
 

 

 

  
Abstract— In many fields there are situations encountered, 

where a function has to be approximated to determine its output 
under new conditions. Some functions have one output 
corresponding to differing input patterns. Such types of functions 
are difficult to map using a function approximation technique such 
as that employed by the Multilayer Perceptron Networks. Hence to 
reduce this functional mapping to Single Pattern – to – Single 
Pattern type of condition, and then effectively estimate the 
function, we employ classification techniques such as the Support 
Vector Machines. This paper describes in detail such a combined 
technique, which shows excellent results for a practical application 
in the field of Power Distribution Systems. 
 

Index Terms— FeedForward Neural Networks, Support Vector 
Machines, Function Approximation, Pattern Classification. 
 

I. INTRODUCTION 
UNCTION approximation (FA) is typically the estimation 
of the output of an unknown function for a new input 

pattern, provided the function estimator is given sufficient 
training sets such that the unknown parameters defining the 
function are estimated through a learning strategy [1]. Function 
approximation is more commonly known as regression [2] in 
statistical theory. This function is usually a model of a practical 
system. The training sets are obtained usually by simulation of 
the system in real time. If the training set is given by,  

( ) ( ) ( ) ( ){ }1 2 31 2 3, , , , , , ,N Nx y x y x y x y………       (1) 

x = input pattern vector of size 1n× , y  = target vector of 

size 1m× , N  = number of patterns.  

Then we need to estimate the functional relation between x  

and y  i.e.,  

( );i iy c f x t=                                                               (2) 

 
 

ic = constants in the function, it  = parameters of the function, 

:f S → \ , 

where nS ∈\  is a closed bounded region, and if a  and b  
are lower and upper limits of x , then 

{ }| , 1n
i i iS x a x b i n= ∈ ≤ ≤ ≤ ≤\ . 

Function Approximation by Multilayer Perceptron Networks 
[3], [4] like the FeedForward Neural Networks (FFNNs) [5] is 
proven to be very efficient, considering various learning 
strategies like the simple Back Propagation or the robust 
Levenberg Marquardt [13] and Conjugate Gradient approaches. 
Radial Basis Function Networks (RBFNs) have also been 
applied to functional approximation [6]. Like networks with 
nonlinear transfer functions, RBFNs have the ability to 
represent arbitrary functions.  

Assume there are 0m  number of variables in the function 

( )f ⋅ ⇒  ( )01 2, ,........, mf x x x ⇒  approximate function. 

Now if the true function is ( )01 2, ,........, mF x x x , then the 

FFNN equates this to 
01

1 1
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     Now the objective is to find the parameter values of 1m and 

values of all ijw ’s, ib ’s and iα ’s, such that 

( ) ( )F f ε⋅ − ⋅ < , for all 01 2, ,........, mx x x . In the next 

sections I shall consider the data sets obtained from a system as 
perfect measurements, i.e., no presence of noise. This allows us 
to investigate the entire problem without touching the topic of 
generalization, which is not of much debate in the idea behind 
this presentation. 

In this paper, I shall demonstrate how, by effectively 
combining FeedForward Neural Networks and Support Vector 
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Classifiers, a complex Function Approximation problem can be 
broken down into a simple one and then solved to obtain 
accurate results. The proposed technique is applied to a real life 
problem, e.g., fault location in power distribution systems, and 
the results proving the efficiency of the technique. 

II. MULTI-PATTERN-TO-SINGLE-PATTERN FUNCTIONS 
Let us look at the problem of FA as a mapping problem, 

where, by one-to-one mapping we mean that each input vector 
has a corresponding and unique target vector. These mappings 
are simple to model by FFNNs. This relates to a function that 
has one output for each input. But, this is not the case in many 
fields. For example, let us study the case of a sine function. 
Assume that a system has the characteristic shown in Fig. 1a, 
which has to be estimated. Let the estimation be done by a 
FFNN with nonlinear transfer functions. The data sets that are 
available for training of the FFNN are the data corresponding to 
the two cycles a and b (red and blue). Let the data points be 
obtained on the sine curve at the rate of s  samples per cycle. 

 

 
Fig. 1a. Sine wave characteristics of a sample system. Red sine represents 
cycle ‘a’ and blue sine represents cycle ‘b’. 

