
A Rule-Based BDI Agent Architecture to Support
Reactive and Proactive Behaviors

Bong-Ki Sohn*, Hak-Joon Kim**, Keon-Myung Lee*

*School of Electric and Computer Engineering, Chungbuk National University and

Advanced Information Technology Research Center(AITrc)
Cheongju, Chungbuk, 361-763, Korea

**Division Of Electronic, Information, Communication Engineering, Howon University
Kunsan, Chonbuk, 573-718, Korea

 dobest@aicore.chungbuk.ac.kr

Abstract This paper proposes a rule-based BDI

agent architecture to support reactive and proactive
behaviors. The proposed architecture represents agent
capabilities as if-then rules and plans as ruleplans which
consist of if-then rule sets and control flow constructs
among the rule sets. Ruleplans allow to easily represent
and modify plans because their building components are
basically if-then rules. It also allows to flexibly execute
plan because agent can select an executive path as the
environment changes. The architecture is composed of
the control module which controls agent by executing
control rules and the execution modules which process a
task by executing task processing rules considering the
task execution context. The control module may
continuously give execution control to the execution
module which is charge of the task to be reactively
processed. By maintaining a kind of goal tree, which is a
data structure that keeps track of task execution context,
the execution module coordinates behaviors in a similar
way to BDI model and proactively processes its task. A
priority-based forward reasoning method is adopted for
decision-making in those modules. The separation of the
agent functionality and priority-based decision enable to
make simple behavior control mechanism about what
task and rule to execute by rule priority. The proposed
agent architecture also seamlessly integrates plan
generation and its adaptation and thus allows an agent to
behave in an adaptive and proactive way by enabling to
solve yet unseen problems. This architecture has been
partially implemented by employing an extended Jess
rule engine and JADE agent model.

1. INTRODUCTION
The BDI(Belief-Desire-Intention) model is a conceptual

agent model that determines what action it would take based
on mental attitudes such as beliefs, desires and
intentions[1,2]. Beliefs reflect knowledge about the world
and desires are possible courses of actions available to the
agent. Intentions are the desires that it has committed to
bring about. The concept of goals is used instead of desires
and plans are predefined as the means with which agents
achieve their goals in the BDI agent architectures[3,4,5]. In
the previous BDI-based agent architectures, a plan for
achieving goal is described as a set of actions that must be
ordered. The constraint on plan representation specifying a
single execution path reduces expressive power and
flexibility of execution of plan. In the previous BDI-based
agent architectures, behavior control mechanism is complex
because the beliefs, goals, intentions and plans are
commonly maintained and manipulated by agent. The
previous BDI-based agent architectures also do not support
plan generation by planning methods. Therefore, we propose
a rule-based BDI agent architecture that supports flexible
plan representation, simple behavior control mechanism, and
plan generation by planning methods.

This paper is organized as follows: Section 2 introduces a
rule-based BDI agent model. Section 3 presents the
functional architecture of the proposed agent model. Section
4 describes how to represent the proposed agent knowledge
such as rules, goals, and ruleplans. Section 5 explains the
planning method employed in the proposed agent. In
section 6, we sketch how this architecture might be
implemented in the existing JADE agent model and Jess rule

engine. In final, Section 7 draws conclusions.

2. RULE-BASED BDI AGENT MODEL
2.1 Rule-Based BDI Model

The BDI model has come to be possibly the best known
and best studied model of practical reasoning agents[2].
There are several reasons for its success, but perhaps the
most compelling is that the BDI model combines a
respectable philosophical model of human practical
reasoning[9], a number of implementations, several
successful applications, and finally an elegant abstract
logical semantics, which have been taken up and elaborated
upon widely within the agent research community. The
practical reasoning is the process of deciding, moment by
moment, which action to perform in the furtherance of our
goals. Practical reasoning involves two important processes:
deciding what goals we want to achieve, and how we are
going to achieve these goals. The former is known as
deliberation, the latter as means-ends reasoning[6].

