation on G*°.

This paper assumes the following additive model for
(G, =, ®): let n be fixed, then there exist positive real
numbers 7q,...,m, with > ;m; = 1 such that, for all
g=g1 D Dgn, h=h1®---Dh, €G",

n n
gz"h & Zﬂzuz(gz) > Zmuz(hz)
i=1

i=1

2

The uniqueness property of the weights 7;, along with that of
the utilities u;, is given as follows.

Proposition 2: Assume that the additive representation of
Eq. (2) holds. Then the 7; are unique for such u; as scaled
above. Moreover, von Neumann-Morgenstern utilities v; scaled
differently satisfy the representation of Eq. (2) in place of the
u; if and only if there exist real numbers o > 0 and 3, such
that, for each i = 1,...,k, v; = au; + 5;.

Strictly speaking, the additive form (Eq. (2)) is not a rep-
resentation of (G, =, @) but a representation of (G", ="},
because the value of each 7; depends on the number n. Recall
that our aim is to verify the explanation ability of the additive
model of the form of Eq. (2) in decision problems. This
paper deals with decision problems of two-year salaries. It
is, therefore, sufficient to provide the additive model of Eq.

(2) with n > 2. Indeed, by embedding G¥ in G", with k < n,
one will be able to compare k- and n-year salaries.

In what follows we view the necessary condition for the
additive representation of Eq. (2). For this the following

notation is used: forz, g; € G (i=1,...,i—1,i+1,...,n),
G = 01D - BgGi-1DGi+1D- D Ygn,
r®Dg = 91,D - DG 10TD git1 D D Gn-

Clearly Al, A2, A3, and weak non-commutativity are
necessary for the representation of the form of Eq. (2).
Therefore at least (G*°, 7, @) must be a joint-receipt non-
commutative semigroup. But A3 is rewritten in such a way

that the relationship of each =; (i =1,...,n) to 7 is made
clear:
A3. Weak monotonicity: for every ¢ = 1,...,n and for

all x, yEg and all gzegn—l7
TEiyY & xDG I yYyDg;

It is easily seen that there exists an element acting like a
right weak identity: form > n, g ~ g®e,41B- - B ey, holds
for all g € G™. In other words, for all g, h € G™,

gz"h
= g@en_l_l@...@e,mth®en+1@...@em'

This enables us to identify every g € G™ with an element
of G™. Note here that e,,11 @ --- @ e, is not really a weak
identity. Indeed, let h € G* with k # n, k > 1. Then for
h®ep1®- - Pey,each e,y (i =1,...,m—n) is evaluated
with =4 (in general, uy1;(en+i) # 0). Hence h is not always
~h®e,r1®---Bey. Clearly e; B - - - D e, does not operate
as a left weak identity. In this paper if e; € G, i > 2, is
placed in a joint receipt such that it is evaluated with =; (so
that w;(e;) = 0), then we call this e; a weak identity in the
i-th year.

Moreover, since G is assumed to be unbounded in =;, a
certain type of unrestricted solvability is also necessary. But
the description of the axiom is to be omitted.

For the problem of handling temporal discounting, the
additive model of Eq. (2) gives the same solutions as Theorem
7.4 of Fishburn [4] or Theorem 6.15(1) of Krantz et al [2].
The description of these requires two notions [8]. 2™ on G"
is persistent if and only if v g; Z" yDg; & 2Dg; Z" YyDg;
whenever ¢, j € {1,...,n} and all four joint receipts are in
G". =™ on G" is impatient if and only if x & --- @ x "
Yo By n® 0 1920YDGit2®- - Ogn T N @
DY 1OYDOTDGiy2®- - Dgn Wheneveri € {1,...,n—1}
and the joint receipts are in G™.

Proposition 3: Assume that the additive representation of
Eq. (2) holds. Then there exist an von Neumann-Morgenstern
utility w on G and positive numbers wq,...,m, Wwith
", mi =1 such that, for all g, h € G",

n

gz"h = Zﬁiu(gi) > iﬂzu(hz)
i=1

i=1

A3)



if and only if =" is persistent. In particular if =™ is also
impatient then 71 > --- > m, in Eq. (3). Moreover, the 7; are
unique for such u, and if a von Neumann-Morgenstern utility
v satisfy this representation in place of w, then v = au + 3
for some o > 0 and § € R.

