
Abstracts- Recently, as the open control system controlled
by PC instead of PLC is developed, the market of softPLCs
on PC is rapidly growing, but the competitive editor and
running engines for softPLC are rare in the world.
Therefore, I developed an intelligent multiagent based
softPLC (IMPLC). In IMPLC, the standard IEC 1131-3
PLCs (LD, SFC, FBD, ST) programmed by a user are
converted to IL, which is one of intermediate codes, in
order to make them interact. And then the IL is converted
to the standard C code regarding some extension and
transplanting, which can be used in a commercial editor
such as visual C++. In IMPLC, the logical errors and
syntax errors occurred by users are detected, so that the
optimal PC control based softPLC can be possible. IMPLC
provide easy programming platform to beginners as well as
professionals. The study of code conversion is firstly tried in
the world as well as KOREA.

1. INTRODUCTION

 PLC program is a kind of an order given to PLC, so that
PLC can work. PLC program is developed in many directions.
If one is proficient in sequence control such as relay, rather
than sophisticated knowledge, the PLC program can be
adequately embodied. PLC program is structured to be used
by selecting adequate one, according to features of
programming languages depending on control content and
applied fields [1].
 PLC programming languages, however, are different
depending on countries and computer types, and they have not
been standardized; thus, a problem that it is not suitable to the
openness and dispersed age is entailed. The standardization
activity of PLC programming language centered on Europe in
1993 was promoted, accordingly. This standard is the IEC
1131-3, which had been reviewed for over 10 years in
TC65/SC65B/WG7/TF3 of IEC, which was approved in 1992
and published as a document in 1993 [2].
 In IEC1131-3, the following 5 languages were prescribed
and handled. Namely, there are instruction list (IL) and
structured text (ST) as the language of text system, while
ladder diagram (LD) and function block diagram (FBD) are
defined as a graphic system language. As important common

factor, sequential function chart (SFC) is defined [3, 4]. IL is
widely used in Europe including Germany, and FBD is the
similar type of language as circuit chart for application
accompanied by signal flow of process control. ST is similar
to the programming language developed as real time
application; therefore, it is effectively used for the defining
complicated function block.

Despite establishment of standard language, IEC1131-3,
PLC programming language is a still difficult language for
general public to use. It also is difficult to have general
usability under the Web environment. The PLC programming
language has a problem to find logical error when programmed
by an expert, as well.
 The preceding research result, ISPLC (Intelligent Agent
System based Software Programmable Logic Controller) [6] to
solve this problem, has studied the standard language regarding
LD (Ladder Diagram), which is used more than 90% among
the 5 languages [8] that were established as international PLC
standard language, and it was the technology that changed this
to IL (Instruction List), which is an intermediary code, and
converted to standard C code utilizable in the existing
commercialized editor (Visual C++). However, ISPLC tried
only conversion regarding LD language; thus, conversion
regarding other languages was not conducted. It has a
weakness that the language types that are converted were very
limited and not general.

Accordingly, in this paper, I intend to research and develop
IMPLC (Intelligent Multi Agent System based Software
Programmable Logic Controller) to enhance efficiency, so that
general public, who are accustomed to high level of language
by converting FBD (Function Block Diagram), SFC
(Sequential Function Chart), ST (Structured Text), IL
(Instruction List) to intermediary code IL, as well as LD
language among IEC1131-3, and utilizable standard C code in
commercialized editor. The reason to convert to IL
intermediary code is to raise mutual relevance between codes
by making all the PLCs uniform type. The reason to convert
to C is to enhance re-utilization of C code.

In IMPLC, primary error search is conducted in the process
of four languages (LD, FBD, ST, SFC) being converted to IL.
Also, secondary error search is conducted in the process of
being converted to C; thus possible number of errors is
remarkably reduced, and logical error detection function can be

Intelligent Software Programmable Logic Controller

Young Im Cho
Dept. of Computer Science, Pyongtaek University

111 Yongi-dong, Pyongtaek, Kyongki-do,
yicho@ptuniv.ac.kr

conducted. In view of all this, it is very efficient. By handling
all the behavior modes in which users perform by multi agents,
while providing GUI based interface, I intend to provide
platform by which users who are accustomed to PLC, as well
as beginners can conduct programming.