Fig. 1. Rule-based BDI model

In this paper, we introduce a rule-based BDI model for

modeling practical reasoning in rule-based system. Figure 1
illustrates the process of practical reasoning in the rule-based
BDI agent. There are several main components to a rule-
based BDI agent:
• Control Process takes perceptual input, interprets it in facts

and inserts them into the working memory of an
appropriate rule-based system to enable to proceed with
its tasks.

• Working Memory represents information that the rule-
based system has about its current environment such as
data related to its task processing and shared data with
other rule-based systems.

• Pattern Matching process determines executable rules on
the basis of its rule set and working memory.

• Conflict Set represents the executable rules at the moment.
• Conflict Resolution process takes charge of the agent’s

deliberation process which selects the highest priority rule.
• Ready Rule represents the rule to bring about.
• Execution process executes the rule.

The Execution process may execute a primitive rule that is
accomplished at once or a complex rule that takes several
reasoning cycles of rule-based system. To complete a
complex rule, Execution process must refer to ruleplan and
load appropriate rules into the Rule set according to the
control flow of the ruleplan that is maintained in the Goal
tree. Next, Pattern Matching and Conflict Resolution process
are executed, which focuses only on current Rule set,
Conflict Set, and Ready Rule. This cycle continues until
Execution process executes a primitive rule. The process
performs the means-ends reasoning as recursively
elaborating a hierarchical plan structure, considering and
committing to progressively more specific rules, until finally
it reaches the Ready Rule that is an immediately executable
rule.

2.2 Rule-Based BDI Agent Model

A Rule-based BDI agent supports reactive and proactive
behaviors by following the rule-based BDI model. It is
composed of the control module that decides execution order
among tasks and the execution module that selects and
executes a rule by considering the task execution context.
Both modules embed a rule-based system for decision
making and the rule-based systems select tasks and rules to
be executed based on priority-based forward reasoning.

Figure 2 represents the rule-based BDI agent model. The
control module includes control rules for controlling agent
and working memory for reflecting agent’s current beliefs
about the world. By executing control rules, the control
module creates an execution module to process a task for a
new event and deletes the execution module that has finished
its task. It also forwards events to appropriate execution
modules and authorizes an execution module to proceed its
task based on execution module’s priority. When the shared
data is modified, the control module notifies all execution
modules of the modification by updating working memory
of execution modules.

The execution module executes a rule whenever it is
authorized by the control module. Its working memory
includes information for processing the given task and
shared data. The rule set contains rules dynamically loaded
from the rule base by referring to current goal of the Goal
tree. It may include primitive rules or complex rules to
execute the given task. The execution module makes

decision about what rule to execute based on rule’s priority.
The rule-based BDI agent model characterizes functional

separation of the agent decision about what task and rule to
be executed by rule priority. These features enable the
proposed agent model to have simple behavior control
mechanism to support reactive and proactive behaviors
based on priority of task and rule.

Fig. 2. The rule-based BDI agent model

3. RULE-BASED BDI AGENT ARCHITECTURE
Figure 3 shows the components of the rule-based BDI

agent model and their interplay. It consists of five basic
components: Agent Interface module, Agent Controller
module, Context Manager module, Subsystem Manager
module, and knowledge base. In the following, the individual
modules of the system are described in detail.

3.1 Agent Interface Module

This module gathers events from the environment and the
agent itself. It also interprets events as facts and forwards
interpreted facts to the Agent Controller. Agent Interface
processes following events:
• goal event, which is a request to accomplish goal.
• ACL message event, received FIPA-ACL message from

other agents.
• internal event, which is generated by interplay among

agent components.
The received events are stored in event queue and are

interpreted as facts one by one. Agent Interface enables
Agent Controller to process its task by inserting the facts
into working memory.

3.2 Agent Controller Module

Agent Controller controls agent by executing control rules

 Fig. 3. The rule-based BDI agent architecture

which define following tasks:
• creates Content Manager to independently process a task

for a new event.
• deletes Context Manager which has completed its task.
• forwards events to appropriate Context Mangers.
• notifies all Context Managers of the modification of shared

data.
• authorizes the Context Manager with highest priority to

execute a rule.
• manages priority of Context Manager.
 Figure 4 shows a control rule to create Context Manager
for processing maintain goal event. To keep tracks of
particular agent’s state, Agent Controller executes
NewMaintainGoalProcessing rule which creates new
Context Manager by calling the internal function
newContextManger().

