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Abstract—In curve design, controlling macroscopic feature 
that emerges from the total of shape elements is important. 
However, trial and error is required in order to control the 
curved profile to be set reflecting macroscopic feature 
imaged by designer, because there is no useful method for 
controlling macroscopic feature in the conventional 
computer aided design system. We proposed the method 
for representation of macroscopic feature using curvature 
integration and multi-resolution representation. This 
method was applied to shape-generation for the design of 
automobile side-view. As a result, it was confirmed that 
the control of macroscopic feature was possible. In the 
present study, it was shown that the possibility of new 
design-support in curved profile. 

I. INTRODUCTION 

Currently, a curve and curved surface shape are widely used 
in various industrial products. In considering new curved 
profiles, controlling the overall shape feature that emerges 
from the total of shape elements is important. The main reason 
for this appears to be that human beings tend to perceive the 
overall shape feature (such as Gestalt) macroscopically as 
pointed out in cognitive psychology [1]. However, trial and 
error is required in order to control curved profiles to be set 
reflecting macroscopic feature imaged by designer, because 
there is no useful method for controlling macroscopic feature 
in the conventional computer aided design system. 

Quantitative representation of macroscopic feature is 
important to control macroscopic feature. However, 
representation of macroscopic feature is difficult using 
conventional microscopic shape information (such as 
dimension and curvature), because the microscopic shape 
information represents the partial feature of curved profile. If 
quantitative representation of macroscopic feature is realized, 
a designer can control macroscopic feature indirectly by 
shape-generation that utilized search algorithm (such as 
genetic algorithm) including method for representation of it. 
Therefore, in curve design, the method for representation of 
macroscopic feature and the design-support system that can 

control macroscopic feature by designer is desired. 
In our past study, we had proposed the method for 

representation of macroscopic feature "complexity" using 
curvature integration, and the effectiveness of the method had 
been confirmed in various curved profiles (such as basic 
curved profiles and existing automobile side-views) [2-5]. 
"Complexity" affects evaluation of the important item on 
design, such as "beauty" and "similarity". Moreover, it is 
possible that the quantification of "complexity" using the 
amount of physics computed from curved profile, because 
there is little individual difference of evaluation for 
"complexity." 

In the present study, firstly, we proposed the method for 
representation of macroscopic feature "complexity" using 
curvature integration and multi - resolution representation. 
Multi - resolution representation was utilized for preventing 
the generation of curved profiles containing the swell that a 
man cannot recognize. Next, this method was applied to 
shape-generation for the design of automobile side-view 
described by cubic Bézier curve, and the possibility of 
controlling macroscopic feature "complexity" using the 
proposed method was verified. 

II. CURVATURE INTEGRATION 

In the knowledge of the study about the "complexity" in 
outline shapes, the number of vertices is cited as one of 
important factors of the "complexity" [6,7]. A vertex is the 
feature point for a straight- line profile. The feature point in 
the curved profile is equivalent to a high curvature point [8]. 
Therefore, it is considered that the number of high curvature 
points cause "complexity" in the curved profile. However, in 
order that curvature changes continuously, the threshold that 
divides a high curvature point and the other point is needed as 
a parameter. In our past study, the number of high curvature 
points was not computed using threshold, but the integration 
of the absolute curvature was computed as curvature 
integration. This value is known one of the global properties 
of curved profile in the differential geometry [9]. 

Curvature integration from curvature function in the curved 



profile is calculated in the following manner. In Fig. 1, the 
vertical axis is curvature κ , the horizontal axis is the curve 
length l, the curvature function is κ( l) and the total length of 
curved profile is L. Curvature integration is calculated using 
the following equation: 

(1) 

III. MULTI-RESOLUTION REPRESENTATION 

Smoothing was utilized for preventing the generation of 
curved profiles containing the swell that a man cannot 
recognize. In this method, parameter controls the size of the 
swell removed. Moreover, it is called multi - resolution 
representation of shape to change a parameter to many stages 
and to acquire the shape of various resolutions [10]. There is 
study that analyzes the property of shape based on change of 
the amount of physics in multi - resolution representation 
[11-13]. 

