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Abstract— Diversity of individual classifiers is essential for
successful ensemble learning. However, without a quantifiable
definition of diversity, it is unknowable whether or not the desired
diversity is obtained. This paper introduces a probabilistically
optimal ensemble technique for training based classifiers. The
existing ensemble techniques focus on diversity promotion, hop-
ing that a to-be-formed ensemble will be adequately diversified
by such techniques. However, little attention has been paid to
measuring the diversity of a formed ensemble. A probabilistically
optimal ensemble technique, based on fault masking among
individual classifiers, provides the metric for diversity.

I. INTRODUCTION

The purpose of ensemble learning is to enhance accuracy
and to reduce performance fluctuation through voting by the
ensemble members. Diversity among the voters is essential for
successful ensembles, since there is little gained by combining
individuals of a similar voting behavior. Without a quantifiable
diversity definition, whether or not desired diversity is obtained
is unknowable. This paper provides a metric that probabilisti-
cally quantifies diversity of an ensemble, which in turn enables
us to form an optimal ensemble.

The existing ensemble methods focus on diversity promo-
tion techniques, hoping that a to-be-formed ensemble will be
adequately diversified by such techniques. An isolated island
model in evolutionary computation is an example of diversity
promotion. Individual classifiers are trained in isolation and
combined after training is completed. However, little attention
has been paid to measuring the diversity of a formed ensemble.
Without a proper diversity metric, we will not recognize
insufficient diversity of a formed ensemble when the applied
diversity pressure (such as an isolated island model and
different initial weights in neural networks) did not function
as intended.

A probabilistically optimal ensemble is an adaptation of the
principles of fault tolerant computing. For example, a three
version system can tolerate one fault by a simple majority rule
(fault masking). To quantify the diversity, we use the expected
error rate of combined individuals when the individual faults
are assumed to be independent. If the error rate of an ensemble
classifier is not in the neighborhood of the expected error rate,
we conclude some of the voters are not casting independent
votes. In other words, given classifiers and the individual error
rates, we can compute the error rate of a probabilistically

optimal fault masking ensemble. This metric is beneficial be-
cause it allows us to detect and reject ensembles of insufficient
diversity. Take bagging for instance. Bagging [1] is a technique
to promote diversity of ensemble members. However, whether
or not desired diversity is obtained is unchecked. The proposed
metric can be used as an acceptance test of an ensemble
formed by bagging.

Initially, this probabilistic metric was developed to enhance
accuracy and to reduce performance fluctuation of programs
produced by genetic programming [2]. Genetic programming
is a randomized and training based learning algorithm. In-
evitably, a trained individual produces faulty outputs due to
the stochastic nature of the algorithm and the quality of the
training data. Also, performance of equally fit individuals over
the identical training set may widely fluctuate on an unseen
data set. Hence, N-version Genetic Programming (NVGP)
was developed. However, the generality of NVGP technique
does not limit its application only to genetic programming.
Any classifier combination method will benefit from this
probabilistic diversity metric.

The paper is organized as follows: Section Il provides N-
version programming background. Section 11 reviews current
ensemble approaches. Section IV reviews diversity issues and
introduces the probabilistic quantification of diversity and
the optimal ensemble. Section V presents the experimental
results on a DNA sequence classification problem. Section VI
discusses the implications of our study and future research.

Il. BACKGROUND OF N-VERSION PROGRAMMING (NVP)

A fault is an undesirable behavior within a system, such
as incorrect output from a program module or a dropped bit
in a communication line. However, the system may behave
correctly. A failure occurs when a system behaves incorrectly.
For example, returning an incorrect value to the user or
forwarding an erroneous packet is a failure. Fault-tolerant
systems detect and process faults before they become failures.
NVP is defined as the independent generation of N > 2
functionally equivalent programs (versions) from the same
initial specifications [3]. A fundamental assumption of the
NVP is that an independent programming effort will reduce
the probability that similar errors will occur in two or more
versions [3].



