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Abstract - The need for new approaches and 
ilosophies in modeling and control of complex 

dustrial systems are much influenced by the recent 
vances in information technology, increased market 
mpetition, the demand for low cost operation and 
ergy efficiency.  In fact, many real-world systems such 
 power generation plants, are characterized as 
ultivariable, nonlinear and dynamic systems.  For 
ch a large complex system, it is useful to decompose 
e system into subsystems that can be analyzed and 
derstood separately.  The objective of this paper is to 
esent the development of an inverse Fuzzy State Space 
gorithm for the optimization of the input parameters, 
hich is applied to a furnace system of a combined cycle 
wer plant.  This algorithm is derived through the 
rmulation of a new approach for solving inverse 
oblems in multivariable dynamic systems. 

raditionally, such inverse problems have been 
dressed by repeated simulation of forward problems, 

hich requires excessive computer time and thus can be 
ry costly.  In the algorithm presented, it is assumed 
at the system could be expressed in the state space 
presentation.  To take into account of the 
certainties in the model, the uncertain value 
rameters of the system to be controlled are 
presented by fuzzy numbers with their membership 
nction derived from expert knowledge.  The optimal 
mbination of the input parameters was extracted 
rough defuzzification using an important theorem, 
odified Optimized Defuzzified Value Theorem.  The 
oof of this theorem is also presented.  The results 
tained in this application demonstrate that the 
oposed approach is reasonable and effective. 

eywords: Fuzzy State Space Model, fuzzy modeling, 
ultivariable systems, furnace system, Inverse problems 

I.  INTRODUCTION 

Many of the real-world problems arising in the 
alysis and design of decision and control systems are far 

from simple, specifically for handling parameter decision 
problems in multivariable dynamic systems.  Furthermore, a 
great deal of information for many real-world systems is 
provided by human experts, who describe the system 
verbally through vague, uncertain or imprecise statements.  
The fact that humans are often able to manage complex 
tasks under significant uncertainty has stimulated the search 
for alternative modeling and control paradigms. 

The most relevant information about any system 
comes in one of three ways, that is, a mathematical model, 
sensory input and output data or measurement, and human 
expert knowledge.  The common factor in all these three 
sources is knowledge.  For many years, classical control 
designers began their effort with a mathematical model and 
did not go any further in acquiring more knowledge about 
the system.  Today, control engineers can use all of the 
above sources of information.  Apart from a mathematical 
model whose utilization is clear, numerical input-output 
data can be used to develop an approximate model as well 
as a controller, based on the best available knowledge to 
treat uncertainties in the system.  A typical example of 
techniques that make use of human knowledge and 
deductive processes is fuzzy modeling.  Furthermore, fuzzy 
sets [1] also provide a tool for handling ill-conditioned or 
ill-posed problems, which exist as a result of combining 
measurements with engineering models.  The inverse 
problem [2], or more precisely the inverse modeling, is one 
type of ill-conditioned or ill-posed problems.  In inverse 
modeling, the desired responses are given and a model is 
used to estimate the input parameters.  Traditionally, such 
inverse problems have been addressed by repeated 
simulation of forward problems, for example [3], [4].  
However, this method requires excessive computer time and 
thus can be very costly.  Today, the techniques used for 
solving inverse problems are as multivariate as the 
problems themselves.  Thus, the interaction between the 
analysis of the inverse mathematical problem and the 
measurement of the real system used to solve the problem is 
very useful for constructing a good model. 
 The objective of this paper is to present the 
development of an inverse Fuzzy State Space algorithm for 
the optimization of the input parameters, which is illustrated 
by implementing to a furnace system of a combined cycle 



 

power plant.  This algorithm is derived through the 
formulation of Fuzzy State Space Model (FSSM), a new 
modeling approach for solving inverse problems in 
multivariable dynamic systems [5].  The construction of this 
model involved the integration of four different kinds of 
models, namely mental model, verbal model, mathematical 
model and state space model.  Triangular fuzzy numbers [6] 
are used to represent imprecise or uncertain parameters in 
the model, with their membership function derived from 
expert knowledge. 
 The paper is organized as follows.  After this 
introduction, section II describes the formulation of the 
inverse Fuzzy State Space algorithm specifically for 
multiple-input single-output (MISO) system.  The Modified 
Optimized Defuzzified Value Theorem and its corollary, 
which forms an important part of this algorithm, are derived 
and proven in section III.  The validity of this algorithm is 
shown by implementing it to the state space model of a 
furnace system, which is presented in section IV.  Finally, 
section V draws some conclusions from the presented work. 
 