I also intend to decrease programming time very much, as
well as build GUI based Web environment and search
programming error, so that efficient control can be made by
applying IMPLC to 3 way conveyer belt used in the real
industrial site.

The structure of this paper is as follows: In Chapter 2, the
need of IMPLC was presented by analyzing the domestic
softPLC status. In Chapter 3, IMPLC was proposed, and in
Chapter 4, case study, which was applied to system, was
analyzed. Finally, in Chapter 5, conclusion was drawn.

II. SURVEY OF SOFTPLCS

Among PC-based control products developed for the
overseas industrial sites [7,8], there is KW system, which has
been developed as commercial system frame, which is the
system to provide visual interface in consideration of user’s
familiarity regarding the frame. There is also Embedded Super
PLCs [9, 10].

In Korea, there is no case to be developed for industrial use,
but Real Gain Inc. supplies PLC learning package (RealPLC).
Using RealPLC, various languages can be learned with only
PLC software, and a variety of monitoring and animation can
be done, which provides a feature to learn premier PLC with
smaller cost.

Especially, it provides various kinds of animation systems;
thus, a program can be verified within PC without target
system. Also, it is configured to make it possible to learn the
entire international standard PLCs of SFC, IL and FBD, as well
as LD. This product, however, is difficult to be utilized for
industrial use, since it is limited for educational use [11].

There are PLC systems to be developed and used by LG
Industrial Systems Co., Ltd. and Samsung. Although Samsung
developed WinGPC for windows and LG Industrial Systems
Co., Ltd. developed Master-K, general usability is insufficient,
since they provide only interface for equipment for the

The following Table 1 has compared and analyzed strengths
and weaknesses of the KW system, which is a domestic
representative softPLC and interface of Real Gain system.
Both systems provide the interface of standard languages set in
IEC1131-3, however, compatibility between standard
languages is not sufficient, and code conversion as high level
language is not provided.

Table 1. Comparison of KW System and RealGain

III. IMPLC

A. Introduction of IMPLC

 In this paper, I intend to develop IMPLC (Intelligent Soft
Multi agent based Programmable Logic Controller), which is
intelligent PLC software agent system based on automatic,
autonomous, specialized and integrated type of PC in
consideration of required matters by generating optimal code
via user-desired filtering of the result, after providing user-
desired and suitable component on behalf of the user within
PLC programming possible frame with regard to agent [12, 13]
based PLC software system.

In this system, four standard languages provided in the IEC
1131-3 are converted to the IL, the remaining language; so that
compatibility between languages is possible. As a result, the
user control under the optimized environment by correcting
logical error generated based on PC by compiling in the
standard C compiler was conducted.
 The components of IMPLC, which is a PC-based intelligent
softPLC editor proposed in this paper, consist of agent group,
component data storage and rule base architecture.
 There are four agents in the agent group:
① User Agent (UA), Scanning Agent ② (SA), ③ Control
Agent (CA), ④ Error Check Agent (EA). Component data
storage functions to recommend and manage the programming
language used greatly by a user. There are five modules in
rule base architecture:
① Module converted to IL ② Module in which IL is converted
to C ③ Error check module ④ Memory mapping module ⑤
User learning file module.
 The editor screen of IMPLC is like <Figure 1>. The overall
concept of configured IMPLC editor screen is configured that
standard languages (LD, SFC, FBD and ST) of IEC1131-3 can
be converted to intermediary code type, IL and this IL is
converted to high level language (C) and compiled; thus, it is
configured to be executed under the Windows environment.
Editor is GUI based, and that error correction and code
conversion are conducted intelligently by agents can be a
feature.

3.2 Modules in IMPLC

Overall structural chart of IMPLC is shown in Figure 2.