The multi - resolution representation in curved profile is 
based on the view of scale space proposed by Witkin [14]. In 
this method, Gaussian kernel G(u ,σ ) of width σ : 

(2) 

is used for smoothing. σ  is the parameter for smoothing. A 
two-dimensional planer curve is defined in the following 
equation: 

(3) 

Then, smoothed curve, X(u ,σ ) and Y(u ,σ ), are computed by 
the convolution of C(u) and G(u ,σ ), and are defined as: 

(4) 

(5) 

In smoothing by Gaussian kernel, no new inflection points are 
created at higher smoothing [15]. Therefore, the curvature 

integration function I (σ )  computed by multi - resolution 
representation is a monotonically decreasing function. 

For preventing the generation of curved profiles containing 
the swell that a man cannot recognize, the following two 
methods were proposed in the present study. One is that 
curvature integration is computed after smoothing with 
arbitrary parameter. In this method, multi - resolution 
representation is utilized for adjustment of parameter. The 
other is that index S that shows the robustness of "complexity" 
represented by curvature integration is newly proposed. In this 
method, the curved profile with the swell of the size that is 
hard to be recognized is removed using S as index. S is 
defined as following equation using I*(σ )  by 
multi - resolution representation. 

(6) 

Here, I (σ )  was standardized as following: 

(7) 

IV. APPLICATION TO SHAPE-GENERATION 

A. Construction of Shape-Generation Method 
The algorithm of proposed shape-generation method is 

shown in Fig. 2 
Based on studies of Tian [16], the automobile side-view 

was described as a polygonal profile consisting of eight basic 
points (Fig. 3), and defined junction points (Fig. 4) for 
description by curved profile. In consideration of the freedom 
of shape description, and the simplicity of control, cubic 
Bézier curve was used as description of curved profile in the 
shape generation method (Fig. 5). The automobile side-view 
(Sedan) was used as the initial shape for the shape-generation, 
and the curve control variables (the position of the basic point, 
the direction of a tangent vector, and the size of a tangent 
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Fig. 1.  Extraction of curvature integration based on curvature function. Calculation of Curvature Integration I

Genotype → Phenotype
( Deformation of initial shape )

Calculation of fitness A

EndSelection, Crossover, Mutation

Meet end condition

Preparation of initial population

Description of initial shape

Genetic algorithm

Yes

No

Calculation of Curvature Integration I

Genotype → Phenotype
( Deformation of initial shape )

Calculation of fitness A

EndSelection, Crossover, Mutation

Meet end condition

Preparation of initial population

Description of initial shape

Genetic algorithm

Yes

No

Fig. 2.  Algorithm of shape - generation method. 



vector) were changed in the shape-generation. Then, movable 
ranges of curve control variables were defined for preventing 
shape generation from generating a curved profile having a 
self- intersection and cusp. The movable range of basic points 
is shown in Fig. 6 as an example. 

In the shape generation method, a genetic algorithm (GA) 
was used as a search algorithm. GA is a search algorithm 
imitating the evolution process of a living thing. Global search 
is attained in order that parallel search by many individuals is 
performed. The curve control variables were manipulated in 
the shape generation. The chromosome for GA was composed 
of an arrangement of the numerical values for this 
manipulation. The fitness was the absolute value of the 
difference between curvature integration of an individual and 

curvature integration that the designer set. Crossover was 
handled in the manner described by Obayashi [17]. The 
random weighted mean of the real number variable was used. 
Other GA parameters were referred to DeJong's standard 
parameter [18]. 

B. Shape-Generation 
In shape-generation, the amount of change in curvature 

integration was set as four levels of -0.25, +0.25, +0.50, and 
+0.75 based on the result of analysis about the range of 
change in curvature integration. The presentation of samples 
is shown in Fig. 7. As a result of analyzing the relationship 
between curvature integration and "complexity", it was found 
that both are high correlation. However, in a certain generated 
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Fig. 3.  Basic points. 

Fig. 4.  Junction points. 

Fig. 5.  Interpolation by a cubic Bézier curve. 