But this assumption was questioned. Knight and Leveson
applied a probabilistic metric to measure the assumed inde-
pendence of modules in NVP [4], and rejected the hypothesis
of the assumed independence of faults by independently
developed programs. However, this conclusion does not in-
validate NVP in general. Hatton determined that multiple
versions developed for NVP are sometimes more reliable
and cost effective than a single good version [5], even with
non-independent faults. His 3-version system increased the
reliability of the composite NVP system by a factor of 45.
This is far less than the theoretical improvement of a factor
of 833.6. Nonetheless, it is still a significant improvement in
system reliability.

I1l. ENSEMBLE TECHNIQUES
A. Ensemble technique development

Hashem has published a series of research papers on linearly
optimal combination of artificial neural networks (ANN).
Among them are [6], [7]. His research showed that the
performance of an optimal linear combination of neural net-
works was superior to the individual combination constituent
modules. In his approach, an optimal weight vector for the
redundant modules (separately trained ANNs to be combined)
is computed from the sample space. In 1995, Krogh and
Vedelshy also proposed a weighted average technique. How-
ever, the concept of diversity emerged in their study [8]. They
expressed it as “the disagreement among the networks on input
2”. The ensemble generalization error was decomposed into
two terms: the errors of the individual networks and all correla-
tions between the networks. The importance of disagreement
without increasing the individuals’ errors is recognized. To
promote disagreement, they suggested subset training and a
mixture of neural networks of different topologies.

In 1996, Rosen proposed decorrelated neural networks,
which perform error cancellation by averaging [9]. It is a
similar work to the study conducted by Krogh and Vedelsby.
However, he made an important remark on the penalty im-
posed on correlations. If the penalty is too high, then even
though the individual networks may be highly decorrelated,
the ensemble network performance may be poor. This situation
occurs when covariance is reduced at the expense of an
increase in individual network errors.

In 1997, Zhang and Joung proposed Mixing Genetic Pro-
grams (MGP). MGP chooses a pool of individuals from a
population and the master unit assigns the voting weights to
these individuals using an additive weighting scheme [10].

In 1998, Jimenez and Walsh proposed a dynamically
weighted ensemble which assigns weights to each output
according to the individual network’s confidence [11]. If an
individual is highly confident with its output, the output will
have a high weight. Likewise, if an individual is not confident,
the output will have a low weight. This work is related to our
future research on decision abstaining NVGP [12].

In 1998, Feldt adapted NVP to GP ensembles [13]. In his
study, 120 ensembles are formed by exhaustively combining
3 of the 10 top performing individuals out of 80 individuals.

Pairwise diversity of program behaviors is computed by av-
eraging correlation coefficients of every pair of individuals.
However, the low correlation often did not lead to a low
failure rate, and the paper left this for a future study. The
problem is that the pairwise measure does not define the
optimal ensemble. Therefore, the ensemble that obtains the
lowest correlation may be sub-optimal. We have a simple
explanation as to why pairwise correlation as a measure of
the ensemble diversity may not lead to effective fault masking.
Suppose we have 3 programs, P1, P2, and P3. Assume that (P1,
P2) are correlated but (P1,P3) and (P2,P3) are not. Even if this
system had a low average correlation coefficient, the system
would be essentially a 2-version system, which is capable of
detecting errors but not capable of masking errors. A diversity
metric that is based on pairwise dissimilarity has also been
proposed by Ekart and Németh [14]. We need to reexamine
the validity of the assumption that pairwise dissimilarity is
equivalent to the system-wise diversity. In 1999, Iba applied
boosting and bagging to genetic programming. His experiment
validated the effectiveness of these techniques and showed
the potential for controlling bloat (the tendency of GP to
produce larger programs over time) [15]. In the same year,
Soule applied voting to GP [16].

In 2001, Land used an adaptive boosting (AdaBoost) tech-
nique to improve performance neural network architectures
that employ evolutionary techniques in a breast cancer diag-
nostic application [17]. The AdaBoost algorithm trains a weak
learner (slightly better than random guessing) by iterating
training while increasing the weights of mis-classified samples
and decreasing the weights of correctly classified ones [18].
The effect is that the weak learner focuses more and more
on the previously mis-classified samples. Therefore, noise
and outliers receive high weights at the later stages and the
AdaBoost becomes susceptible to them. Rétsch et. al. adapted
weight decay in order to curve the susceptibility [19].