.
.Figure 2. Overall IMPLC System Structure

 Each module’s features and roles of IMPLC system in this
paper are as follows:
(1) Agent Group: This refers to a group of agents acting within
the IMPLC system. The agent group of IMPLC in this paper
consists of 4 agents. Each agent’s role is as follows:

a. Scanning Agent: This plays a role of interface for
interaction between user and control agent, and this agent is
conducted when a user bring up a file. The performance and
behavioral pattern of scanning agent is seen in Figure 3.

User File Open

Scanning Agent
Rule Base Architecture

Memory Mapping

Error Check Error Check

IMPLC

interface

File Format Check

Temporary Storage

Memory Mapping

Create

Reference

Language Check

EA

Message
Communication

Save

A

Reference

Error Message

Figure 3. Scanning Agent

 As for behavioral procedure of scanning agent, scanning
agent checks the drawn up language by reading file extension,
after identifying concerned file’s presence (i.e. LD, FBD, etc).
Then, it converts suitable to operator and operand and saves in
the temporary storage by consulting memory mapping module
of the rule base architecture. After searching logic or grammar
errors through error check agent (EA) and message
communication, this functions to report an error message to the
user. If there is no error, the next program is performed.

b. User Agent: Like the scanning agent, this plays a role as
interface for interaction between a user and control agent.
When a user edits in the IMPLC, this agent is conducted by
consulting component data storage. The user agent
performance and behavioral pattern are seen in Figure 4.

User File New

User Agent

Rule Base Architecture

User profile

Error Check

Rule Base Architecture

User profile

Error Check

Instruction Check

Error Check
IMPLC

interface

LD IL FBD STSFCLD IL FBD STSFC

Temporary Storage

Temporary Memory

Create

A

EA

Message
Communication

Reference

Save

Reference

Reference

Error
Message

Reference

Figure 4. User Agent

As for the user agent’s behavioral procedure, when a user
selects language in the IMPLC, operator is loaded by
consulting component data storage, and the user edits, it is
saved in the temporary storage on real time. User agent
recommends the component suitable to user’s tendency by
consulting user learning file module in the rule base
architecture. Also, this agent searches error status through EA
and message communication and functions to report an error
message to the user.

c. Control Agent: This is the agent, which is executed by
consulting rule base architecture when converting the
converted IL to C, after converting each language to
intermediary code type of IL through interaction between the
scanning agent and the user. The performance and behavioral
pattern of the control agent is seen in Figure 5.

Temporary

Storage

Component Data Storage

Operator

Component Data Storage

Operator

Rule Base Architecture

IL Conversion

Error Check

C Conversion

Rule Base Architecture

IL Conversion

Error Check

C Conversion

IMPLC

interface Conversion

Temporary memory

Control Agent

Error Check

Variable Info.

Language Info.

A

EA

Message
Communication

Save

Reference

Error
Message

Save

Reference

Reference

Reference

Figure 5. Control Agent

As for behavioral procedure of control agent, information
regarding the language edited by a user, the location

information of operator edited by a user and operand of
concerned language is saved in the temporary storage. And,
the control agent is primarily involved in converting IL by
consulting conversion module to IL of the rule base
architecture with the saved information. After searching IL
information (information on label, operator, operand, comment
and function and function block) to convert IL to C, the control
agent is involved in the process of converting to C by
consulting the conversion module to C of the rule base
architecture, secondarily.

d. Error Check Agent: The performance and behavioral
pattern of error check agent is seen in Figure 6.

LD IL SFC FBD ST

5 Languages

CheckLDRule() CheckILRule() CheckSFCRule () CheckFBDRule () CheckSTRule()CheckLDRule() CheckILRule() CheckSFCRule () CheckFBDRule () CheckSTRule()

IMPLC Interface

Information

SA

UA

CA

EA

Agent Group

Message Communication among Agents

Error Message

Reference

Error Check Rule BaseReference

Figure 6. Error Check Agent (EA)

When a user edits or brings up a file, a check is conducted if

each language is suitable to the standard language rules of
IEC1131-3 by consulting rule base architecture error check
module. Internally five languages’ standard language rules
were defined through classification. The most remarkable
feature of the error check agent is that it reports error status to
the user through message communication with the scanning
agent, user agent and control agent.