 
For convenience Fig. 1a is redrawn as Fig. 1b. Inputs aiX  

and biX  have same output iY . This value is stored by the 

FFNN in the form of a straight line. For both the inputs running 
through one cycle, we have a set of such straight lines with 
varying amplitudes (Fig. 2). 

 

 
Fig. 1b. Simpler representation of Fig. 1a. 

 
Now suppose there exists an intermediate sine cycle between 

cycles a and b. if p has similar shape and size as of a and b, 

then, we can estimate its Y  throughout the cycle just by noting 
the Y  values at corresponding intermediate point pX  in Fig. 

2. This estimation of Y  turns out to be equal to that at aX  or 

bX . 
Now instead of p being similar to a or b, suppose it to be of 

different size as shown in Fig. 3. Now, as in Fig. 2, if we 
estimate Y ’s at pX X= , the results would not match with 

that of the true function represented by p. this is due to the fact 
that the curves joining the two sets of vertical points in Fig. 2 
are still straight lines, though in reality they are of the shape of 
curves with amplitudes (Y ’s) at pX  different from that at aX  

or bX . 
 

 
Fig. 2. Graphical depiction of “how FFNN stores input-to-output functional 
relationship”. 

 
Let us name this type of mapping as Two-way mapping or 

Multi-Pattern-to-Single-Pattern mapping in general, because, 
estimation of the actual function is the first FA problem, and 
estimation of the shapes of the curves (lines in Fig. 2) is the 
second FA problem, i.e., two different input patterns aiX  and 

biX  correspond to a single output pattern iY . This is 

illustrated graphically in Fig. 2 by straight lines. 
 

 
Fig. 3. Different characteristics of the same system. 

 
The misestimating of p is mainly due to insufficient data 

(cycles) between a and b. Even if there were data between a and 
b, this would have called for a strain on the FFNN to learn the 
entire input space. This is because it has to learn in both 
directions, one in the direction of the sine propagation and the 
other in the direction of the vectors joining a and b. To relieve 
the FFNN of this burden [7], [8], the datasets are labeled and 
correspondingly classified using Support Vector Classifiers 



 

 

 

(SVCs), which are then combined suitably with the FFNNs so 
as to give an effective approximation to the overall true 
function of the system under study. The FFNNs are trained 
using the Levenberg Marquardt algorithm [13] with 
regularization term, and the SVCs are trained by the simple but 
yet very fast algorithm of Sequential Minimal Optimization 
(SMO) [15]. 

III. FUNCTION APPROXIMATION BY COMBINED                     
FFNNS AND SVCS 

We have described in detail, what I mean by the term Multi-
Pattern-to-Single-Pattern Functional Mappings. These types of 
characteristics are often encountered in the modeling of 
practical systems. Hence their detailed analysis is of good 
relevance. Also, from the perspective of pure mathematics, this 
problem possesses quite importance for detailed analysis to be 
done. To describe and apply the proposed approach to a 
practical system, we shall consider a live topic in the field of 
power engineering. Fault Location in Transmission and 
Distribution Industry has received quite interest in the last two 
decades. Ever since Neural Nets have risen as powerful 
Function Approximators, the area of fault location has received 
much more attention [9]. We shall briefly describe here, the 
problem of Fault Location in Distribution Systems. 

 

  
Fig. 4. A practical 19-Bus 11KV distribution system feeder. 

 
Consider a practical 11 KV, 19 bus Distribution Feeder 

shown in Fig. 4. Each bus is a distribution transformer with a 
specified load. The feeder line has a resistance ( R ) and 
reactance ( X ) of 0.0086 0.0037 . . /and p u km  respectively. 

As /R X  ratio is fixed, let us consider X  as the only 
variable.  

For the detection fault location, we need to consider various 
practical aspects involved in the day-to-day operation of a 
distribution system. In a single day we have various loading 
patterns, which have to be simulated, and also we need to 
consider various types of faults that occur in a realistic 
scenario. During fault conditions, if we consider the three-phase 

voltage and current measurements at the substation (bus 1) as 
our input elements, we can predict the location of fault by the 
output of the function estimator. This output is the reactance of 
the line, which in turn is the length of the faulty part of the line 
measured from bus 1. This is a single-pattern-to-single-pattern 
type of functional mapping, as each measurement vector 
produces a corresponding and unique output pattern. The other 
practical factors mentioned above, lead to the Multi-Pattern-to-
Single-Pattern Functional Mapping, which has to be mapped 
exactly for the estimation of fault location in real time. For 
generating the data sets for training, the following procedure is 
adopted: 
− A Short Circuit is simulated with a particular type of fault 

(Line-Ground (LG), Line-Line (LL), Line-Line-Ground 
(LLG), Symmetrical 3phase) at a particular bus, and at a 
particular Source Short Circuit (SSC) level (this is to 
simulate the loading patterns of the system).  