IV. Decision PROBLEMS OF INCOME STREAMS
A. Comparison between the models of Egs. (2) and (3)

Example 4: Suppose that a software company plans new
employment of engineers to cope with a rapid increase in
demand. Since this industry is thriving, one can easily expect
that many students and engineers in other companies will
apply for the positions depending on working conditions. The
company considers a salary system is very important for hiring
competent engineers, and provides a choice between two sorts
of two-year salaries. One guarantees an annual salary

= (840000, 1.0)

for each of the first two years, and the other gives the
combination of incentive wages,

g = ($37000,0.5;$43000,0.5) for the first year,

h = (835000, 0.5; $45000, 0.5) for the second year.
Which of the two-year salaries do applicants prefer?

These two sorts of two-year salaries are expressed as = @ x
and g @ h, respectively. We now consider preferences with the
use of the additive models of Egs. (2) and (3). Henceforth the
occurrence of either 71 = 0 or w5 = 0 is allowed.

Assume first that a decision maker (an applicant) is risk
averse in choosing a two-year salary. Then, by the definition,

u(g) <u(E(g)) and wu(h) <u(E(h)).
Since E(g) = « and E(h) = z, it follows that
mu(g) + mou(h) < mu(r) + mau(x)

no matter what value is given 71 (w2 is defined as 1 — 7).
This implies that
gbh<zxdz

is given by the additive model of Eq. (3). Assume conversely
that the decision maker is risk seeking in choosing a two-year
salary. To distinguish the present and the preceding utility, let
u’ denote a risk seeking type of utility. Then, by the definition,

u'(g) >u'(E(g)) and «'(h) > u (E(h)).
Again since E(g) = « and E(h) = x, we have
mu' (g) + mou'(h) > mu'(z) + mou' (x)
without respect to the value of 7y (hence 73), so that
gBh-xda.

Thus the additive model of Eq. (3) gives a definite preference,
gPh <zPxorgdh > xPz, only according as the decision
maker is risk averse or risk seeking.

We shall next consider the preferences explained by the
additive model of Eq. (2). Assume that the decision maker
is risk averse in a choice of salaries in the first year and risk
seeking in a choice of salaries in the second year. Therefore his
or her utilities in Eq. (2) are assumed to be defined by u; = u
and uy = u'. For simplicity, we now define u(xz) = 1.0 and
u'(z) = 1.0. The values of u and v’ may be estimated at other
outcomes as follows: with units in thousands of dollars,

%103 dollars | 35 37 40 43 45

U 0.6 0.8 1.0 1.1 1.2
u’ 0.4 0.6 1.0 1.5 2.0

Then since u(g) = 0.95 and u’(h) = 1.2 by Eq. (1), it follows
that

U(g®h) =mu(g) + (1 —m)u'(h) = 1.2 — 0.25m7.
Moreover,
Ul ®z)=(m + (1 —m1))u(z) = 1.0.
From these two equations we deduce the following preferences

—
gbh ~zdx
=<

ifﬂ'l
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It is, therefore, verified that if two sorts of utility functions are
provided, then a variety of preferences occur depending on
the values of 7;. In other words, the values of weights play
a different role in explaining preferences than the shapes of
utility functions do. Therefore the additive model of Eq. (2)
will be superior in explanation ability to the additive model of
Eq. (3).

We conclude this subsection with an additional comment. If
even for the additive model of Eq. (3), there exist g, h € G
such that u(g) > u(z) > u(h) > 0 or u(h) > u(zx) > u(g) >
0, then the above three types of preferences always occur
according to the values of m;. Of course, with the additive
model of Eq. (2), a couple of concave (convex) utilities can
also yield these preferences.

B. Comparison between one- and two-year salaries

Example 5: The company in Example 4 wishes to employ
an engineer only if he or she is competent, but does not believe
that such competence can be measured with complete accuracy.
To solve this problem, the company adopts a policy hiring the
necessary engineers and evaluating their ability during a two-
year contract. It provides a choice between x & = and the
following two-year salary: an annual salary

y = (843000, 1.0)

is given for the first year and options, extension of employment
and resignation, for and after the second year. Applicants are
informed that the prospect of their salaries for the second year
will be

h' = ($35000, 0.4; $40000, 0.2; $45000, 0.4),



each outcome of which is determined at the year-end. Which
of the two-year salaries do applicants prefer?