 
II.   FUZZY STATE SPACE ALGORITHM 

 
In formulating the inverse Fuzzy State Space 

algorithm, the approach introduced in [7] is modified by 
considering the state space representation of the system.  In 
his work, he had developed a fuzzy algorithm for 
optimization of geometrical and electrical parameters of 
microstrip lines using algebraic equations. 
 Given an input gi that takes values in set Ii , and let 
preferences for different values of gi be expressed by a 
fuzzy set  FIi on Ii .   For each  , the value FIi (x) 
designates the degree of desirability of using the particular 
value x within the given set of values Ii.  Thus, set FIi  is 
referred as the set of desirable values of parameter Ii, and FIi 
(x) is viewed as the grade of membership of value x in this 
set.  Index i is used here to distinguish different input 
parameters.  The fuzzy sets expressing preference for all 
input parameters are employed for calculating the 
associated fuzzy sets for performance parameters.  The 
target values of performance parameters are specified by 
functional requirements.  Performance parameters, resulting 
from calculations with uncertain or vague input parameters, 
will also be represented by fuzzy preference functions.  
Similarly, each of the output parameters is represented by a 
range and a preference function. 

iIx∈

It is assumed that all the fuzzy sets FIi  expressing 
preferences of all input parameters  are 
determined, normalised and convex.  I is a close interval of 
positive real numbers.  Sg is a performance parameter based 
on the FSSM whereby all input parameters are considered 
as its variables and can be presented within a fuzzy set FSg   
The algorithm to determine a fuzzy set FSg  that is induced 
on the output parameters by fuzzy sets FIi  through  Sg has 
the following steps:  
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Step 1: Let  .  Sg  is the performance parameter 

such that  r = Sg(g1, g2, g3,…, gn). 
RRS n

g →:

Step 2: Select appropriate values for α-cut such that   
α1, α2, α3,…, αk  ∈ (0,1] which are equally spaced.  

Step 3: To fuzzify the input, determine all the αk-cuts for 
all  FIp ( p ∈N ). 

Step 4: Generate all  2n combinations of the endpoints of 
intervals representing  αk-cuts for all  FIp (p ∈N ).  
Each combination is an n-tuple  (g1, g2, g3,…, gn ). 

Step 5: Determine  rj = Sg(g1, g2, g3,…, gn)  for each n-
tuple,  j ∈ 1,2, …, 2n. 

Step 6: Set FSg   = [min(rj), max(rj)]  for all j ∈ 1, 2, …, 2n. 
Step 7: Determine all the αk-cuts for the preferred output 

parameter, Opref. 

Step 8: Set  [Opref ∧ FSg] . 
Step 9: Determine  f *

 = sup[Opref  ∧ FSg] and find the Sg
*, 

the Sg value for f *. 
Step 10: Find the endpoints of interval for each input Ip  

where  p = 1,2,…,n. 
Step 11: Generate all  2n combinations of the endpoints of 

intervals representing  f*-cuts for all FIp ( p ∈ N ).   
Each combination is an n-tuple (g1

*, g2
*, g3

*,…,gn
*). 

Step 12: Determine  r*  =  Sg
* (g1, g2, g3,…,gn) f*(opt)  by using 

Modified Optimized Defuzzified Value Theorem 
or its corollary. 

 
The above algorithm is developed through the three 

phases of fuzzy system.  Step 1 to 7 describe the phase of 
fuzzification, step 8 and 9 describe the processing of the 
fuzzified parameter in the fuzzy environment and the phase 
of defuzzification is described in step 10 to 12.  The values 
determined in the final step of the algorithm are the 
approximate optimal value of input parameters that will 
produce the desired value of the output parameters as 
determined by applying the Modified Optimized 
Defuzzified Value Theorem or its corollary.  It has been 
shown that all normal and convex fuzzy sets FIi , expressing 
preferences of all input parameters ) are 
mapped by the FSSM into the normal and convex induced 
fuzzy sets [8]. 

