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Abstract - This paper proposes a systematic and 

efficient method for finding multiple local optimal 
solutions or a global optimal solution on nonlinear 
optimization problems. The method constructs a gradient 
vector field associated with an objective function and 
searches several local optimal solutions via saddle points 
on the ridge of the objective function. Identifying saddle 
points must be a challenging task for this research. The 
saddle points are also referred to as type I unstable 
equilibrium points (UEPs) or decomposition points (DPs). 
In this paper, we apply a bifurcation and a continuation 
method of nonlinear dynamics to finding the DPs. The 
continuation method traces a path of local optimal 
solutions (stable equilibrium points) and related DPs 
continuously and efficiently. This method has ability to 
find multiple local optimal solutions or a global optimal 
solution with reasonable computational time. 
  

I. INTRODUCTION 

A method for obtaining a global optimal solution for 
general nonlinear optimization problems is highly significant 
technology to realize energy savings and cost reductions in 
industrial problems. Researchers have presented a lot of 
methods for searching the global optimal solution, for 
example, random multi-start local search, dynamic tunneling 
algorithm, genetic algorithm (GA), simulated annealing (SA), 
tabu search (TS), and particle swarm optimization (PSO) 
[1][2][3]. Some of the methods are referred to as 
metaheuristics and they might provide a plausible optimal 
solution with required computational time. However, these 
conventional methods are still insufficient, particularly for 
practical large-scale problems.  Our method will provide a 
new idea to overcome this issue. 

A new systematic method based on the concepts of stability 
regions [4][5] and quasi-stability regions [6][7][8] of 
nonlinear autonomous dynamical systems for searching 
multiple local optimal solutions has been presented in [9]. 
This method can search the multiple local optimal solutions or 
a global optimal solution systematically and robustly. 
Nevertheless, they have a problem of computational time. Our 

proposed method overcomes this time-consuming issue and 
presents a novel systematic and efficient method. 

The concrete procedure for searching the global optimal 
solution includes the following steps. 

Step 1: Construct a gradient vector field associated with the 
given objective function. 

Step 2: Approach one of the local optimal solutions from 
any initial condition by a certain local search method. 

Step 3: Escape from a convergence region of the obtained 
local optimal solution of the Step 2 through a decomposition 
point. Here, the decomposition point is the saddle point that 
has a one-dimensional unstable manifold. The number of the 
unstable manifold of the decomposition point is calculated by 
eigenvalues and eigenvectors. 

Step 4: Approach another local optimal solution by moving 
along the opposite direction of the unstable manifold of the 
decomposition point. Go back to Step 3. 

Step 5: Choose a local optimal solution that has a lowest 
value of the objective function as a global optimal solution. 

The challenging task of this method is to identify the 
locations of the decomposition points on the quasi-stability 
boundary of the obtained local optimal solution (stable 
equilibrium point). The method proposed in [9] integrates the 
vector filed from many initial conditions. These initial 
conditions are set the proximity of the obtained local optimal 
solutions. No indices exist for setting the initial conditions and 
identifying the decomposition points is a time-consuming 
procedure, particularly, for large-scale systems. Therefore, 
identifying the decomposition points with reasonable 
computational time has been required. 

This paper presents a novel approach to identify the 
locations of the decomposition points and proposes a 
systematic and efficient method for obtaining the global 
optimal solution. This proposed method uses an idea of the 
parameter dependence of the vector filed to overcome the 
time-consuming issue. The parameter dependence is called a 
bifurcation phenomenon [10]-[14]. In general, the vector field 
has parameter dependence and the locations of the local 
optimal solutions and the decomposition points must be 
changed with slow parameter variations. In other words, local 
optimal solutions and the decomposition points approach, and 
coalesce at a bifurcation point. Therefore, if we trace paths of 



 

the local optimal solutions and the decomposition points 
continuously, we will specify the locations of the 
decomposition points from the obtained local optimal 
solutions. The numerical computation of the tracing the paths 
can be done by a numerical continuation method [15][16][17]. 
The continuation method is a fast numerical algorithm to trace 
the paths of the local optimal solutions and the decomposition 
points. Besides no integration from many initial conditions is 
required for identifying the locations of the decomposition 
points. Consequently, we can find the local optimal solutions 
and the decomposition points one after another by the 
combination of the certain local search method and the 
numerical continuation method, and obtain the global optimal 
solution with expected computational time. 

We verified our proposed method by the 2-dimensional 
Hump Camel-Back function [9] and the 2-dimensional 
Griewank function [18]. The method proposed in [9] required 
at least 20-time integration for finding six local optimal 
solutions of the 2-dimensional Hump Camel-Back function, 
while our proposed method can find these solutions with only 
one path tracing by numerical continuation method. Obviously 
our proposed method computes the solutions faster than the 
method in [9]. Furthermore, the proposed method found the 
global optimal solutions of the 2-dimensional Griewank 
function with expected computational time. This proposed 
method overcomes the time-consuming issue of the previous 
method. The numerical results show the effectiveness of our 
proposed method. The proposed method has ability to search 
the global optimal solution with practical computational time. 
  