Agent Controller maintains the priorities of Context
Managers. Context Manager has initial priority with control
rule’s to create itself. As time goes, all Context Manager’s
priority increases by some degree. When a Context Manager
completes a rule, Agent Controller decides which Context
Manager to take execution authority based on priority of
Context Manager. The Context Manager with highest
priority and active state takes a chance to execute a rule. The
above control rule has priority 99 which is the highest degree,
so the maintain goal processing Context Manager takes
execution authority to continuously do its task.

Fig. 4. An example of control rule

3.3 Context Manager Module

When it is authorized to execute a rule by Agent
Controller, the Context Manager proceeds to its task while it
maintains task execution context. It independently processes
given task against other Context Managers by maintaining
Goal tree that includes context of task execution and enables
to proactive operation. The Context Manager interacts with
subsystems such as Planner and Utility-Maximizer to
achieve some goals. It calls subsystems with parameters and
receives a ruleplan or rule to be executed. To communicate
with the Agent Controller, it generates event and forwards it
to Agent Interface. The Context Manager generates an event
following cases:
• when it has completed its task.
• when it is waiting failure or success response from

subsystems or internal functions.
• when it modifies the shared data during its task processing.
• when it has executed a primitive rule.

3.4 Subsystem Manager Module

This module manages subsystems such as Planner and
Utility-Maximizer. Planner searches a plan at run time and
improves agent knowledge base by adding rule and ruleplan
translating the plan. Utility-Maximizer finds a rule that has
the most utility of some utility function at current state.
Subsystem Manager receives requests from Context
Manager, executes appropriate subsystem, and returns results
of the subsystem to the Context Manager.

3.5 Knowledge Base

Knowledge base consists of Ruleplan Library and
Rulebase for agent task processing. Ruleplan Library
includes ruleplan that describes procedural knowledge for
accomplishing complex task. It is referenced to execute the
rule which action part contains ruleplan. Rulebase includes
rules for agent and consists of control rules and task
processing rules. Control rules are loaded to Agent
Controller and task processing rules are dynamically loaded
to Context Manager. Ruleplans and rules are created by
human expert and also by Planner subsystem.

4. KNOWLEDGE REPRESENTATION

The rule-based BDI agent includes static knowledge such
as ruleplans, rules and dynamic knowledge such as working
memory, conflict set and ready rules, respectively,
representing belief, desire and intention of BDI model. In
this section, we introduce knowledge representation of the
proposed agent architecture.

4.1 Rule Representation

In rule-based BDI agent architecture, a rule defines about
what goal to achieve when an agent is situated at some states.

It consists of rule head, condition part, action part, and effect
part. Rule head consists of rule set name, rule name and
priority. Rule set name means rule set that the rule belongs to
and Context Manager loads rules that have same rule set
name. Rule name is identifier of rule and priority is
importance degree of the rule. Condition part specifies
situational constraints that must be satisfied for a rule to be
applicable. Action part describes goal to achieve. Effect part
explicitly specifies agent state changes after a rule executes.
It is used to search a plan and a rule with highest utility
value. In Figure 5, classify-rule belongs to rule set return-
goods and has the highest priority 99. If working memory
includes fact “return-reason is defective”, then the rule insert
fact “task-type is replace-task”. It also specifies world state
as “task-type has some value” after executing.