− Measurements are noted at the substation.  
− The 6 1×  input pattern (three voltages and three currents) is 

reduced to 3 1×  using Principal Component Analysis (PCA) 
(useful in viewing the dataset).  

− Now the SSC level, fault type, and the fault buses are varied 
throughout their range, individually, and the data set is built 
up. The SSC range is from 20MVA to 50 MVA in steps of 
5MVA. 

 
Fig. 5. Dataset of the complete function estimation problem. 

 

 
Fig. 6. Dataset corresponding to LG fault. Each dot represents fault on a bus, 
the solid curves represent variation of fault position (buses), and the dotted 
curves represent variation of the SSC level. 



 

 

 

We see from Fig. 5 that estimating this complex function is 
quite difficult for an individual FFNN with any architecture. 
Hence, the first Function Breakup is by labeling the data 
according to their fault types and then classifying them by a 
SVC. In real time, this SVC block classifies the type of fault of 
an input pattern and the function estimator corresponding to 
this fault type does the remaining job. This is seen from Fig. 6, 
where the function looks less complex and can be modeled with 
less difficulty. 

A SVC is trained, with data of each solid curve being labeled 
according to their SSC levels. As there are 7 SSC levels that are 
simulated, we have 6 binary classifiers, which classify patterns 
to a particular SSC level for further use by the function 
approximators. Now the work of the function approximators (in 
this case the FFNN) is cut down to estimation of the solid 
curves, i.e., data relating to one fault type and one SSC level. If 
n is the number of SSC levels that are simulated, then the 
number of classifiers chosen is (n – 1). Thus, there are 6 binary 
classification problems for each of the SSC level classifiers 
‘SVM a’ to ‘SVM d’ to solve during training process, e.g., 
Classifier 1 classifies faults of 20 MVA and 25 MVA. ‘SVM a’ 
in Fig. 7 refers to SSC level classifier that is trained with Line 
to Ground faults. The function value ( )f x  of (A6) points to 
the class the pattern belongs to i.e., each SVC outputs the 
pattern as a positive or negative function value, which is 
indicative of it belonging to either class. 

 
TABLE I 

CLASSIFYING LG FAULTS OF TWO LEVELS 

Classifier 
No 

Classes 
(MVA) 37MVA 38 MVA 

1 20 – 25 -4.3428 -4.2143 

2 25 – 30 -3.5312 -3.1255 

3 30 – 35 -1.9712 -2.5783 

4 35 – 40 1.0923 0.2345 

5 40 – 45 3.0093 1.7389 

6 45 – 50 7.2876 3.8578 

 
Table I describes the classification of 37 MVA and 38 MVA 

SSC level faults as that of 35 MVA and 40 MVA SSC levels 
respectively. The results correspond to LG faults of levels 37 
MVA and 38 MVA, simulated on a bus. The ( )f x  value of 
the 37 MVA fault changes sign at classifier nos. 3, 4 (in third 
column of Table I - the value of ( )f x  changes from -1.9712 

to +1.0923) and the common class between these two classifiers 
being 35 MVA, we classify this fault as one that occurred in the 
group of 35 MVA. Similarly for the 38 MVA fault, which is 
categorized as belonging to 40 MVA class. The proposed 
combined approach to the function estimation problem relevant 
to this application is depicted in the form of a block diagram 
below. Also, the results in Table II show that the estimation of 
the unknown function (B7) by the proposed approach has errors 

in the negligible range of 0.5 – 1.0 %. 
 

 
Fig. 7. Block Description of the proposed approach. 
 

