
 

ABSTRACT 
Design verification has played an important role in the 

design of large scale and complex systems. In this article, 
we focus on model checking methods. Behaviors of modeled 
systems are general specified by temporal formulas of 
computation tree logic, and users must know well about 
temporal specification because the specification might be 
complex. We propose a method temporal formulas are ob-
tained inductively, and amounts of memory and time are 
reduced. We will show verification results using the pro-
posed method. 
 

Index Terms—Inductive Specification, Strong/Weak 
Temporal Order Relation, Computation Tree Logic, System 
Verification. 

I. INTRODUCTION 
ecently design verification has played an impor-
tant role in the design of large scale and complex 

systems. System verification ascertains whether de-
signed systems can be executed or specified. Various 
formal methods for verification have been studied 
[1][2][3][4][5][6]. In this article, we focus on model 
checking methods. In model checking methods, a 
targeted circuit or system is modeled and unimpor-
tant or irrelevant to verification details are elimi-
nated. Users can determine the structure of hierar-
chical levels (such as architecture, register-transfer or 
gate) in the modeling process. A circuit (or system) is 
modeled using a signal transition graph (STG) be-
cause we particularly aim to asynchronous hand-
shake circuits in this research. Then behaviors of 
modeled systems are generally specified by temporal 
formulas of computation tree logic (CTL). Finally, 
checked circuits are verified whether the circuits can 
satisfy descriptions of specification. In specifying 
temporal formulas, however, users must know well 
about temporal specification because the specification 
might be complex. In this article, we extend our pro-
posed method to specification method which can ob-
tain temporal formulas inductively from modeling 

systems. Moreover, we also show that verification 
tasks can be executed efficiently by using the pro-
posed method. 

The rest of this article is organized as follows: In 
section II, Signal Transition Graph, Computation 
Tree Logic, Symbolic Model Checking and NuSMV 
are briefly explained, and in section III our proposed 
method is described by means of procedures of speci-
fication. Moreover, we demonstrate specification 
examples using the proposed method, and in section 
IV some asynchronous circuit bench marks are used 
for verification to compare by NuSMV tool. Finally, 
we summarize the discussion in section VI. 

II. PRELIMINARIES 

A. Signal Transition Graph 
Signal Transition Graph (STG)[7][8][9][10] is a 

well-known method for specifying asynchronous se-
quential circuits. STG is a sub-class of Petri nets, 
which are free choice nets. The structure for STG is a 
triple M = < S , R , S0 >, where S is a set of signal 
transitions in reachable states, R is a set of transition 
relations on S , and S0 is a set of initial transitions, 
where S0 is a subset of S. An signal transition graph is 
shown in fig.2. 

B. Computation Tree Logic 
The correctness property to be verified is specified 

in CTL. CTL is branching-time temporal logic, ex-
tending propositional logic with temporal operators 
that express how propositions change their truth 
values over time. Here we use temporal operators: 
Operators G, F, and X meaning globally, sometime in 
the future, and next time, respectively. In CTL, these 
operators must be preceded by a path quantifier 
which is either A (for all computation paths) or E (for 
some computation path). We consider operators AG, 
AF, and AX: The formula AG p holds in state s if p 
holds in all states along all computation paths start-

Temporal Formula Specifications Using 
An Inductive Method 

Chikatoshi Yamada i , ii, Yasunori Nagata ii, and Zensho Nakao ii 
i 4558 Memu Fukagata-city, Hokkaido, 074-8585, JAPAN 

Takushoku University Hokkaido College 
email: cyamada@takushoku-hc.ac.jp 

ii 1 Senbaru, Nishihara, Nakagami, Okinawa, 903-0213, JAPAN 
Electrical and Electron Engineering Department, University of the Ryukyus 

email: ngt@eee.u-ryukyu.ac.jp, nakao@augusta.eee.u-ryukyu.ac.jp 

R



 

ing from s, while the formula AF p holds in state s if p 
holds in some state along all computation paths 
starting from s. The formula AX p holds in state s if p 
holds in all the states that can be reached from s in 
exactly one step. CTL formulas and semantics are 
defined as follows. 