II. PROBLEM FORMULATION 

Consider the following unconstrained global optimization 
problem 

}:)(min{ nxxc ℜ∈ .......................................................  (1) 

where 2Cc∈ . The function c(x) is assumed to be bounded 
below so that its global minimal solution exists and the 
number of local minimal solutions are finite. 

We can transform the global optimization problems into 
the problems of nonlinear dynamics. Therefore, we are able to 
construct the following gradient vector filed (2) from the 
objective function c(x), and we can find the global optimal 
solution in the gradient vector filed. 

)(xcx −∇=& ..................................................................  (2) 

  
III. QUASI-GRADIENT SYSTEMS 

We briefly introduce some concepts that play a central role 
in the theory of nonlinear dynamics [4][10]-[14].  

We consider a nonlinear dynamical system described by 
))(()( txftx =& ..............................................................  (3) 

where the state vector x(t) of this dynamical system 
belongs to the Euclidean space nℜ , and the function 

nnf ℜ→ℜ:  satisfies the existence and uniqueness theorem. A 
solution curve of (3) starting from x at t=0 is called a 
trajectory, denoted nx ℜ→ℜ⋅Φ :),( . 
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A state vector x* is called an equilibrium point of (3) if 
f(x*)=0. A state vector x is called a regular point if it is not an 
equilibrium point. E denotes a set of equilibrium points. We 
say that an equilibrium point of (3) is hyperbolic if the 
Jacobian of f(.) at x*, denoted Jf(x*), has no eigenvalues with a 
zero real part. A hyperbolic equilibrium point is a 
(asymptotically) stable equilibrium point if all the eigenvalues 
of its corresponding Jacobian have negative real parts; 
otherwise it is an unstable equilibrium point. If the Jacobian of 
the equilibrium point x* has exactly k eigenvalues with 
positive real parts, then it is called a type-k equilibrium point. 
If k=0, then the equilibrium point is called a stable equilibrium 
point (SEP), or a sink (or attractor). If k=n, then the 
equilibrium point is called an unstable equilibrium point 
(UEP), or a source (or repeller). 

Let x* be a hyperbolic equilibrium point. Its stable and 
unstable manifolds Ws(x*), Wu(x*)are defined as follows: 

{ }** ),(lim::)( xtxxxW
t
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∞→

.................................  (4.1) 
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t
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−∞→

................................  (4.2) 

A useful concept for a system that has multiple stable 
equilibrium points is a stability region (or domain of 
attraction). The stability region of a stable equilibrium point xs 
is defined as 

{ }st

n
s xtxxxA =Φℜ∈=

∞→
),(lim::)( ...................................  (5) 

From a topological point of view, the stability region is an 
open, invariant, and connected set. The boundary of stability 
region is called a stability boundary (or separatrix) of xs and is 
denoted )( sxA∂ . The stability boundary is topologically a (n-
1)-dimensional closed invariant set. A concept of Quasi-
stability region or practical stability region plays important 
role in this paper. The practical stability region of a stable 
equilibrium point xs, denoted Ap(xs), is the open set int )( sxA , 
where A  denotes the closure of A and int A  denotes the 

Figure 1 A general structure of the gradient vector 
filed (above) and the connection of equilibrium 
points (bottom). 



 

interior of A . The difference between the stability region 
(boundary) and the practical stability region (boundary) has 
been investigated in [4]-[8] in detail. 

Figure 1 illustrates the general structure of the quasi-
gradient vector filed. This vector field possesses multiple 
equilibrium points. The black and white dots indicate SEPs 
(local optimal solutions) and UEPs (decomposition points) 
respectively. The quasi-stability regions surround the SEPs. 
The decomposition points are on the quasi-stability 
boundaries. According to the proposition 1, all SEPs are 
connected through the unstable manifold )ˆ(xW u  of the 
decomposition points (see, Figure 1). Therefore, if we identify 
decomposition points efficiently, we can find local optimal 
solutions, which are candidates of a global optimal solution, 
with reasonable computational time. 
  

Proposition 1 (Decomposition points and the stable 
equilibrium points) [9] 

Let xs
1 be a stable equilibrium point of quasi-gradient 

system (2) and x̂ be a decomposition point on the practical 
stability boundary )( 1

sxA∂ . If every equilibrium point of the 

quail-gradient system (2) lying on )( 1
sxA∂ is hyperbolic and its 

stable and unstable manifolds satisfy the transversal condition, 
then there exists another equilibrium point xs

2 to which the 1-
D unstable manifold of x̂ converges. 
  

