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Abstract—Inokuchi & Miyamoto studied the multidimen-
sional data mapped by a Mercer kernel function using Ko-
honen’s Self-Organizing Map. Along the line of Noise Clus-
tering due to Davé, which is considered as a kind of robust
M-estimation, we develop a robust kernel PCA method
and clarify the data structure in a high dimensional fea-
ture space. Noise clustering approaches applied to a fuzzy
counterpart of Gaussian mixture models plays a substantial
role for finding that the data structure in the original input
space is preserved to some extent in the feature space de-
fined by dot products in terms of Gaussian kernel function.

I. Introduction

Gaussian mixture models (GMM) [1] is well recognized
as a statistical technique for density estimation, where a
probability density function (PDF) is approximated by a
mixture of Gaussian distribution functions rather than a
single parametric function. The GMM uses the likelihood
function as a measure of fit.

Hathaway [2] pointed out that there exists a close rela-
tionship between the Fuzzy c-Means (FCM) [3] clustering
and the GMM. Entropy method that uses an additional
term of entropy for fuzzification in the FCM was proposed
by Miyamoto and Mukaidono [4]. A similar entropy term
was considered by Davé and Krishnapuram [5] to prevent
trivial solution within the scope of Possibilistic c-Means
due to Krishnapuram and Keller [6]. A fuzzy counterpart
of GMM, which has a modified FCM clustering objec-
tive function with an additional term known as Kullback-
Leibler information is called FCM with K-L regularizer
(KLFCM) [7]. We can also find a close relationship be-
tween the FCM and the deterministic annealing (DA) by
Rose [8].

Like the fuzzy c-varieties and fuzzy c-elliptypes cluster-
ing [3], the GMM method is good only when a dataset
contains clusters that are approximately the same shape,
i.e., hyper elliptic. The fuzzy c-spherical shells and their
modified methods [9], [10], [11] aim at detection of shell
type clusters of the same class of models, for example, all
are spherical shells.

In the passed several years, a number of powerful
Mercer kernel-based learning machines [12], [13], e.g.,
support vector machines (SVMs), kernel Fisher dis-
criminant (KFD), kernel principal component analysis
(KPCA), kernel based clustering [14], kernel fuzzy c-
means (KFCM) [15], and kernel-KLFCM [16] have been
proposed. A common principle of these methods is to
construct nonlinear variants of linear algorithms by sub-

stituting dot products by kernel functions. The resulting
kernel algorithm can be interpreted as running the original
algorithm on feature space mapped objects φ(xi).

In the kernel-KLFCM [16], when the number of feature
vectors and clusters are n and c respectively, this kernel
approach can find up to c × n nonzero eigenvalues. For
reducing the number of parameters, a way to control the
number in the mixture of probabilistic principal compo-
nent analysis (PPCA) by Tipping and Bishop [17] was
adopted. In [18], [19], a fuzzy counterpart of probabilistic
PCA mixture models was proposed based on the relation-
ship between Local PCA and linear fuzzy clustering. By
further adopting this approach to kernel based clustering,
the kernel-KLFCM [16] provides a partitioning with flex-
ible shapes of clusters in the original input data space.

By using Kohonen Self-Organizing Map (SOM) [20],
Inokuchi & Miyamoto [21] studied the data structure of
multidimensional data mapped implicitly by φ in terms
of a kernel function. With this SOM approach, they dis-
covered a typical data structure of the high dimensional
feature space.

Any clustering algorithm needs to be robust against
noise or outliers in order to be useful in practice. Davé’s
noise clustering (NC) [22] is one of the popular methods
in fuzzy clustering. It was shown that the NC has a close
relationship with a robust M-estimator [5]. Previously we
applied the noise clustering to KLFCM in [23], and showed
that the NC approach is quite robust for detecting linear
clusters from heavily noisy data sets.