 
1) CTL formulas 

a) Every atomic proposition is a CTL formula. 

b) . If ϕ  and ψ  are CTL formulae, then so are 
¬ ϕ , (ϕ ∧ψ ), AXϕ , EXϕ , A(ϕ Uψ ), 
E(ϕ Uψ  ). 

 
The remaining operators are viewed as being derived 
from 1)  as following rules: 
 

     ϕ ∨ψ  = ¬  (¬ ϕ ∧ ¬ψ ) 
     AFψ  = A (true U ψ ) 
     EFψ  = E (true U ψ ) 
     AGϕ  = ¬E(true U¬ ϕ ) 
     EGϕ  = ¬A(true U ¬ ϕ ) 

 
2) Semantics of CTL formulas 

a) s |= ϕ ⇔ s ∈  L(p), where p is an atomic 
proposition. 

b) s |= ¬ ϕ ⇔ s  |≠  ϕ  

c) s0 |= AXϕ ⇔ For all paths (s0 , s1 , …), s0 |= 
ϕ  

d) s0 |= EXϕ ⇔ For a path (s0, s1, …), s1 |= ϕ  

e) s0 |= AGϕ ⇔ For all paths (s0, s1, …), for all 
i,  
si |=ϕ  

f) s0 |= EGϕ ⇔ For some path (s0, s1, …), for 
all i,   si |=ϕ  

g) s0 |= A (ϕ Uψ )⇔  For all paths (s0, s1, …), 
for some i, si |=ψ and for all  j<i, sj |=ϕ  

h) s0 |= E (ϕ Uψ )⇔  For some path (s0, s1, …), 
for some i, si |=ψ and for all  j<i, sj |=ϕ  

 

C. Symbolic Model Checking 
Model Checking is a process of exploring a finite 

state space to determine whether or not a given 
property holds. The major problem of model checking 
is that generally making exhaustive exploration is 
feasible because the state space arising from practical 
problems are often extremely large. 

A promising approach to this problem is the use of 
symbolic representations of the state space. In CTL 
symbolic model checking, Boolean functions repre-
sented by Ordered Binary Decision Diagrams 
(OBDDs) are used to represent the state space instead 
of explicit adjacency-lists. This can reduce the mem-
ory and required time dramatically, because OBDDs 
represent occurring Boolean functions very compactly 
in almost cases. 

D. NuSMV 
We execute verification using NuSMV[11] in this 

research. NuSMV is designed to be a well structured, 
open, flexible and documented platform for model 
checking. NuSMV is the result of the reengineering, 
reimplementation and extension of SMV[12]. NuSMV 
can process files written in the SMV language, and 
allows for the construction of the model with different 
modalities, reachability analysis, fair CTL model 
checking, computation of quantitative characteristics 
of the model, and generation of counterexamples. In 
addition, NuSMV features an enhanced partitioning 
method for synchronous models, and allows for dis-
junctive partitioning of asynchronous models, and for 
the verification of invariant properties in combination 
with reachability analysis. Furthermore, NuSMV 
supports Liner Temporal Logic (LTL) model checking. 
The algorithm is based on the combination of a tab-
leau constructor for the LTL formula with standard 
CTL model checking. 

 

III. PROPOSED METHOD 
Behaviors of modeled systems are generally speci-

fied by temporal formulas of CTL. Finally checked 
circuits are verified whether the circuits can satisfy 
descriptions of specification or not. In specifying 
temporal formulas ,however, users must know well 
temporal specification because the specification might 
be complex. Here we show that temporal specifica-
tions can be obtained inductively. We especially take 
into account an asynchronous handshake circuit 
shown in fig.1. The procedure of specification is indi-
cated as follows: 

 
 



 

A. Procedure of specification 
 

[1] Extracting all paths (fig.4). 
 
