
Temporal Radial Basis Function 
For Spatio-Temporal Series 

 
L. MESBAHI1, A. BENYETTOU1, F. HENDEL2 

 
1Signal IMage PArole Laboratory, Dept. Computer Science, Science Faculty 

2 Dept. of Electronic, Genie-Electric Faculty 
University of Science and Technology Oran- USTOMB,  

BP1505, Oran El-Mnaouer 31000, Algeria. 
Tel:(213) 41420608 - Fax: (213) 41420608 

 
                                       mesbahi_99@yahoo.com aek.benyettou@email.com

 
Abstract - In this paper, we present an extended form of the Radial Basis 
Function network called Temporal-RBF (T-RBF) network. This 
extended network is used in decision rules and classification in Spatio-
Temporal domain applications like speech recognition, economic 
fluctuations, seismic measurements and robotics applications.  We found 
that such a network complies, with a relative ease, to constraints such as 
capacity of universal approximation, sensibility of node, local 
generalisation in receptive field, etc ... For an optimal solution based on a 
probabilistic approach with a minimum of complexity, we propose two 
T-RBF models (1 and 2).  Application to the problem of Mackey-Glass 
time series has revealed that T-RBF models are very promising, 
compared to traditional networks.   
Keywords- Temporal RBF, Classification, Spatio-Temporal, Speech 
recognition, Robotics applications. 
 

I. INTRODUCTION 

      One limitation of static network is their inability to 
respond to temporal pattern in the hidden node outputs. To 
respond to these patterns, the networks must have delay 
elements within each of its layers.   The benefits of internal 
delays were demonstrated    in [1] which is the dynamic 
approach, especially in signal prediction, where in the input to 
the network is a time varying signal and the desired output is 
a prediction of the signal at a fixed lag.  Other examples   are 
speech recognition and signal production, when the output 
autonomously follows a desired trajectory [1].   
      First, Day and Davenport [1] have introduced back-
propagation through time (BPTT) in chaotic signal prediction 
tasks based on the Mackey-Glass differential delay equation.  
Lin, Ligomenides & Dayhoff [2] have proposed ATDNN [3], 
which consists of changing the delay time during learning and 
which gave good results in problems of eight and zero form. 
In problems which   require information about the next event, 
it combines the recurrent neural network (RNN) firstly and 
adds time delay connections progressively [4]. Another 
method named Long Short Term Memory (LSTM) applied to 
time series benchmark problems does not even require RNN 
at all, because all relevant information about the next event is 
in fact conveyed by a few recent events contained within a 
small time window [5]. 
     Our method integrates the time aspect in the RBF neural 
network.  The novelty is that, compared to other methods 
described above, this approach is not a black box, so we can 
alter the kernels in sub-neural networks. In addition, we can 
apply a Bayesian classifier   which introduces the prior-
probability, cost of punishment in the case of rejection of 

misclassification. It also incorporates basic aspects of static 
RBF in approximation, denseness, uniqueness of interpolation 
and convergence rate [6]. Other extensions such as moving 
centres, weighted norm and different types of basis function 
and multiple scales were also considered. These criteria 
provide a useful theoretical framework for investigating radial 
basis function networks and learning algorithms [6]. A variety 
of approaches for training radial basis function networks have 
been developed, most of which can be divided into two 
stages: (i) learning the centres and field receptor in the hidden 
layer, (ii) learning the connection weights from the hidden 
layer to the output layer [7]. In this sense, we have proposed 
our model which integrates the time parameter in the network, 
in object to resolve some forgotten features in standard 
model, like memory state, dynamic measures, recalling 
phases...etc. 
      We therefore propose two models: i) first we introduce 
the delay time only  to input neurones, ii) second we insert  
delay time in both input and hidden neurones.  In sections II 
and III we describe the TRBF neural network and the 
different models characterising this approach, mainly the 
occurrence of time in hidden and input layers disjointedly. In 
last section, we compare our approach with standard temporal 
neural networks especially in application to the famous 
Mackey-Glass chaotic time series. 
 