TABLE II 
TRAINING PATTERNS AND TARGETS FOR LG FAULTS AT A SOURCE SHORT 

CIRCUIT LEVEL OF 35 MVA AND THE CORRESPONDING OUTPUTS. 
B 
u 
s 

Va Vb Vc Ia Ib Ic Target Output 

Source Short Circuit Level: 20 MVA 
2 0.66 0.92 1.00 23.5 1.91 2.06 0.1110 0.1112 
3 0.88 0.96 1.01 11.4 1.99 2.10 0.2960 0.2934 
4 0.77 0.94 1.01 17.5 1.95 2.13 0.1665 0.1672 
5 0.84 0.95 1.01 13.9 1.98 2.12 0.2220 0.2221 
6 0.82 0.95 1.01 14.9 1.98 2.14 0.2035 0.2047 
7 0.87 0.96 1.01 11.6 2.00 2.13 0.2775 0.2772 
8 0.88 0.96 1.01 10.9 2.02 2.15 0.2960 0.2929 
9 0.92 0.97 1.01 8.34 2.06 2.15 0.4070 0.4084 

10 0.95 0.98 1.01 6.12 2.08 2.15 0.5920 0.5915 
11 0.96 0.98 1.01 5.70 2.08 2.14 0.6475 0.6471 
12 0.96 0.98 1.01 5.46 2.08 2.14 0.6845 0.6822 
13 0.97 0.99 1.01 4.83 2.08 2.13 0.8140 0.8156 
14 0.97 0.99 1.01 4.76 2.08 2.13 0.8325 0.8334 
15 0.97 0.99 1.01 4.75 2.08 2.13 0.8325 0.8351 
16 0.96 0.98 1.01 5.70 2.08 2.14 0.6475 0.6432 
17 0.97 0.99 1.00 4.61 2.08 2.12 0.8695 0.8677 
18 0.97 0.99 1.01 4.75 2.08 2.13 0.8325 0.8339 
19 0.97 0.99 1.00 4.27 2.08 2.12 0.9805 0.9818 

IV. CONCLUSION 
In this paper it is proved that a complex function 

approximation problem can be solved efficiently by simple 
neural networks such as FeedForward Neural Networks and 
Support Vector Classifiers, but only through the techniques 
such as the one proposed here, which combines both of the 
above neural networks to reduce the complex function to a 
simpler one. The idea behind this type of function reduction is 
substantiated with results from application of the proposed 



 

 

 

technique to a real life problem. The problem chosen for the 
case study was the fault location problem in power distribution 
systems, as it has some unique features, which result in a 
complex function approximation problem. 

APPENDIX 

A. Support Vector Classifiers 
For the training of the SVM the Sequential Minimal 

Optimization (SMO) algorithm is used, which is very fast and 
robust for the present problem.  

For training data from the thi and thj classes, we solve the 
following binary classification problem: 

, ,

1min ( )
2

( ) ( ) 1 , ,

( ) ( ) 1 , ,

. ., [( ) ( ) ] 1 , 1, , ,
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ij ij ij
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tw b
t
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t t t
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ξ ξ

φ ξ
φ ξ
φ ξ

ξ

+

+ ≥ − =

+ ≤ − + =

+ ≥ − =

≥

∑

…

        (A1) 

where : n Hφ →R  is some nonlinear function. 

The training data ix  are mapped to a higher dimensional 

space by the function φ  and C is the penalty parameter. The 

training data ix  are mapped to a higher dimensional space by 

the function φ  and C is the penalty parameter. The term 
1 ( )
2

i T iw w  is minimized because this would mean maximizing 

the margin 2 / iw  between the two classes of training data. The 

penalty term ij
t

t
C ξ∑ is required when the classes are not 

linearly and perfectly separable. The Lagrangian for the above 
problem is: 

1

1 1

1( , , ; , ) ( )
2
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N
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t t
t

N N
T

t t t t t t
t t

L w b w w C
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α ξ φ β ξ

=
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∑
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        (A2) 

By the Wolfe dual problem [16] of maximizing this lagrangian, 
we get the optimum weights and bias terms as: 

1 1
( ) 0

1 , 0, 0, 0

N N

t t t t t t t
t t

t

w y x y C

t N C

α φ α α β

α β α
= =

= = = +

≤ ≤ ≥ ≥ ≤ ≤

∑ ∑              (A3) 

Substituting these in the Lagrangian, we get the dual problem to 
be solved to get the optimum Lagrangian variables: 