Many applicants may estimate a weak identity e in the
second year at ($25000, 1.0) rather than at ($0, 1.0), since
they know $25000 to be the least annual income among
engineers occupied with this industry. The two-year salary
newly offered by the company is expressed as y & h' or
y & e according as extension or resignation is chosen. In what
follows we consider preferences among © ® x, y ® h’, and
y @ e by using the additive model of Eq. (2).

Assume that a decision maker is risk averse in choosing a
two-year salary. Then since u(y) = 1.1 and u(h') = 0.92 by
Eq. (1),

Ulydh') =mu(y) + (1 —m)u(h’) =0.92 + 0.187;.

Also
U(x®x)=1.0.

From these two equations we obtain

-
yOh ~z0x
<

4

9
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if’ﬂ'l

Moreover, since u(e) = 0, the following holds:

-

. 10

rdzr ~yde 1f7r1§ﬁ.
<

Note here that y & b’ = y ® e always holds. It then turns out
that the decision maker chooses y@®h' if 1 > 4/9 and Pz if
m1 < 4/9. Assume next that in choosing salaries the decision
maker is risk averse in the first year and risk seeking in the
second year. Since u(y) = 1.1 and «'(h') = 1.16 by Eq. (1),
it follows that

Uyeh) = mu(y)+ (1 —m)u'(h)
= 1.16 = 0.06mp > 1.0 = U(z® x)

for all m; < 1, so that y @ h' = =@ x holds without respect to
the value of 7. Since v/(e) =0, y®h' > y e always holds.
Therefore y & h' turns out to be favorite. The company may
expect an applicant to choose y & h' through these decision
processes. Indeed, most companies will like an engineer who
is properly confident of his or her own abilities. So they wishes
an engineer who is willing to seek risk in the second year, or
who does not overweight the second year even if he or she is
averse to risk in both of the two years.

Finally, let us consider a preference structure of the decision
maker who chooses y @ e. It may be suitable to assume that
such a decision maker’s right weak identity in the second year
is = ($40000, 1.0). Probably, he or she is very optimistic
or is too much of a perfectionist to admit a decline in annual
incomes. The prospect theory [1] reminds us of the fact that
utility functions tend to be steeper for losses than for gains
(see Fig. 2). For example, such a utility function " is given
as

u”(35) = —1.0, u”(40) = 0.0, u”(45) = 0.5.

t t t t
-40 -20 0 20 40

2

Fig. 2. A typical utility function in losses and in gains.

Then, by Eq. (1), u”(h') = —0.2. The utility of y =
($43000, 1.0) is greater than that of x = ($40000, 1.0) (i.e.,
u(y) > w(z) or v/ (y) > u'(x)) whether the decision maker
is risk averse or risk seeking in the first year. Moreover, since
u”’(e) = u"(x) =0 and u” (k') < 0, it follows that

Ulyde)>U(xdz) and U(yde)>U(ydh').

Here the equality holds in the former inequality if 7o = 1, and
in the latter inequality if 71 = 1. Therefore y®e is the favorite
without respect to the value of 7. This example informs us
that the choice of a right weak identity is essential to the
comparison between income streams with the distinct length of
periods (i.e., between arbitrary joint receipts). Without doubt,
the company is most unwilling to employ this sort of applicant.

V. CONCLUSION

This paper considered to apply the additive utility model
of Eq. (2) to decision problems of income streams. First, it
was verified that the values of weights played a different role
than the shapes of utility functions did, in comparison with the
additive model of Eq. (3). Secondly, by assuming the existence
of an element acting like a right weak identity under the joint
receipt operation, every one-year salary could be identified
with a two-year salary. So we made it possible to consider
choices between one- and two-year salaries.

Further research can be expected. The clarification of the
way of estimating weights, along with the axiomatization for
the additive model of Eq. (2), is an important study assignment
(which is under study). It will be also worthwhile to examine
the explanation ability of a weighted sum of rank-dependent
utilities. More widely, temporal effects are very likely to appear
in many decision problems, such as preference of brands in
marketing, renewal of insurance, and animal choice behavior.
It is meaningful to consider theoretically or empirically the
possibility of applying weighted additive models associated
with the concept of joint receipt to such decision problems.