Fig. 5. A rule example

4.2 Goal Representation

In the proposed architecture, six different kinds of goals
can be distinguished: assert, retract, achieve, perform,
maintain, utility-maximize goal. The assert adds facts into
and the retract deletes facts from working memory. The
achieve goal just defines desired target states without
specifying how to reach it. This goal is achieved by
executing ruleplan returned by Planner subsystem. The
perform goal directly specifies the rule or ruleplan or
internal function to execute. For goal of kind maintain, an
agent keeps track of the state, and will continuously execute
appropriate ruleplan to re-establish the target state whenever
needed. utility-maximize goal specifies the utility function
that at current states, selects a rule with highest utility
function value. This goal is achieved by Utility-Maximizer
subsystem.

assert, retract and perform goal which specifies internal
function or rule are completed within one cycle of rule-based
system. However, achieve, maintain, utility-maximize, and
perform goal which specifies ruleplan are completed with
several cycles.

4.3 Ruleplan Representation

Ruleplans are the means to achieve the goals such as
perform, achieve, maintain, and utility-maximize. A ruleplan
defines a procedural specification for accomplishing
complex task. A ruleplan consists of Tasks containing
several rules which model subtask of complex task and
control flow among Tasks. A Task contains Task rule set,

Task functions, Task data. Task rule set includes rules to be
used to complete the Task. Task functions and Task data are
accessed by the Task rule set.

Control flow specifies execution orders among Tasks,
which may have sequence, conditional, switch, while, and
goto flows. Context Manager processes ruleplan according
to control flow, so it is possible to proactively operate in the
rule-based system. Figure 6 shows return-goods ruleplan
which contains four Tasks and control flow among them.
Return-goods task is divided into classification, refunding,
replacement, and completion Task. Figure 7 shows control
flow of the return-goods ruleplan.

Fig. 6. return-goods ruleplan

First at all, the Context Manager executes classification
Task according to details of customer’s request. After
completing the classification Task, if working memory
includes fact “task is refund-task”, it executes refunding
Task and completion Task in sequence.

Fig. 7. Control flow of return-goods ruleplan

Context Manager executes ruleplan according to its

control flow, which is maintained in the Goal tree. Figure 8
shows the ruleplan execution algorithm of the Context
Manager.

5. PLANNING IN THE RULE-BASED BDI AGENT

The Context Manager accomplishes achieve goal by
planning mechanism. To do this, if-then rules are translated
into STRIPS operators. Table 1 shows mapping relationship
between if-then rule and STRIPS operator[10]. The achieve
goal’s target states and working memory facts of the Context
Manager respectively correspond to Planner’s target states

Fig. 8. Ruleplan execution algorithm of the Context Manager

and initial states. Figure 9 shows an example of mapping
between rule and operator. Left side represents if-then rule
and right side is the translated operator according to
mapping relationship of Table 1.

Fig. 9. An example of mapping between rule and operator

The Planner subsystem searches plans based on translated
facts and randomly selects one. The selected plan are
retranslated into a ruleplan and returned to the Context
Manager. The planner creates a new rule that describes the
ruleplan in the action part and adds it to rule base. It also
adds the ruleplan to Ruleplan Library to reuse in the future.
The proposed agent can improve its capability since Planner
subsystem adds ruleplan and rule to agent knowledge base.

Table 1. Mapping relationship of rule and operator

If-then rule STRIPS operator
condition part preconditions
action part action
effect part postconditions

6. PROTOTYPING WITH JADE AND JESS

The feasibility of the proposed agent architecture has been
being evaluated by prototyping with JADE[7] and Jess[8].
JADE is a FIPA compliant software framework for
developing agent applications of inter-operable, intelligent,
multi-agent systems. JADE is a kind of agent platform
middleware and development framework supporting
distributed, interoperable multi-agents together with the

corresponding communications infrastructure including the
FIPA Agent Communication Language(ACL).

An agent in the JADE sense uses the JADE Agent
abstraction and models an agent’s tasks via the JADE
Behaviors abstraction where each agent may dynamically
instantiate its own behaviors as needed. Multiple behaviors
belonging to the agent may execute concurrently using a
round-robin, non-preemptive policy. The Java language is
used to implement the agent infrastructure and base classes
for agents and behaviors. However, there are no limitations
for the kinds of software systems which can be embedded in
the agents and behaviors.