1 1 1

1

1max ( ) ( ) ( )
2

0, 0 0

N N N
T

i i j i j i j
i i i

N

i i i
i

L q y y x x

subject to y C i N

α α φ φ α α

α α
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=
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∑

        (A4)

  

Instead of the dot product ( ) . ( )T
i jx xφ φ  we use the dot 

product Kernel 
2

[( ) ( )]

2( , )

T
i j i jx x x x

i jK x x e σ
− − −

=  to avoid the 

explicit calculation of the function φ .  
The SMO algorithm searches through the feasible region of 

the dual problem and maximizes the above objective function, 
find finding the optimal values of the Lagrangian multipliers. 
The conditions for optimality can be stated as 

0 ( ) 1
0 ( ) 1

( ) 1

i i i

i i i

i i i

y f x
C y f x

C y f x

α
α

α
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                                            (A5) 

Where ( )f x is given by,  

( ) ( , )i i i
i S

f x y K x x bα
∈

= −∑                                          (A6) 

Here { : 0}iS i α= >  & ( , )j i i i j
i S

b y y K x xα
∈

= −∑  for some j 

such that 0 j Cα< < . 

B. Functions in the Fault Location Problem 
Fig. 8 shows a general fault occurring on the distribution 

system feeder. The substation is considered as the source or the 
sending end of the power, while the load is the receiving end. 
During steady state fault conditions with fault resistance to 
ground, the source supplies most of the short circuit MVA to 
the fault point. 

There is a definite relation between the measurements at the 
sending end, and the distance of fault from this end, for the 
faulted phase. Consider a fault of a general type occurring on a 
bus (or on a line section) at a distance of p from the Source 
side.  

(0) ( ),abc abc
i i fV V   : Voltages at bus i, initially and during fault  

                      conditions. 
abc

iiZ     : Driving Point Impedance of bus i. 

,abc abc
f fI Z   : Fault current, fault impedance 

( )
abc

p fV     : During fault voltage at fault point p. 

( )
abc abc abc

p f f fV Z I=                    (B1) 

Voltage of bus i during fault is 

( ) (0)
abc abc abc abc

i f i ii fV V Z I= −                 (B2) 

Similarly voltage at fault point p during fault is 

( ) (0)
abc abc abc abc

p f p pp fV V Z I= −                (B3) 

Substituting (B1) in (B3),  

(0)
abc abc abc abc abc
f f p pp fZ I V Z I= −               (B4) 

The fault current is obtained as 

( ) 1

(0).abc abc abc abc
f f pp pI Z Z V

−
= +               (B5) 

Substituting the value of abc
fI from (B5) in (B2), 



 

 

 

1
( ) (0) (0). ( ) .abc abc abc abc abc abc

i f i ip f pp pV V Z Z Z V−= − +        (B6) 

This is the value of voltage at bus i, during steady state fault 
conditions. From (B6), it is seen that, the voltage at bus i during 
fault is a function of initial voltage at buses i and p, driving 
point impedance of bus p, transfer impedance between buses i 
and p, and the fault impedance. By considering ( )

abc
i fV  as a 

measurement at the sending end, we obtain the distance of the 
faulty bus p from the sending end. (The distance is implicit of 
the terms abc

ipZ  and abc
ppZ ).  

In simple analogy, (B6) is ( )y f x=            (B7) 

where, 

( ), ,abc abc abc
s s fx V I R= =  Measurements at sending end, 

( , )abc abc
pp ipy g Z Z= = Distance of fault from sending end. 

g  is a function relating the distance of fault bus from the 
source, and the corresponding terms of the Z-bus matrix. 
 

 

 
Fig. 8. 3-phase Radial network with general fault at distance p from the source 
side. 

 
The relation in (B7) will become complex, once varying load 

conditions, fault resistance, and different types of faults on a 
feeder, are incorporated. This function would then correspond 
to numerous inputs mapping onto a single target, e.g., a LG 
fault occurring at the same location on a feeder, but at different 
SSC levels. Such type of mapping is difficult to model by a 
single FFNN. Hence, this paper proposed a new, combined 
approach, wherein the SVM breaks the complexity of (B7), and 
the FFNN estimates the unknown parameters in (B7) based on 
supervised learning. 
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