APPENDIX

Proof: [Proposition 2] For the former assertion let U(g) =
>oicimiui(gi) and U'(g) = Y001, mui(gi), with  wf >



0, >i, m; = 1, be additive representations of ™. Let g(; j
denote an element g1 - - - D g, with g € G such that g, = e,
unless k = 4, j. Since u;(e;) = 0 for all 7, we have

U(9¢.,5)) miui(gi) + miu;i(g;),
U'gig) = mui(gi) + miug(gy)-
Since U and U’ preserve =™, it follows that
ui(hy) —ui(g) < mi o uilhy) —ui(g5) < L
u;i(gi) — ui(hi) = m; ui(gi) — ui(hi) = =
provided that w;(g;) — w;(h;) # 0. Note that each w; is

uniquely determined on G by the hypothesis, i.e., u;(f;) =
1, ui(ei) = 0, and further that ui(gi),uj(gj)7 ui(hi)7 and
u;(h;) are variables in R. So 7;/m; must equal 7; /7. Since
this is true for all distinct ¢, j, we see, in view of the
assumption that > ", m, = > @ = 1, that m; =
for all i. Hence the 7; are unique for the u;. To prove
the latter assertion, let v; be a von Neumann-Morgenstern
utility scaled differently on (G, =;), so that v; = a;u; + 5;
for a; > 0,3, € R, and let V(g9) = > I, mvi(g;). So
Vig) = Yoy mi(aiui(gi)) + 8 where 8 = 3700, B;. If
a; = a > 0 for all 4, then since V(g) = aU(g) + 3, it follows
that g =™ h < V(g) > V(h). We show conversely that if V'
and U are additive representations of -, then «; = « for all
1. This is accomplished in a manner similar to that used in the
proof of the former assertion. Substituting g(; ;) for g into U
and V gives, respectively,

U(g(i,j))
V(g(i,j)) =

The order preservation of U and V implies that

miwi(gi) + miu;(g;),
a;miui(gi) + aymiug(g;) + 6.

u;(hy) —u;(g;) < ™

;T

@j T

u;(hy) — u;i(g;)
ui(gi) — ui(hi) = m; ui(gi) — wi(hi)
provided that u;(g;) — u;(h;) # 0. Since each u; is uniquely
determined and since u;(g;), u;(g;), wi(h;), and u;(h;) run
over R, a;/c; must equal 1, or o; = «;. This is true for all
distinct ¢, j, and hence «; = « for all 4. [ |
Proof: [Proposition 3] To avoid confusion, let us replace

m; with p, (i = 1,...,n) in Eq. (3). Assume that the
representation of Eq. (2) reduces to U(g) = >, p;u(g;) for
all g € g". Then since mu; = pu, mju; = pju for
i,j € {1,...,n}, we have u; = {(m;p;)/(mip;)}u;, and
so u; and u; are equivalent. Hence = =; y & x »=; ¥y
for all z, y € G. This along with A3 proves that " is
persistent. Conversely, assume that =™ is persistent, i.e., that
r@g " yDg & rOg; Iy D g;. Substituting these
four n-tuples into Eq. (2), we get u;(z) > u;(y) € uj(r) >
u;(y), so that u; and w; must be related by a positive affine
transformation. Hence, for each 4, u;(x) = a;uq(x)+ 3; holds
for some «; > 0, 3, € R. Setting u = u;, we have U(g) =
o (cumi)u(g;)+ constant. Let p; = (a;m;)/ > iy s, SO
that p; > 0 and Y. | p, = 1. In view of the fact that if U
is order-preserving then the same is true for U/ " | a;m;,
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we get g =™ h & Y0 paul(g) > i, p;u(gi) whenever
g, hegnm.

We consider the case where =" is also impatient. From the
unboundedness of G it is valid that « >; y for some =, y € G.
Substitute the consequent inequality of impatience into Eq.
(3) and arrange to get (m; — mi41)(u(z) — u(y)) > 0. Since
u(z) > u(y), we get m; > mipq foreach ¢ = 1,...,n — 1,
implying that 7y > --. > m,. By the construction of p, and
of u, their uniqueness assertions follow from Proposition 2.

|
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