Also, in 2001, Langdon proposed the use of GP to combine
given classifiers. [20]. Instead of optimizing linear combina-
tion, GP was used to discover optimal combination. Imamura
used simple averaging to track a moving object by multiple
individuals generated by GP [21]. The experimental distributed
GP ensemble system significantly improved the mean-time-
between-failures compared with a single best version.

In 2002, Imamura proposed NVGP [22]. Unlike Feldt’s N-
version ensemble approach, the NVGP optimal ensemble do
not use pairwise correlation as a measure of the ensemble
diversity. Instead, NVGP uses the expected failure rate of
an ensemble when the individual faults are assumed to be
independent. NVGP’s system-wise diversity metric solves the
problem associated with the pairwise correlation method.
NVGP is different from weight optimization for given individ-
uals or subset training methods. NVGP defines the optimality
of an ensemble based on the fundamental assumption of
N-version programming, that is, independent programming
efforts would reduce the probability that similar errors will
occur in multiple versions [23]. NVGP uses this definition to
validate the ensembles.



In the same year, Imamura proposed accuracy enhance-
ment by decision abstention. Decision Abstaining N-\ersion
Genetic Programming is NVGP that abstains from decision-
making, when there is no decisive vote among the modules to
make a decision. A special course of action may be taken for
an abstained instance.

B. Boosting and Bagging

Boosting and bagging are methods that perturb the
training data by resampling to induce classifier diversity. The
AdaBoost algorithm trains a weak learner (slightly better
than random guessing) by iterating training while increasing
the weights of misclassified samples and decreasing the
weights of correctly classified ones [18]. The effect is that
the weak learner focuses more and more on the misclassified
samples. The trained classifiers in each successive round
are weighted according to their performance and cast a
weighted majority vote. Bagging (Bootstrap aggregating)
replicates training subsets by sampling with replacement
[1]. It then trains classifiers separately on these subsets
and builds an ensemble by aggregating these individual
classifiers. However, both techniques have limitations.
Boosting is susceptible to noise, Bagging is not any better
than a simple ensemble in some cases, neither Boosting nor
Bagging is appropriate for data poor cases, and bootstrap
methods can have a large bias [18], [24], [25], [26], [27], [28].

IV. DEFINITION OF PROBABILISTICALLY OPTIMAL
ENSEMBLE

A. Conditions for probabilistically optimal ensemble

Apparently, if multiple individuals acquire the same knowl-
edge, there will be no benefit of combining them since fault
masking will not occur. We must consider the following two
conditions in order for fault masking to take place:

1. If individuals produce faulty outputs, then such outputs
should be statistically independent.
2. Individuals must have a reasonably high fitness.

The first condition is to quantify the degree of individual
learning. The second condition is a restriction on the first
condition so that we do not have a situation where combination
of low fit individuals becomes a high fit system. In such a
system, the low fit individuals can be viewed as terms of an
expression rather than vote participating individuals because
the outputs of low fit individuals do not contribute to fault
masking. Consider the following case for example:

1. Unseen target function is: y = z.

2. Evolved individuals are: f1 = 999 % 2 + 1000 and f2 =
10 x z 4 10.

3. Linear combination is: y = 100 f2 — f1.

Neither f1 nor f2 will approximate the target function in
proximity. Although a linear combination yields perfect so-
lutions, the correctness is not due to fault masking. It is more
appropriate to view this ensemble system as a single program.

Thus, different behaviors alone do not necessarily lead to a
needed diversity for fault masking [2].