( NiRIg ii ∈⊂∈ +

 
 

III.  MODIFIED OPTIMIZED DEFUZZIFIED 
VALUE THEOREM 

 
This theorem forms the important part of the final 

phase of defuzzification and covers the whole algorithms 
and hence the FSSM.  It is a modification of the Optimized 
Defuzzified Value Theorem proposed in [7].  The proof of 
this theorem and its corollary are shown below. 
 
Theorem: 
Let   where Sg is a performance parameter 
based on the Fuzzy State Space Model.  If 

  such that    for all 

, then   
where . 

RRS n
g →:
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Proof: 
Suppose   such that    for all 

. 
jjg rrS max** == ** )( frj =µ

indj Ffr ∈)( *
,

Determine all the -cuts of all FIp  (p ∈ N )  to create all 
n-tuples of     such that     and 
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However, since  Find  is normal and convex, this imply that  
 rj = rj

*. 
 
Corollary: 
Let  where Sg is a performance parameter 

based on the Fuzzy State Space Model.  If   

such that    for all , then 

  where  . 

RRS n
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jjg rrS min** ==
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Proof: 
Suppose   such that    for all 
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*
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,

However, since  Find  is normal and convex, this imply that  
 rj = rj

*. 
 

This theorem indicates that if the preferred fuzzy 
intersects on the maximum side of the fuzzy induced, then 
the set of optimized parameters is the set for the maximum 
of the induced values.  On the other hand, the corollary 
indicates that if the preferred fuzzy intersects on the 
minimum side of the fuzzy induced, then the set of 
optimized parameters is the set for the minimum of the 
induced values.   
 
 
IV. IMPLEMENTATION ON A FURNACE SYSTEM 

 
Energy systems in power plants are one of the most 

frequently mentioned areas for thermal energy 
consideration.  Our interest is the furnace system of a 
combined cycle power plant, which is regarded as 
constituents in a heat treatment system.  The analysis of 
such system is often very complicated.  The characterizing 
equations are generally a set of partial differential 
equations, with nonlinearity arising due to convection of 
momentum in the flow, variable properties and radiatives 
transport.  However, approximation and idealizations are 
used to simplify these equations, resulting in algebraic and 
ordinary differential equations for many practical situations.  
Thus, it is assumed that the system can be represented by a 

lumped-parameter model.  The state space model of the 
furnace system developed in [9] is as follows. 
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          (2) 
Thus, based on equations (1) and (2), the furnace 

system is modeled as a first-order system with three-input 
and five-output.  The problem of fuzzy-based system 
modeling consists in developing a fuzzy multivariable 
model with n input and m output parameters characterizing 
as good as possible a certain system behaviour.  However, 
those multiple-input multiple-output (MIMO) models can 
be split into m equivalent MISO models [10] with all of the 
n input parameters of the system but only one of the m 
output parameters being subject to fuzzy modeling.  Thus, 
the furnace modeling problem with three inputs and five 
outputs can be reduced to the development of fuzzy MISO 
models with three inputs and one output.  The procedures in 
the implementation of the inverse Fuzzy State Space 
algorithm are repeated for each output parameter.  Hence, 
we define RI...II:S pg →××× 21   where Sg is the 
performance parameter based on the FSSM such that r = Sg 
(g1, g2, g3,…, gn).  A semi-automated approach using 
Matlab® m-file is used for the computations involved in 
this algorithm.  The implementation of this algorithm is 
discussed according to the three phases of fuzzy system. 
 
Phase 1:  Fuzzification 

Each of the input parameter of the furnace system is 
fuzzified.  The desired value for each input parameter has a 
value  α = 1 whereas the domain or the extreme values are 
specified as  α = 0 as shown in Table 1.  
 

Table 1  Input parameters specification 

input parameters α  =  0 α  =  1 α  =  0 

wF 10  12 16 
wA 60  65 70 
wG 20  22 25 

 
In this illustration, α-cuts with increment of 0.2 are 

used to calculate Find , the fuzzy values of induced output or 
performance parameters  Sg.  Each output parameters can be 
expressed as a linear combination of the input parameters. 
From the state space model of the furnace system and using 
the steady state operating data, the input-output relationship 
are determined to be  

  



 