(A) a+   b+   d+   c+   a-   b-   d-   c- 
(B) a+   b+   d+   c+   b-   a-   d-   c- 
(C) a+   b+   d+   c+   b-   d-   a-   c- 

 
 
[2] For each path, extracting input-output (IO) re-
lations. The extraction can be repeated until detec-
tion of reverse value of a signal (such as from a+ to 
a-). If the reverse value are detected, then the ex-
traction can start for the next signal. Initial values 
of all signals are “zero”, i.e. “-”.values of all signals 
are “zero”, i.e. “-”. 
 

(A) {(a+ , b+) , (a+ , c+) , (d+ , c+) , (d+ , b-) , (a- , 
b-) , (a- , c-) , (d- , c-) , (d- , b+)} 

 
 

 
Figure 1: A checked handshake circuit. 

 

 
Figure 2: An signal transition graph for the circuit. 

 

 
Figure 3: A state graph for the circuit. 

 
 

Figure 4: A branch expression for the state graph, 
where ‘+’ means rising edge and ‘-’ means falling edge 
respectively. 

 
Here we compare input a+ with d+. Successors 
(outputs) of a+ are b+ and c+, and successors of d+ 
are c+ and b-, respectively. However, successor b- of 
d+ expresses the next cycle of path (shown under-
lined). Thus signal event a+ occurs earlier than b+. 
Such a relation is called as a weak temporal order 
relation. 
 
 



 

(B) {(a+ , b+) , (a+ , c+) , (d+ , c+) , (d+ , b-) , (a- , 
c-) ,  (d- , c-) , (d- , b+)} 

(C) {(a+ , b+) , (a+ , c+) , (d+ , c+) , (d+ , b-) , (a- , 
c-) , (d- , c-) , (d- , b+)} 

 
For path (B) and (C), we can see that these paths 
are equivalent. Thus there are equivalent paths in 
IO relation. Although there is an IO relation (a- , b-) 
in path (A), there is not (a- , b-) in (B). However, 
signal event b- in (B) can occur by (d+ , b-). Elimi-
nation of (a- , b-) shows that b- occurs earlier than 
a-. Thus, if there are reverse IO relations between 
paths, such a relation is called as a strong temporal 
order relation. 
 
[3] Let us introduce temporal operators to an IO 
relation. In path (A), IO relation (a+ , b+) shows 
that b+ is an immediate successor of a+, specified as 
AX(a+ , b+). Here temporal operator AX can be used 
because there is only a transition b+ from a+. 
Moreover, IO relation (a+ , c+) shows that c+ is a 
successor of a+, not immediate, specified as AF(a+ , 
c+). Similarly, temporal operators can be intro-
duced to IO relations as follows: 
 
 

(A) {AX(a+ , b+) , AF(a+ , c+) , AX(d+ , c+) , 
AF(d+ , b-) , AX(a- , b-) , AF(a- , c-) , AX(d- , 
c-) , AF(d- , b+)} 

 
(B) {AX(a+ , b+) , AF(a+ , c+) , AX(d+ , c+) , 

AF(d+ , b-) , AF(a- , c-) , AX(d- , c-) , AF(d- , 
b+)} 

 
(C) {AX(a+ , b+) , AF(a+ , c+) , AX(d+ , c+) , 

AF(d+ , b-) , AF(a- , c-) , AX(d- , c-) , AF(d- , 
b+)} 

  
 
Although path (B) and (C) were distinguished in 
procedure 2, it can be done by introducing temporal 
operators. 
 
[4] Specifying all paths using temporal formulas. In 
all paths, transitions which are the same temporal 
operators and IO relations can be extracted. 
 