B. Definition of probabilistically optimal ensemble

Let n be the size of an ensemble, p be the probability
that each of n individuals produces a faulty output, and m
is the minimum number of faulty outputs for an ensemble
to fail. (We assume the same fault p rate for individuals for
simplicity.) Then, the expected failure rate f of this ensemble
(initially derived for n-modular redundant hardware systems

[29]) is
f=Z(Z)(1—p)”_kp’“ )
k=m

For an N-version classifier system, such as ours, the i
individual fault rate p; is the ratio of misclassified examples
to the total number of training instances. In this case, f is the
expected error rate of an ideal ensemble. If the fault rate is the
same for every p;, f is an area under a binomial probability
density function as shown in the above formula. The error
rate of an ensemble is close to the statistically expected error
rate f precisely when component failures are not dependent.
For example, suppose we have three individuals of error
rate 0.2. Then, the expected ensemble failure rate should be
0.2343.22.8 = 0.104. If the ensemble does not attain this error
rate, the desired fault masking is not happening. Therefore, the
ensemble is not optimal. Explicit quantification of the module
diversity relative to the expected failure rate measures the
effectiveness of a formed ensemble.

C. A view on weighted linear combinations

As far as voting is concerned, weighted linear combination
can be viewed as an ensemble some individuals of which have
the same voting behavior. For example, if the combination
weight vector is 0.5, 0.25, 0.25 for classifiers ¢y, ¢2, 3. Then, it
is the same as an ensemble which consists of ¢1, ¢1, ¢2, c3 With
the equal weights. Although probabilistically optimal ensem-
ble can be considered as a special case of linear combination,
we state the following to clarify the fundamental difference:

Linear combination is a search problem for the
best weight vector for given classifiers, while the
probabilistically optimal ensemble is a search for
classifiers of independent voting behavior.

V. EXPERIMENT: ESCHERICHIA coLI (E. cOLI) PROMOTER
RECOGNITION

This section briefly summarizes our experiment. For detail
experimental setups and computational methods, see [2]. The
problem is to classify whether a given DNA sequence is
an E. coli promoter. A DNA sequence can be described as
a character string of (a] c| g|t)*. A promoter is a DNA
sequence that regulates when and where an associated gene
will be expressed. We used 2-gram encoding for input. The
2-gram encoding counts the occurrences of two consecutive
input characters (nucleotides) in a sliding window. The data set
is taken from USC ML repository [30]. It contains 53 E. coli



TABLE |
PROBABILISTICALLY OPTIMAL ENSEMBLES OUTPERFORM NON-OPTIMALS

| 3voter 9voter 10voter 1lvoter 13voter 15voter 20voter 30voter 3lvoter Avrg

Optimal wins% | 86 72 68 74

DNA promoter sequences and 53 non-promoter sequences, all
of length 68. Our objective was to quantify the effectiveness
of a fault tolerant system built with our ensemble construction
method, not to produce a competitive promoter detection tool
(although it is promising). This problem has been investigated
with neural networks and genetic programming [31], [32],
[33], [34].

We compared the performance distributions of a group
of single best versions and a group of NVGP ensembles,
since evaluation and comparison of one or small number of
evolved individuals or ensembles would have been susceptible
to stochastic errors in performance estimation. We assume the
number of errors have a normal distribution, since each test
instances can be viewed as a Bernoulli trial [28].

Our classifiers are built by linear genetic programming
[35]. The length of an individual program is restricted to a
maximum of 80 instructions. Each program used 16 read-only
registers for input data, which contained counts for individual
nucleotide 2-grams, and 4 read-write working registers. Our
linear genome machine mimics MIPS instruction architecture.
Forty individual classifiers are evolved in isolation to promote
diversity among them.

The classifier clusters the positive instances and places the
negative instances outside the cluster. The cluster is defined
by the interval (x — 30,4 + 30), where p is the mean of
the classifier output values for the positive instances and o
is the standard deviation. If an output value from a given
sequence falls within this interval, then it is classified as a
promoter. Otherwise, it is a non-promoter. In order to gen-
erate sufficiently large statistical samples for the experience,
we used the Beowulf cluster supercomputing facilities from
the Initiative for Bioinformatics and Evolutionary STudies
(IBEST), University of Idaho.

We collected optimal and non-optimal ensembles by the
following procedures for performance statistics. The error rate
is calculated by the total number of incorrect classification di-
vided by the total number of training instances (70 instances).