II. T-RBF APPROACH 

A. Definition 

     The standard RBF can be trained to accomplish pattern 
recognition tasks with complex non linear boundaries, but are 
limited to processing static patterns – patterns that are fixed 
rather than time-varying in nature [2]. The Temporal RBF, 
like ATDNN, LSTM..., have been proposed to overcome this 
limitation. Networks with this capability can play an 
important role in applications that are naturally time-varying 
and dynamic.   
       Also, like classical RBF, their goal is to approximate a 
desired    approximation by a collection of functions, named   
kernels [8], [9]. A kernel is characterised by a centre Ci and 
receptive field r, and can be chosen by k-means clustering or 
vector quantification.  

mailto:aek.benyettou@email.com
mailto:mesbahi_99@yahoo.com


       All these parameters can be taken in account to introduce 
the Bayesian probabilistic classifier and prior knowledge 
about the problem. Moreover, we can combine this approach 
with   other techniques like hidden Markovian models 
“HMM” by using the generating probabilities.  In general the 
temporal discrimination function of class K is written in the 
following form [2]: 
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      Next, we describe the network architecture and learning 
algorithm. 
 
B.  Network architecture 

     We propose the following architecture; see Figure 1 & 
Figure 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we define: 
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Where ϕ: is an activation function (Linear or Sigmoid...etc.) 
and  W0k is bias. 
The kernel function is:     

   )XC(Yh[i][j] ij i, −= σφ                (3) 
Where i=1..h, h: is number of centres . 
           j=1..m, m: is size of hidden time delay (τ2). 
           Dimension of Ci = dimension of X= n x l. 

           n= number of features of input vector. 
           l= is time delay size of input vector (τ1). 
           φj= the kernel function characterised by time delay j.  
 
C. Unfolding network 

      We use this technique to eliminate the second block delay 
in object to reduce the complexity of computation. For this 
we must go through two phases: 
Phase A 
       Time deletion by unfolding:  we apply the Network 
Unfolding Algorithm (NUA) [10], which requires the four 
steps: 

 Step1: Unfold inputs by creating new input nodes 
correspondingly and retain the weights and time 
delay on each   connection. 

 Step2: Re-adjust input time lag correspondingly for 
each hidden node j. φ,c1

 
 
 
 
 
 
φ,c2
 
 
 
 
φ,ch

 Step3: -Unfold hidden nodes by creating new hidden 
nodes correspondingly and retain the weights and 
time delay on each connection. 

                         - For each newly created node do in parallel 
copy the whole branch which associates with the 
original hidden   node in step2, and then connect to 
that new node as its branch and retain the weights 

 Step4: Re-adjust input time lag by: 
                 - Removing the associated time delays 

between hidden and outputs units 
                 - Re-adjust the input node time lag such that 

each the input node takes the temporal difference.  
For example if we have the following scheme, we obtain 
Figure 4 from Figure 3 after applying NUA. 
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Fig.1 -General  model  for T-RBF 

Fig.4. Deletion of Block delay τ2 by unfolding 
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Fig.2 -Block  delay(τ1,τ2)  representation 
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Fig.3. Initial Network with two blocks (τ1,τ2) 
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Phase B 

       The aim of fusion of two hidden neurones in one hidden 
neurone is to represent only one centre in each iteration 
through the OLS learning algorithm [6] (see Figure 5). This 
last step has an incremental learning: in each iteration it 
creates a new node representing a new cluster, until obtaining 
a sufficient number of kernels or hidden nodes as the error 
reaches the stopping threshold. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Phases A and B yields the following tasks: 

 The connection between the hidden layer and the 
output layer is based only on the weights, without 
time delay. 

 The connection between the input layer and the 
hidden layer is based only on time delay, without 
weights. 