{AX(a+ , b+) , AF(a+ , c+) , AX(d+ , c+) , AF(d+ , 
b-) , AF(d- , b+)} 
 
These relations can be satisfied globally on all 
paths. Thus temporal operator AG can be intro-
duced as follows: 
 

AG[AX(a+ , b+) ∨  AF(a+ , c+) ∨  AX(d+ , c+) ∨   
AF(d+ , b-) ∨  AF(d- , b+)] 
 
Since AF expresses “sometime in the future for all 
paths”, the next operator AX can be covered as AX 
⊆  AF. Thus, for IO relations (a- , c-) and (d- , c-) on 
the path (B) and (C), temporal formulas can be 
specified as follows: 
 

AG[AF(a- , c-) ∨  AF(d- , c-)] 
 
Therefore, 
 

AG[AX(a+ , b+) ∨  AF(a+ , c+) ∨  AX(d+ , c+) ∨  
AF(d+ , b-) ∨  AF(a- , c-) ∨  AF(d- , c-)  ∨  AF(d- , 
b+)]. 
 
 
[5] Here, AX(a+ , c+) and AF(d+ , c+) can be com-
bined as  AF(a+ ∧  d+ , c+) because transition c+ 
occurs by transitions a+ and d+ at the next. Thus 
the formulas can be specified as follows: 
 

AG[AX(a+ ∧  d- , b+) ∨  AF(a+ ∧  d+ , c+) ∨  
AF(d+ , b-) ∨  AF(d+ , b-) ∨  AF(a- , c-) ∨  AF(d- , 
c-)] 

 
This temporal specification can express liveness 
property. As mentioned above, we can obtain tem-
poral formulas inductively. 

Figure 5: An asynchronous pipeline. 

Figure 6: A low level construction of the pipeline. 



 

Figure 7: An STG of the pipeline. 

IV. SPECIFICATION EXAMPLE 
In this section, we demonstrate specification of an 

asynchronous pipeline shown in fig.5. An STG speci-
fication of the pipeline in fig.5 (middle) only shows 
behaviors of ctrl modules because arbitration modules 
are extremely important parts for asynchronous sys-
tems. First, temporal formulas are specified without 
our proposed method as follows: 

 

A. Specification without the proposed method 
 
[ctrl1] AG[AX(ur+ , sr+) ∨  AF(ur+ ∧  sr+ , ra1+) ∨   
AF(ur+ ∧  sr+ ∧  ra1+ , cr1+ ∧  ur1-) ∨  AF(ra1+ , 
sr-) ∨  AF(cr1+ , ra1-) ∨  AX(ra1- , cr1-) ∨  AF(sr- 
∧  cr1- , ur+)] 
 
 
[ctrl2] AG[AX(cr1+ ∧  cr2- , rr2+) ∨  AF(cr1+ ∧  
rr2+ , ra2+) ∨ AX(cr1+ ∧  rr2+ ∧  ra2+ , cr2+) ∨  
AF(cr2+ , ra2+) ∨  AF(rr2+ ∧  ra2+ , cr1-) ∨  
AX(ra2- ∧  cr1- , rr2-) ∨  AF(cr2- , cr1+)] 
 
[ctrl3] AG[AX(cr2+ ∧  cr3- , rr3+) ∨  AF(cr2+ ∧  
rr3+ , ra3+) ∨  AX(cr2+ ∧  rr3+ ∧  ra3+ , cr3+) ∨  
AF(rr3+ ∧  ra3+ , cr2-) ∨  AF(ra3+ ∧  cr2- , rr3-) ∨  
AF(cr3+ , ra3-) ∨  AX(ra3- , cr3-) ∨  AF(rr3- ∧  cr3- , 
cr2+)] 
 
[ctrl4] AG[AX(cr3+ ∧  cr4- , rr4+) ∨  AF(cr3+ ∧  
rr4+ , ra4+) ∨  AX(cr3+ ∧  rr4+ ∧  ra4+ , cr4+) ∨  
AF(rr4+ ∧  ra4+ , cr3-) ∨  AF(ra4+ ∧  cr3- , rr4-) ∨  
AF(cr4+ , ra4-) ∨  AX(ra4- , cr4-) ∨  AF(rr4- ∧  cr4- , 
cr3+)] 
 
This specification is the result of all behaviors for 

the ctrl modules in fig.2 because temporal formulas 
are considered not only in input-output order rela-
tions but also in output-input order relations, such as 
relations between sr+ and ra1+. Next, we indicate 

temporal formulas with our proposed method as fol-
lows: 