IV. A SYSTEMATIC METHOD 

As studied in the previous sections, a systematic and 
efficient method for finding several local optimal solutions 
includes the following steps: 

Step 1: Construct a gradient vector field from the objective 
function c(x). 

Step 2: Integrate the constructed gradient vector field from 
any initial condition. Identify the first local optimal solution. 

Step 3: Find all decomposition points on the quasi-stability 
boundary of the obtained local optimal solution. 

Step 4: Locate the 1-D unstable manifold of the found 
decomposition points, and find another local optimal solution. 
In this step we clarify the connection of the decomposition 
points and the local optimal solutions. Repeat Step 3&4, and 
obtain multiple local optimal solutions. 

Step 5: Compare all the obtained local optimal solutions 
and choose a global optimal solution. 
  

V. IDENYIFYING DECOMPOSITION POINTS 

A. PREVIOUS METHOD [9] 

The previous method is to construct a reflected gradient 
that has a trajectory that starts from a stable equilibrium point 
and converges to a decomposition point. This method is 
required to integrate the reflected gradient from many initial 
conditions to find several decomposition points. Identifying 
the decomposition points depend on initial values (see, Figure 
2). Therefore, this previous method has a time-consuming 
issue, particularly for large-scale problems. 
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B. PROPOSED METHOD 

The new idea comes from a bifurcation phenomenon of 
equilibrium points in the vector field. In general a vector field 
has parameter dependence. Equilibrium points must separate 
or approach each other, and shapes of quasi-stability regions 
must expand or shrink with slow parameter variations (See, 
Figure 3). 

The (saddle-node) bifurcation is the mechanisms by which 
equilibrium points are created and destroyed (see, Figure 4). 
As a parameter is varied, two equilibrium points move toward 
each other, and mutually annihilate at saddle-node bifurcation 
point (SNBP). The approach and collision of equilibrium 
points identify the location of all the equilibrium points. After 
the SNBP, we can clarify a bottom path (decomposition 

Figure 2 The previous method [9] for finding decomposition
points. 

Figure 4 The paths of the optimal solutions and the
decomposition points near the bifurcation point. 

Figure 3 The proposed method for finding decomposition points.



 

points). Therefore, if we back the parameter to P1, we identify 
the decomposition point at P1. 

A continuation method traces equilibrium points of the 
vector fields continuously.  Therefore, once we find a stable 
equilibrium point, the found stable equilibrium point finds 
unstable equilibrium points one after another. Finally, we 
compare the values of the all obtained local optimal solutions, 
and then we choose one of the local optimal solutions as a 
global optimal solution. 
  

VI. NUMERICAL STUDY 

For the purpose of expressing the effectiveness of the 
proposed method, we study the following 2-dimensional 
Hump Camel-back function and 2-dimensional Griewank 
function. 
  
A. 2-DIMENSIONAL HUMP CAMEL-BACK FUNCTION 

Minimize the 2-dimensional Hump Camel-back function [9] 
described by 
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where,  a=4, b=-2.1, c=1/3, d=-4, e=4, f=1. 
The 2-dimensinal Hump Camel-Back function has 6 

optimal solutions and two of them are the global optimal 
solutions. 
  
Step 1: Construct the quasi-vector field 

The quasi-vector field and the Jacobian matrix of the 
function (6) are follows. 

Quasi-vector field: 
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Jacobian matrix J: 
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Step 2: Obtain the first local optimal solution 

Integrate the constructed quasi-vector field (7) from the 
initial condition (0.5, 0.5), and obtain the first local optimal 
solution (0.0898, 0.7127). 
  
Step 3: Find decomposition points 

Trace equilibrium points from the initial condition (0.0898, 
0.7127), which is obtained as the local optimal solution in the 
Step 2, using Continuation method. Figure 5 shows an 
example of the bifurcation diagram when the parameter is f. 
The example shows that 7 equilibrium points are found from 
the intersection between the branches (paths) and f=1. The 
stability of the found equilibrium points is estimated by the 
eigenvalues of the Jacobian matrix (8). Follows are results. 

Decomposition points: (1.1092, 0.7683), (1.2961, -0.6051), 
(-1.1092, -0.7683), (-1.2961, 0.6051). 

Local optimal solution:  (-0.0898,  -0.7127). 
Type II unstable equilibrium points: (1.2302, -0.1623), (-

1.2302, 0.1623). We can obtain other equilibrium points on 
the quasi-stability boundary with the other parameter variation 
using the continuation method. 
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Note: We can obtain not only unstable equilibrium points 

but also stable equilibrium points by continuation method. 
  