(2) Rule Base Architecture: This is in charge of major
language conversion function of IMPLC.

a. Memory Mapping Module: Based on the standard of
IEC1131-3, memory mapping rule that converts all the saved
files read and saved from IMPLC to automatic type has been
modulized. The reason of the need of this is to make it possible
to use the PLC file edited in other external editor, as well as the
file edited by IMPLC. For memory mapping, the module that
has the rules to convert automatically is needed. In this paper,
this was defined to be automatic memory conversion. In
memory mapping, graphiCs (LD, FBD and SFC) were
excluded, since graphic saving mode is different by each
company, and conversion is impossible Thus, only text based
language (IL and ST) are converted.

b. Conversion Module to IL: This is the module to be
involved in the process to convert each language to IL. As
seen in Figure 7, each language is converted to IL through
scanning conversion algorithm.

Figure 7. Conversion Process to IL

The above Figure 7 is an example of LD language. To find

out location of contact point, the contact point is divided into
starting contact point, OR contact point and end contact point.
To get location and information of operand and component
information of each language, component data storage is
consulted. In this paper, contact point is divided by
programming language and each is provided index, and is
saved in the component data storage to be used in the case of
language conversion.

c. C Conversion Module: This is the module to be involved
in the conversion process of IL to C. As seen in Figure 8,
IL is converted to C through scanning conversion algorithm.

Figure 8. Conversion Process to C

 This is the module to convert IL conversion to C. To convert
to C, the information on label, operator, operand and comments
of IL is needed. Through C scanning conversion algorithm
with the above information, IL is converted to C. The
information on label, operator, operand and comments were
defined by classifying grammars defined in IEC1131-3.

d. Syntax & Logical error Check Module: This conducts
scanning all the editing work prepared by a user with error
check module. This is the module that the error message is
proposed to the user through CA, UA and SA and message

communication by EA’s consulting error rule base. The error
rule base is defined by classification of standard rules of
IEC1131-3. This classification is periodically scanned by the
error check agent (EA).

e. User Profile Module: This module makes user’s program
editing process pattern and saves component or classified file
type with increase of frequency as individualized code. In
this module, a user presents a suggestion with the components
on the editing process of the previous program and history of
class pattern on the interface.

(3) Component Data Storage: This is the module with grammar
configuration factors such as operators and operands of five
standard languages in the IMPLC system. This module helps
a user in editing in the interface by providing user-desirable
data, namely components, to UA.

 IMPLC system helps for a user to easily conduct
programming through control agent’s involvement in the
delivering user-desirable data, converting each language to IL
and then to C by consulting of user agent, scanning agent, the
rule base and component data storage to be suitable to the
questions of the user in the case of user’s editing or bring up a
file through interface. Also, reuse becomes possible with the
code converted to C finally.

IV. SIMULATIONS AND EVALUATIONS OF
IMPLC

A. 3way Conveyer Belt

 In this paper, I intend to simulate by applying the system of
IMPLC to 3 way conveyor belt control system used in the
industrial site. This system is used when moving or loading
conveyed goods. Its input and output list is as follows:

The configuration chart of the 3 way conveyor belt system
developed in this paper is seen in Figure 9.

Figure 9. 3 way Conveyor Belt System Modeling

 In Figure 9, three red colors indicate sensor of the 3 way
conveyor belt. Timer setting time for 1, 2 and 3 way was
three seconds. When we check the conveyed goods dropping
sensor, %IX0000, the 1 way belt, %QX0000, is on before the
conveyed goods meet the vertical sensor, %IX0001. Once 1
way belt meets the vertical sensor, %QX000, it stops. When
conveyed goods go down to the 2way belt and %QX0001 is on,

and when it meets the 2 way vertical sensor, %IX0002, it stops
3 seconds later. When conveyed goods go down to 3 way belt,
and %QX0002 is on, the conveyed goods are on before it meets
3 way belt vertical sensor, %IX0003, 3 sec later [13].