 

B. Specification with the proposed method 
 
[ctrl1] AG[AX(ur+ ∧  ra1- , sr+) ∨  AX(ur+ ∧  ra1+ , 
cr1+) ∨  AX(ur- , sr-) ∨  AX(ra1- , cr1-)] 
 
[ctrl2] AG[AX(cr1+ ∧  ra2- , rr2+) ∨  AX(cr1+ ∧  
ra2+ , cr2+) ∨  AX(cr1-, rr2-) ∨  AX(ra2- , cr2-)] 

 
[ctrl3] AG[AX(cr2+ ∧  ra3- , rr3+) ∨  AX(cr2+ ∧  
ra3+ , cr3+) ∨  AX(cr2-, rr3-) ∨  AX(ra3- , cr3-)] 
 
[ctrl4] AG[AX(cr3+ ∧  ra4- , rr4+) ∨  AX(cr3+ ∧  
ra4+ , cr4+) ∨  AX(cr3-, rr4-) ∨  AX(ra4- , cr4-)] 
 
These temporal formulas considered only in-

put-output order relations by our proposed method, 
and note that no AF temporal operator is used. Thus, 
the specifications are only used AX computation path.  

 

V. VERIFICATION RESULTS 
We verify some asynchronous bench marks as shown 
in the table. All these circuits are performed on an 
Intel Pentium-III 800Mhz processor with 512Mb of 
RAM under Vine Linux 2.6. The table lists the results 
of such comparative circuits. For each circuit, we re-
port the number of boolean variables necessary to 
represent the corresponding model (“BDD vars”), and 
memory and time required by the systems to analyze 
the model. In the table, some circuits can be found in 
the distribution of NuSMV[11]. 

Here, pipeline4 is an asynchronous pipeline shown 
in fig.5. The number # in pipeline # refers to the 
number of stages, for example, pipeline10 consists of 
10 stages. C-element4 consists of 3 Muller C elements 
with 4 inputs and 1 output as shown in fig.3 (upper), 
and queue4 consists of 4 queue modules as shown in 
fig.3 (lower). For small circuits such as C-element4, 
queue4 and pipeline4, the memory is the same and 
time is not much difference between the two methods. 
On the other hand, as the circuits become larger, the 
effect begins to appear in the results: It is remarkable 
especially for pipeline modules. 
 
 
 
 
 



 

 

Figure 8: C-element4. 

 

Figure 9: A queue module. 

VI. CONCLUSION 

We proposed a method by which temporal formulas 
can be obtained inductively for specifications in model 
checking. Users must generally know well temporal 
specification because the specification might be com-

plex. Our proposed method can gain temporal formula 
specifications inductively. We aimed at input-output 
order relations for circuits (or systems), not consid-
ering output-input order relations. Furthermore, we 
defined strong/weak temporal order relations in the 
procedure of specification. Weak temporal order rela-
tions include orders of inputs implicitly. Strong tem-
poral order relations express inverse input-output 
order relations. We showed the verification tasks are 
reduced for memory and time with our proposed 
method. For the future works, we will consider only 
strong temporal order relations, and will check 
structures of complex systems with the relations. 
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Table:  Verification results 

With our method Without our method 
Circuit 
Name 

BDD 
Vars Memory 

(KB) 
Time 
(secs) 

Memory 
(KB) 

Time 
(Secs) 

C-element4 19 4355 0.11 4355 0.1 

C-element16 217 5283 0.32 5283 0.39 

queue4 55 4430 0.11 4430 0.12 

Pipeline4 69 4457 0.14 4507 0.19 

Pipeline10 141 5424 0.51 5551 0.82 

Pipeline20 261 15207 34.45 15358 125.42 

dme1 359 6397 0.59 6430 0.68 

dme2 369 8408 1.29 8445 1.35 

abp4 67 5184 0.57 5811 1.12 

Pci 129 6634 0.98 6727 1.08 