Step 4: Obtain the second, third, ...optimal solutions 

Integrate the vector field from the intersection between the 
normalized unstable eigenvector of the decomposition points 
and the ε -ball [9]. Table 1 shows the obtained decomposition 
points (DPs) and the local optimal solutions and their 
connection. 
  
Step 5: Identify the global optimal solution 

We obtained the 6 local optimal solutions by above steps. 
Table 2 shows the obtained local optimal solutions and their 
values of the objective function. Two of them (0.0898, 
0.7127), (-0.0898, -0.7127) are identified as the global optimal 
solutions of the 2-dimensional Hump Camel-Back function. 
  
Table 1 The obtained decomposition points (DPs) and the 
local optimal solutions in Step 4. 

DPs Local optimal solutions 
(1.1092, 0.7683) (0.0898, 0.7127) (1.7036, 0.7961)
(1.2961, -0.6051) (-0.0898,-0.7127) (1.6071, -0.5687)
(-1.1092,-0.7683) (-0.0898,-0.7127) (-1.7036,-0.7961)
(-1.2961, 0.6051) (0.0898, 0.7127) (-1.6071, 0.5687)
  
  
  
  

Figure 5 The bifurcation diagrams of the 2-dimenisional
Hump Camel-Back function when the parameter is f. 

(a) f versus x1. 

(b) f versus x2. 



 

Table 2 The obtained local optimal solutions and the objective 
function values of the 2-dimensional Hump Camel-Back 
function. The shaded lines are the global optimal solutions. 

Local optimal 
solutions 

c(x1, x2) 

(0.0898, 0.7127) -1.0316 
(1.7036, 0.7961) -0.2155 

(-0.0898, -0.7127) -1.0316 
(-1.6071, 0.5687) 2.1043 
(1.6071, -0.5687) 2.1043 
(-1.7036, -0.7961) -0.2155 

  
B. 2-DIMENSIONAL GRIEWANK FUNCTION 

Minimize the 2-dimensional Griewank function [18] 
described by 

)cos()cos(),( 2211
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22
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1121 xcxcdxbxbaxxc −++= ................(9) 

where, a=1, b1,2=1/200, c1=1, c2=1/ 2 , d=1. 
The 2-dimensinal Griewank function has multiple optimal 

solutions and the origin is the global optimal solution. 
  
Step 1: Construct the quasi-vector field 

The quasi-vector field and the Jacobian matrix of the 
function (6) are follows. 

Quasi-vector field: 
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Jacobian matrix J: 
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Step 2: Obtain the first local optimal solution 

Integrate the constructed quasi-vector field (10) from the 
initial condition (10.0, 10.0), and obtain the first local optimal 
solution (12.4407, 8.7097). 
  
Step 3: Find decomposition points 

Trace equilibrium points from the initial condition 
(12.4407, 8.7097), which is obtained as the local optimal 
solution in the Step 2, using Continuation method. Figure 6 
shows an example of the bifurcation diagram when the 
parameter is b1. The example shows that 4 equilibrium points 
are found from the intersection between the branches (paths) 
and b1=1/200. The stability of the found equilibrium points is 
estimated by the eigenvalues of the Jacobian matrix (11). 
Follows are results. 

Decomposition points: (14.0447, 6.4642), (11.0928, 
6.8223), (10.8391, 10.9517). 

We can obtain other equilibrium points on the quasi-
stability boundary with the other parameter variation using the 
continuation method. 
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Step 4: Obtain the second, third, ...optimal solutions 

Integrate the vector field from the intersection between the 
normalized unstable eigenvector of the decomposition points 
and the ε -ball. Follows are the obtained local optimal 
solutions. 

Local optimal solutions: (15.5515, 4.3547), (9.3312, 
4.3553), (9.3297, 13.0646). 

  
Step 5: Identify the global optimal solution 

We obtained the multiple local optimal solutions by above 
steps. Figure 7 shows the obtained local optimal solutions, 
decomposition points, and the search paths on the contour.  

The origin is identified as the global optimal solutions of 
the 2-dimensional Griewank function. 
  
  
  
  
  
  

Figure 7 The obtained local optimal solutions ( ○ ),
decomposition points (●), and the search paths (arrows)
on the contour of the 2-dimensional Griewank function. 

Figure 6 The bifurcation diagrams of the 2-
dimenisional Griewank function when the 
parameter is b1. 



 

VII. CONCLUSIONS 

We presented a method to identify the locations of the 
decomposition points in the vector field and gave the novel 
approach to the searching of the global optimal solution for 
the general continuous nonlinear optimization problems. The 
proposed method overcomes the time-consuming issue of the 
previous method and has been verified by the 2-dimensional 
Hump Camel-Back function and the 2-dimensional Griewank 
function. The numerical results show the effectiveness of the 
proposed method. Expansion to the large-scale discrete and 
the mixed-integer nonlinear optimization problems is the 
future work. 
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