The behavioral process drawn up and implemented on the
IMPLC is seen in Figure 10.

Figure 10. 3 Way Conveyor Process on the IMPLC

The above Figure 11 indicates the process that a user draws
up as LD, converts it to IL and then to C code, in an example of
3 way conveyor belt, step by step. The monitoring of this
process is seen in Figure 11.

Figure 11. 3 Way Conveyor Belt Monitoring

B. Evaluations of IMPLC

To measure time to be required in logical error debugging of
IMPLC and existing software, I experimented, increasing the
number of operator patterns of the LD programming language
in 3 way conveyor belt. As a result of the experiment, since
IMPLC should check control-related operators in specified
sector within the program and identify cause according to the
message flow order, depending on logical error, I found a
tendency to have

):(OoperationLDofNumberThenn of debugging
steps on average was shown, although the program gets
complicated. However, because error causes should be
identified, while all the control-related components should be
checked and correlation of all the operators should be analyzed,
according to control flow order when execution was not

conducted after drawing up LD program in the case of existing
software, PLC, I found it had nPn=n! number of
debugging steps. Accordingly, as LD contact points increase,
error detection possibility diminishes. When I indicated this
with a graph, the number of debugging steps was found to
increase in exponential function.

When using IMPLC, accordingly, logical error was
remarkably reduced compared with using the existing software
PLC.

V. CONCLUSIONS

In this paper, IMPLC, which is softPLC, was embodied.
By applying IMPLC to agent-based 3 way conveyor belt, along
with mapping of IMPLC into each language, C or Visual C++,
each language was converted to IL and then IL was converted
to C in IMPLC. Thus, there was a merit to check logical error
by the intelligent agent on the standard C compiler.

Although IMPLC provides the code conversion such as
IEC1131-3 standard language ->IL->C code under integrated
environment, code conversion in a reverse relation is not
performed. Thus, actual user should correct the standard
language program again from the converted code, when an
error is detected, which generates a weakness that utilization
capability of development frame should be superior. Namely,
IMPLC explains the code conversion relationship to users in
semi-automatic form, rather than full automatic form. Also,
the function of the agents used in IMPLC is somewhat
restricted; thus, more efficient agent algorithm should be
developed.

To solve restrictions of IMPLC and make it more intelligent
system, more efficient and structural environment, user’s
performance ability and more effort for expert system are
greatly required. For actual industrial use, the development of
two way conversion module between the standard language
with IL as intermediary code and IL, and between IL and
standard languages is required. When actually applying
IMPLC through PLC execution engine and network
communication, I think error detection function without a
problem on the program will be more strengthened. Also, we
need to develop an integrated system that can be used in
industrial sites by adding network communication function to
IMPLC additionally.

REFERENCES

[1] PLC Theory and Practice, Internal Education Data of

Samsung Electronics Co., Ltd.
[2] Norme Internationale International Standard, CEI IEC

1131-3, Premiere edition, First edition, 1993.
[6] Cho Young-Im, Shim Jae-Hong, “ISPLC: Intelligent Agent

based Software PLC”, Autumn Theses Collection of Korea
Multimedia Society, Volume 6, No. 2, pp.557-560,
2003.11.21-22.

[7] www.angelfire.com/in/bsommer/softplc.html

[8] IsaGRAF user's guide, Version 2.1, CJ International, 1994
[9] www.intellution.co.kr
[10] www.deltaww.com
[11] Realgain Research Center, PLC Lab Practice,

Chungmungak, 2003
[12] Russell and Norvig, Artificial Intelligence a Modern

Approach 2/E Chap 2, Prentice Hall International Co., 1994.
[13] www.fipa.org/repository/managementspecs.html