 
C. Learning algorithm 

       The Orthogonal Least Square “OLS” algorithm has been 
applied.  We suppose that the kernel function φ is fixed and 
have the same form in all hidden neurones, the initial set must 
be fixed. Therefore this algorithm allows us to do an 
incremental learning [8].  First it makes a linear separation 
between the input layer and the hidden layer; it creates the 
hidden neurones automatically [11], with application of 
Gram-Schmidt orthogonalisation and eliminates redundant 
information. Second, synaptic weights between hidden and 
output layers are calculated by the mean square method. 
        
       We consider the RBF network as a particular case of a 
linear regression model [6], defined by: 

)t(P)t(d i
1i

i εθ +∑=
=

            (4) 

where        d(t)  : the desired output at t  time;      
                  θi       : are the search parameters. 
                  ε (t) : approximation error’s of d(t); Pi(t)= Pi (x(t))    
the fixed functions of x (t)  
        The calculated function by the RBF network is the same 
described in Equation (4), the analogy is:   

E.Pd += θ                           (5) 
       We will consider the following notations: 
d  : The desired output vector’s:   d = [d(1) ……d(N)]T. 

N: The example number’s of learning base;   M : The initial 
number of centres.  
P: The matrix of the hidden layer outputs: P =[ P1.. PM]. 
Pi :The vector of iième hidden cell outputs: Pi =[ Pi(1).. Pi(N)]T. 
θ: The vector of output layer weights:      θ = [θ1....θM]. 
  E  : The vector of errors between the calculated and desired 
outputs:   E = [ ε (1).. ε (N)]T. 
       The resolution of equation system’s (5) is a trivial 
problem. The solution vector θ can be defined by the mean 
square method. 
The original idea of OLS method resides in transformation of 
P matrix to matrix with orthogonal columns one by one. The 
Orthogonalisation of columns Pi can be obtained by the 
decomposition of P matrix in two matrices W and A :   

                                      .                             (6) A.WP=
Where W: of size N x M, is the orthogonal image of P matrix. 
A: of size M x M, is superior triangular matrix, it contains the 
Orthogonalisation coefficients. 
 
The A matrix is defined in the following form: 
                     
           1  α1,2……………….   α1,M

             0  1   ......……… .......   α2,M  
                      ..........................    
A=        0   0  ….1      αM-2,M-1      αM-2,M

             0   0   ………….1         αM-1,M
             0   0  …………..0         1 
 
The breeding space from the Pi vectors is the same space 
breeding by the Wi vectors, and the equation system’s (5) can 
be rewritten in new form: 

                                      d= W*G+E                               (7) 
Where G=A. θ is the researching solution. 

Noting that:                    H=WT.WE                               (8) 
 
Since the columns of W matrix are orthogonal one by one, H 
is diagonal matrix with hi elements we have: 
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       This propriety makes useful the OLS method, for the 
following reason: the orthogonal solution G is calculated by: 

dW.HG t1−=                      (10) 

We can calculate the Gi by:     
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       This signifies that gi elements of orthogonal solution G 
are dependant only on wi column, in other words they depend 
on orthogonal image of calculated output for each centre. This 
part defines the quotient of approximation error reduction, 
introduced by each wi vector and can be expressed by:  
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       This equation is used to construct the RBF network in 
iterative manner. Beginning with initial set of M centres, the 
network is constructed to each iteration, by adding a centre 
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Fig.5. Resulting Network after fusion 



which have the [err]i maximal, and we take the correspondent 
Gi.  For each iteration, we calculate the A and W elements by: 
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We use the criterion Akaike to stop the iterations: 
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In the end of iterations, we calculate θi (the synaptic weights), 
by the following system:            

                          θ.AG=                                    (16) 
 

III.  T-RBF MODELS 

 A. Model 1  

     In this model, we consider the network with bloc delay τ1, 
without bloc delay  τ2 (see Fig1 & Fig.2.), it means that we 
take into account the “l” delays of  measures of input layer 
with simply one connection between hidden and output 
layers, for each hidden neurone. 
 
B. Model 2  

     In this case, we consider the network with bloc delay τ1 
and bloc delay τ2, it means that we take in consideration the 
“l” delays of measures of input layer, with “m” delays of 
hidden layer, representing the “m” history states for each 
hidden neurones. 
 