Qir  =   2.593765 × 105 (wF  +  wA  +  wG ) (3) 
Qis  =   3.523226 × 104 (wF  +   wA +   wG ) (4) 
Qes  =   1.2053 × 104 (wF  +   wA  +  wG ) (5) 
pG   =   9.7993 × 102 (wF  +   wA +   wG ) (6) 
Qrs   =   3.07209 × 104 (wF  +   wA  +  wG ) (7) 

Combinations of the endpoints of intervals for all input 
parameters with respect to each particular value of α-cut are 
determined.  The number of combinations increases with a 
smaller value of the α-cut.  Each of these values is 
substituted in equations (3) – (7) so as to obtain the 
corresponding performance parameter.  The induced 
performance parameter FSg is determined by taking the 
maximum and minimum value of each performance 
parameter.  These values are used to plot the graph of FSg. 

As for the output parameters, each of the desired 
output parameter is set to the values published in [3], which 
are obtained through forward calculations and simulation.  
The desired value and its domain are shown in Table 2 and 
are used to calculate the preferred or desired output 
parameters.  α-cuts with increment of 0.2 as in the 
fuzzification of input parameters are used to calculate Opref, 
the fuzzy values of preferred or desired output parameters.  
Combinations of the endpoints of intervals for all output 
parameters with respect to each particular value of α-cut are 
determined.  These values are used to plot the graph of Opref 
. 
Table 2  Output parameters specification  

Output 
Parameters 

Domain Desired value 

Qir [2.5 × 107, 2.8 × 107] 2.6846 × 107 
Qis [3.2 × 106, 3.8 × 106] 3.6417 × 106 
Qes [1.2 × 106 , 1.4 × 106] 1.2465 × 106 
pG [9.0 × 104, 1.2 × 105] 1.013 × 105 
Qrs [3.0 × 106 , 3.3 × 106] 3.1749 × 106 

 
Phase 2:  Fuzzy Environment 
 The intersection of the fuzzy preferred output 
parameter and the fuzzified performance parameter is 
determined by superimposing the two graphs in order to 
obtain the f*- value.  The fuzzy value obtained by 
considering each of the output parameters is shown in 
Figure 1 - 5.  If there are more than one intersection points, 
the largest fuzzy membership value, f j

* is taken as the 
intersection point. Similar plots can be obtained for each of 
the output parameters. 
 
 

 
 
Figure 1  Fuzzy value for Furnace system(Q ir) 

 
 
Figure 2  Fuzzy value for Furnace system (Q is) 
 
 

 
 
Figure 3  Fuzzy value for Furnace system (Qes) 
 
 

 
 
Figure 4  Fuzzy value for Furnace system (pG) 
 
 

 
 
Figure 5  Fuzzy value for Furnace system (Q rs) 
 
 
Phase 3:  Defuzzification 
 With the f*-value obtained, the steps in the 
defuzzification process are carried out to calculate the best 

  



 

possible combination of the input parameters in order to 
accommodate all the constraints defined in the process of 
fuzzification.  Each of the eight combinations of the 
endpoints of interval are determined and processed by the 
extension principle, which was first proposed by Zadeh 
[11].  The selection of the optimal combination for the input 
parameters is determined by the Modified Optimized 
Defuzzified Value Theorem.  For each output parameter, 
the fuzzy value and the corresponding optimal input 
parameters are tabulated in Table 3.  Since the membership 
function designates the degree of desirability, the largest 
fuzzy value f* = 0.8222 is chosen and used in the rest of the 
algorithm.  Otherwise, the minimum norm value of the 
input parameters can also be used as an indicator for 
selection of the f*- value. 
 

Table 3  Calculated fuzzy value for Furnace system 

Output 
Parameters 

Fuzzy value wF wA wG 

Qir f* = 0.7645 15.2355 68.4710 23.4710 
Qis f* = 0.8222 15.1778 68.3556 23.3556 
Qes f* = 0.7213 15.2787 68.5574 23.5574 
pG f* = 0.8141 15.1859 68.3718 23.3718 
Qrs f* = 0.7543 15.2457 68.4914 23.4914 

 
The results of the implementation of the inverse Fuzzy 

State Space algorithm for a multivariable furnace system 
with MISO structure are shown in Table 4, where the 
optimal combination of the input parameters are  wF = 
15.1778 kg/s, wA = 68.3556 kg/s and  wG = 23.3556 kg/s.  
These values differ from the desired values with an error of 
about 26.48%, 5.16% and 6.16% respectively.  At the same 
time, the percentage error for each of the output parameters 
of the furnace system is computed as shown in Table 5.  It 
is interesting to note that the calculated values obtained 
using this algorithm are very close to the desired target 
values of the system.   