Fig. 6.  Movable range of basic points. 
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Fig. 7.  Presentation of samples. 



shape, although the value of curvature integration was high, 
the value of "complexity" was low (Fig. 8). 

The generated shape (a) to which curvature integration and 
"complexity" correspond was extracted, and it was compared 
with the generated shape (b) to which curvature integration 
and "complexity" not correspond (although curvature 
integration is equal, evaluations of "complexity" differ 
greatly). As a result, it was confirmed that the generated shape 
(a) contained the swell of the size recognized enough, and, on 
the other hand, the generated shape (b) contained the swell of 
the size which is hard to be recognized (Fig. 9). This tendency 
was found in the whole sample. Therefore, it was confirmed 
that the importance of preventing the generation of curved 
profiles containing the swell that a man cannot recognize. 

C. Multi -Resolution Analysis 
Multi- resolution representation was applied to the 

generated shapes (a) and (b) shown in Fig. 9, and I (σ )  was 
computed. In Fig. 10, the vertical axis is I (σ ) , the horizontal 
axis is σ . Moreover, Fig. 11 shows the situation of smoothing 
in the range of σ  to which I(σ )  decreases greatly. The swell 
of the size which can be recognized easily is smoothed in the 
range of σ =0.01 to σ =0.1 in the generated shape (a). On the 

other hand, the swell of the size which is hard to be 
recognized is smoothed in the range of σ =0.001 to σ =0.01 in 
the generated shape (b). Fig. 12 expands a part of the 
generated shape (b) in Fig. 11. 

About the 1st method proposed in Chapter 3, in order to 
calculate the value of suitable σ , the correlation coefficient R 
between the natural logarithm of I (σ )  and "complexity" in 
generated shapes was computed to every σ  (Fig. 13). As a 
result, R became the highest when σ  was set to 0.02, as 
shown in Fig. 13. However, this knowledge is restricted to the 
experiment conditions in the present study. In order to utilize 
this method, it is necessary to newly build the model that 
outputs the value of suitable σ . 

About the 2nd method proposed in Chapter 3, in order to 
calculate the value of suitable S, the correlation coefficient R 
between the natural logarithm of I  and "complexity" in 
generated shapes removed in the small order of S was 
computed to every S  (Fig. 14). As a result, it was confirmed 
that R becomes high as generated shape was removed in order 
with the small value of S. If the value of S is set more highly, 
the robustness of the "complexity" represented by curvature 
integration will become higher. Therefore, the adjustment of S 
for remove is considered to be easy as compared with that of 

0
1
2
3
4
5
6

0 1 2 3

Regression curve :  y = 3.85 ln(x) + 1.37

Contribution ratio :  R2 = 0.62

Significance level :  0.00 

C
om

pl
ex

ity

Curvature integration

0
1
2
3
4
5
6

0 1 2 3

Regression curve :  y = 3.85 ln(x) + 1.37

Contribution ratio :  R2 = 0.62

Significance level :  0.00 

C
om

pl
ex

ity

Curvature integration

Fig. 8.  Relationship between curvature integration and complexity. 

(a) (b)

Swell (large scale) Swell (small scale)

(a) (b)

Swell (large scale) Swell (small scale)

Fig. 9.  Swell (large scale and small scale). 
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suitable σ . However, it is necessary to smoothing repeatedly 
for calculation of S, and calculation cost becomes high. 

About the comparison of above-mentioned two methods, it 
will verify in various application from now on. In the present 
study, the method for preventing the generation of curved 
profiles containing the swell that a man cannot recognize was 
proposed, and the effectiveness of this method in the 
shape-generation was confirmed. 

V. CONCLUSIONS 

In the present study, the method for representation of 
macroscopic feature "complexity" using curvature integration 
and multi-resolution representation was proposed. And, this 
method was applied to shape-generation for the design of 
automobile side-view. As a result, it was confirmed that the 
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Fig. 11.  Situation of smoothing in the range of σ  to which I (σ ) decreases
greatly. 
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control of macroscopic feature "complexity" was possible by 
use of this method as shape-generation index. It was shown 
that the possibility of new design-support in curved profile. 
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