IV. EXPERIMENTATION 

A. Application of « Mackey-Glass series » 

     The Mackey-Glass series (1977) is a case of typical 
dynamic system [4], which describes the production of white 
blood cells, and can be generated from the delay differential 
equation: 
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      With a=0.2, b=0.1, c=10, τ=17 and x(t)=0.8 for t<=17 in 
our application, for τ>17 the series become chaotic and for 
τ=17 is quasi periodic series [4][5][2]. 
B. Data base  
     We have constructed a base of 300 (examples and targets), 
each example being represented by  
<x(ti), x(ti -τ)> and his corresponding target is <x(ti+1)>, 
where 

      dt
)t(dx)x(t )x(t i1i +=+ |t=ti              (18) 

C. Parameters 

 Complexity:  We have used the model2 of TRBF, for 
the length of bloc delay τ1 is 1 and the length of bloc 
delay τ2 is 2. We need to one input layer node, one 
output layer node and sufficiently some hidden layer 
nodes. 

 Akaike criterion: This criterion fixed at 0.001 is used 
in OLS Algorithm. First part it stops the iterations 
based on quadratic error, second part it determine the 
complexity of hidden layer (number of kernel 
functions characterised by theirs centres and receptor 
field). In our case we have obtained 3 hidden nodes. 

 Gaussian kernel: This kernel function is 
characterised by their asymptotic properties and 
getting accuracy in learning and generalisation 
phases. It is presented by the cluster (meaning 
centre) and spreading deviation.   

  
D. Evaluation 

 Mean Square Error 
To take part of veracity and the goodness results we 
have computed the MSE between calculated outputs 
from TRBF and targets from the learning base. We 
have obtained the MSE equal to 0.02. 

 Comparison 
 We show the results obtained by the application of 
analytic differential equation towards the results 
obtained by TRBF approach, we see the different 
cases in the following figures 6and 7. For example in 
figure 6 the curve of x(t) towards  x(t-1)  in our 
approach falls approximately on the same position of 
curve obtained by analytical differential equations. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 State space( current and previous states)
Fig.7 Strange attractors on state space



              We conclude this work with a comparative table 
which summarise the results obtained by different temporal 
neural network approaches [5] against our model which have 
given a good results with minimum of parameters.  
         We define the abstract terms given in table1:  
ATNN « Adaptive temporal neural network », SOM «Self 
Organising Map», MLP«Multi Layers Perceptron», AMB 
«An improved Memory Based regression», LSTM « Local 
Short Term Memory », TRBF « Temporal Radial Basis 
Function ». 
 
 
 

NMSE Temporal 
Methods 

 
Units Parameters T=2 T=6 T=84

ATNN 
SOM 
MLP 
AMB 

LSTM 
TRBF 

20 
- 
4 
- 
4 
5 

120
10x10

25
-

113
9

- 
- 
- 
- 

0.0214 
0.0198 

0.005 
0.013 

0.0511 
- 

0.1184 
0.005 

-
0.06
0.46

0.054
0.47

-
 

V. CONCLUSION 

       Inspection of the comparative table and the figures 
suggests that the proposed Spatio-temporal estimator based 
on temporal radial basis function is effective and accurate 
with a minimum complexity. The advantage of this work is to 
show that a complicated problem based on the Mackey- Glass 
time series prediction can be recognised by such a simple 
TRBF architecture.  We thus conclude from this study that the 
TRBF is a good tool to tackle temporal signal processing and 
prediction problems. 
       The network accomplishes the identification of 
background model of Mackey-Glass delay differential 
equation again with high accuracy (NMSE =0.0198). This 
proposed architecture can be useful and promising in 
biomedical prediction tasks, recognition of trajectories from 
moving targets, motion visual images, robotics application 
and speech recognition. Also we can introduce the prior 
probability and cost errors in terms of Bayesian probabilistic 
approach, an application that needs to determine the winner 
class with flexible decision, since our model is based on 
collection of kernel functions with theirs features in 
probabilistic approximation. 
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