 

Table 4  Optimized input parameters  

f* = 0.8222 Calculated 
Values 

Desired 
Values 

Error (%) 

wF 15.1778 12 26.48 
wA 68.3556 65 5.16 
wG 23.3556 22 6.16 

 

Table 5  Calculated output parameters for Furnace System  

f* = 0.8222 Calculated 
Values 

Desired 
Values 

Error (%) 

Qir 2.7724 x 107 2.6846 x 107 3.27 
Qis 3.7659 x 106 3.6417 x 106 4.09 
Qes 1.2883 x 106 1.2465 x 106 3.35 
pG 1.0474 x 105 1.0130 x 105 3.39 
Qrs 3.2837 x 106 3.1749 x 106 3.42 
 
Subsequently, a comparison is made between the 

optimal input parameters obtained using the inverse Fuzzy 
State Space algorithm and the result obtained through 

simulation carried out by [3].  The percentage error is 
calculated and tabulated in Table 6.  The aim of this 
comparison is to highlight the difference between inverse 
modeling by utilizing fuzzy sets and a widely accepted 
forward modeling based on simulation.  With the triangular 
fuzzy number used in modeling the uncertainty, the 
obtained result should have the same value as the result in 
[3] with no uncertainty consideration.  It is observed that 
the values of the input parameters wF (fuel flow to the 
furnace in kg/s), wA (air flow to the furnace in kg/s), and wG 
(exhaust gas flow from the gas turbine in kg/s) differ with 
an error of  7.77%, 6.65% and 0.81% respectively.  In order 
to properly model the uncertainties and further improve the 
results, the parameters of the fuzzy numbers which are used 
to model uncertainties in this study, need to be adjusted 
based on the historical data or human experience.  For a 
better resolution, α-cuts with much smaller increment can 
be used.   
 

Table 6  Comparison of Optimized Input parameters  
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arameters 

Ismail’s Reference 
[3] 

Error (%) 

wF 15.1778 14.083 7.77 
wA 68.3556 64.093 6.65 
wG 23.3556 23.168 0.81 
The good results obtained in this application show that 
pproach may become an interesting tool for decision-
rs.  It will provide broader and useful information for 
r generation planning purposes.  Besides, it is 
vely easy to take into account experts knowledge and 
derations for establishing the membership functions.  
ever, we anticipate to obtain better results with a 
tion in computation time through the implementation 
e inverse Fuzzy State Space algorithm with MIMO 
ture, which is currently undertaken. 

 
V.  CONCLUSIONS 

The formulation of an inverse Fuzzy State Space 
ithm for multivariable dynamic system was presented.  
ly, the procedure involved fuzzification of all the input 
eters to create fuzzy environment.  This is then 

ssed to produce the induced output parameters.  The 
input parameters were extracted through 

zification using an important theorem, Modified 
ized Defuzzified Value Theorem.  Although we have 

rated the implementation of FSSM for the furnace 
m of combined cycle power plant, it can be applied to 
multivariable dynamic system as long as the 

ematical model of the system can be expressed in state 
 representation.  In general, this new technique for 
mination of optimal input parameters gives a broader 
seful information and provides a faster and innovative 
or decision-makers. 
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Nomenclature 
 

cgs combustion gas specific heat capacity     Js/kgoK 
wEG mass flow of exhaust gas from the boiler     g/s 
Qrs heat transferred to the reheater          J/s 
Qir        heat transferred to the risers                        J/s 
Qgs total heat transferred to the superheater       J/s 
Qes heat transferred to the economizer         J/s 
Tg gas temperature at the superheater         oK 
Tgr gas temperature at the reheater          oK 
Tge      gas temperature at the economizer         oK 
Tgl boiler exhaust gas temperature         oK 
REG initial gas constant for exhaust gases         (-) 
VF combustion chamber volume         m3  
θ tilt angle coefficient   0 < theta <1        (-) 
pG furnace air pressure           Pa 
kF chimney flow coefficient                       ms 
ρEG        density of exhaust gas from the boiler     kg/m3 

 

  