1. Create 40 isolated islands with 100
i ndi vi dual s each.

2. Evol ution ends when predefined fitness
i s achi eved.

3. Pool those with the predefined fitness
from each i sl and.

4. Randomy select N individuals from
this pool to create an ensenble E

5. Evaluate the performance of E.
If Eis optimal (error rate 0.014),
place E into the optimal ensenbl e set.
El se place E into the non-optinmal set.

71 70 78 100 NA 77

6. Goto 4.

Table | shows that the probabilistically optimal ensembles
outperform non-optimal ensembles approximately 70-80% of
the time. This particular table excludes the ensembles of error
rate 2/70 to 3/70, since they are close to the optimal ensembles.
It is also shown that when the optimals outperform non-
optimals they do so with a greater margin than when the non-
optimals outperform the optimals. See [2] for details of the
experimental result.

Fig. 1 shows the error distribution of classifiers at 90%
interval. The leftmost bar indicates the error distribution of
single best versions. The middle and leftmost are 15-voter
and 31 voter ensembles’ error distributions respectively. No-
tice the performance fluctuations of single best versions. It
indicates that a well trained individual has a chance to become
practically a random classifier (error rate > 0.4) roughly 10-
20% of the time on unseen data. Unfortunately, we have no
way of knowing which one would become a random classifier
beforehand, since they are all equally well trained. However,
none of the optimal ensembles is a random classifier. This is
why training based algorithms should form an ensemble.
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Fig. 1. Error distribution at 90% interval. Leftmost, middle, and rightmost
bars are distribution of single-best version, 15-voter, and 30-voter respectively

V1. DISCUSSION AND FUTURE RESEARCH

Freund, et al., showed the error bound of averaging classifier
with abstention [36]. The optimal ensemble’s error rates are
shown to be far below this theoretical bound even without
decision abstention [12].

The performance fluctuation of an ensemble decreases, as
the ensemble size becomes closer to the pool size. This
is because more components overlap among the ensembles.
Obviously, if we combine all of the individuals in the candidate
pool (though not necessarily optimal), there is no performance
fluctuation to be observed. However, we claim that a larger
ensemble size is better for accuracy and small performance
fluctuations as long as it is optimal. Let D is the set of



all distinct voting patterns by high fit individuals over a
training set. If a training set is finite, then D is finite. Assume
that we obtained a sufficiently large ensemble candidate pool
of high fit individuals of the same error rate. We further
assume that the fault masking technique is only as good
as a simple averaging scheme. Then, by the central limit
theorem, given a distribution (u, o2), the sampling distribution
of the mean approaches a normal distribution (u',0?/N) as
N, the sample size, increases. But, the means remain the
same, u = p' . This is exactly what averaging can achieve.
NVGP optimal ensembles form a subset of D with lower error
rates because of ideal fault masking. The lower error rate is
also shown experimentally in Fig. 1. Thus, x4 > u'. Since an
optimal ensemble is combination of individuals whose faults
are independent, we conclude from Equation 1 that the larger
the ensemble size the lower the expected error rate, provided
that the ensemble is optimal. Thus, the probabilistic optimal
ensemble method offers asymptotic improvement of accuracy
as the ensemble size increases. This is an important feature
because it does not introduce a configuration problem such as
the number of training subsets and its size in bagging or the
number of rounds in boosting. However, it does need to search
for individuals of independent faults. This search problem was
shown to be easy for an isolated model genetic programming
[2].

Is there a case where probabilistic optimal ensemble method
fail? Potentially yes. For instance, if there are noisy data in the
training set, individuals may produce dependent faults on these
instances. Therefore, the ensembles deviate from the expected
error rate. Failure to produce the optimal ensemble gives us
an opportunity to examine the quality of training data.

Ensemble is particularly useful when learning is difficult.
For instance, when individual classifiers will not improve
beyond 70% accuracy, a five voter system achieves 84%
accuracy if it is probabilistically optimal.

Currently, we are developing a training based classifier
system for network intrusion detection. The intrusion detection
system monitors the kernel level activities and a classifier
system is used to predict whether the system is under attack.
The kernel level activities include kernel routine call-frequency
and call-sequence. We plan to apply this probabilistic diversity
metric as an acceptance test of the combined classifiers.
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