The proposed agent conceptually is a JADE agent initially
having Agent Interface Behavior and Agent Controller
Behavior. These Behaviors are CyclicBeahviours since they
must execute continuously during agent’s life. Agent
Interface Behavior continuously accepts events, interprets it
in facts, and forwards facts to Agent Controller. Agent
Controller Behavior contains a Jess rule engine which is well
known forward reasoning system written in Java and
continuously control rules. It also dynamically creates and
deletes Context Manager Behaviors embedding a Jess rule
engine. Context Manager’s decision making is done by Jess
rule engine. By maintaining Goal tree, the Context Manager
makes proactive task processing cooperating with Jess rule
engine.

7. CONCLUSIONS
In this paper, we proposed a rule-based BDI agent

architecture that supports flexible plan representation, simple
agent control architecture, and plan generation by planning
mechanism. The proposed agent architecture has the
following features:
 First, it provides flexibility of plan construction and
execution by representing plan as structured rule sets called
ruleplan. It is possible to proactively process the given task
by referring to the control flow of ruleplan.
 Second, the proposed agent architecture decides about what
task to do among tasks and what rule to execute taking into
account the context of the selected task based on the priority
of tasks and rules. Decision making of rule-based BDI agent
is based on priority-based forward reasoning. Priority-based
decision enables to make simple decision about what task
and rule to execute by priority and to reactively and
proactively operate by having a task continuously take
highest priority.
 Third, it is possible to automatically generate ruleplans
with the help of the Planner subsystem. To do this, planner
subsystem translates if-then rules into STRIPS operators to
search plans and generates plans for achieving target states.
A generated plan is retranslated into a ruleplan and is

inserted to agent knowledge base for reuse in the future.
 By the ruleplan and priority-based decision, the rule-based
BDI agent can reactively and proactively execute various
tasks by simple behavior control mechanism. It also
incrementally improves agent capability through planning
mechanism.

The proposed agent architecture can be applied to
electronic commerce agents and workflow agents which use
procedural knowledge to solve problems and require rapid
agent prototyping and easy modification of agent knowledge
in the dynamic environment.

ACKNOWLEDGEMENTS

This work was conducted with the support of the Korea
Science and Engineering Foundation(KOSEF) via the
Advanced Information Technology Research Center(AITrc).

REFERENCES
[1] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M.

Wooldridge, "The Belief-Desire-Intention Model of Agency," in
ATAL, 1999.

[2] A. Rao, M. Georgeff, "BDI Agents: From Theory to Practice,"
Proceedings of the First International Conference on Multi-
Agent System-ICMAS95, San Francisco, USA, 1995.

[3] A. Pokahr, L. Braubach, and W. Lamersdorf, "Jadex:
Implementing a BDI-Infrastructure for JADE Agents," in: EXP -
In Search of Innovation (Special Issue on JADE), Vol 3, No. 3,
pp.76-85, Telecom Italia Lab, Turin, Italy, September 2003,

[4] N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas, "JACK
Intelligent Agents - Summary of an Agent Infrastructure,"
Proceedings of the 5th ACM International Conference on
Autonomous Agents, Canada, 2001.

[5] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldrige, "A Formal
Specification of dMARS," INTELLIGENT AGENT IV: Agent
Theories, Architectures, and Languages, M. Singh, M. Wooldrige,
and A. Rao(editors), LNAI 1365, Springer-Verlag, 1998.

[6] G. Weiss, Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, The MIT Press, 1998.

[7] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, "JADE-A
FIPA-Compliant Agent Framework," Proceedings of 4th
International Conference and Exhibition on The Practical
Application of Intelligent Agent and Multi-Agents, pp.97-108,
London, UK, 1999.

[8] E. Frieman-Hill, Jess in Action: Java Rule-Based Systems,
Manning Publications Company, 2003.

[9] M. E. Bratman, D. J. Israel, and M. E. Pollack, "Plans and
Resource-Bounded Practical Reasoning," Computational
Intelligence, Vol. 4, pp. 349-355, 1988.

[10] R. Fikes, and N. Nilsson, "STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving," Artificial
Intelligence, Vol. 2, pp.189-208, 1971.