Along the line of NC approach due to Davé, which is
considered as a kind of robust M-estimation, we develop
a robust kernel based PCA method, which utilize Maha-
lanobis distances rather than Euclidian distances between
feature vectors and linear prototypical subspaces. The
proposed approach clarifies the data structure in a high
dimensional feature space. The noise clustering approach
applied to the fuzzy counterpart of GMM plays a substan-
tial role for finding that the data structure in the origi-
nal input space is preserved to some extent in the feature
space.

II. Robust approach to kernel based KLFCM

In this section we will combine two of our previous
approaches, which are Noise-KLFCM [23] and Kernel-
KLFCM [16]. The former is related with robust M-
estimation and the latter is related with kernel based
PCA. We will first describe these approaches so that the



reader will be able to see that combining these two ap-
proaches is straight forward.

A. Noise clustering for KLFCM

Let s dimensional vector xk represent the kth object
or sample from a given set of n unlabelled objects. Each
feature vector consists of s real-valued measurements de-
scribing the features of the object represented by x.

The FCM clustering partition a data set by introducing
memberships to fuzzy clusters. p dimensional vector vi

denotes prototype parameter (i.e., cluster centroid). uik

denotes the membership of the kth data to the ith cluster.
The clustering criterion used to define good clusters for
fuzzy c-means partitions is the FCM objective function
as:

Jm =
c∑

i=1

n∑
k=1

(uik)mdik, (1)

where m is the weighting exponent on each fuzzy member-
ship. The larger m is, the fuzzier the partition becomes.
The nonnegative membership uik sum to one with respect
to c clusters for each object.

dik = (xk − vi)�A−1
i (xk − vi) (2)

is a measure of the distance from xk to the ith cluster pro-
totype. The Euclidean distance metric is often used where
Ai is a unit matrix. In the modified FCM by Gustafson
and Kessel [24], the matrices Ai are also decision variables
and each size of |Ai| is constrained to a certain value.
The optimal uik and vi for all i and k are sought using a
fixed-point iteration scheme, which is similar to the GMM
algorithm.

Noise fuzzy clustering (NC) was proposed by Davé [22]
so that noise data or outliers will be included in the noise
cluster. Noise is considered to be a separate class. Noise
prototype is an entity such that it is always at the same
distance from every point in the noise cluster. Let c + 1
th cluster be a noise cluster, then the objective function
is defined as:

Jmδ =
c∑

i=1

n∑
k=1

(uik)mdik + δ

n∑
k=1

(uc+1 k)m (3)

with a constraint
∑c+1

i=1 uik = 1. By minimizing this ob-
jective function, if dik > δ, xk tends to belong in the c+1
th cluster. Hence the δ should be positive small number.
If δ is large, the number of data points in the noise cluster
becomes small. If it is set to a negative number then all
data will be included in the noise cluster.

Hathaway [2] provided an interpretation of the opti-
mization problem of negative log-likelihood in the GMM
and regarded the EM algorithm as a penalized version of
the hard means clustering algorithm. The negative log-
likelihood to be minimized is written as:

JH =
c∑

i=1

n∑
k=1

uik log uik

+
c∑

i=1

n∑
k=1

uik log(1/(πipi(xk))), (4)

where pi denotes a Gaussian density function. In [4], an
entropy term K and a positive parameter λ are introduced
and Jλ =

∑c
i=1

∑n
k=1 uikdik +λK is minimized instead of

Jm. This approach is referred to as entropy regulariza-
tion. By further extension, replacing the entropy term
with K-L information, we considered the minimization of
the following objective function under the constraints that
both the sum of uik and the sum of πi with respect to i
equal one [23].

Jλγ =
c∑

i=1

n∑
k=1

uikdik + δ

n∑
k=1

uc+1 k

+ λ

c+1∑
i=1

n∑
k=1

uik log
uik

πi

+
c∑

i=1

n∑
k=1

uik log |Ai|

+
k∑

k=1

uc+1 k log α

=
c∑

i=1

n∑
k=1

uikdik + γ

n∑
k=1

uc+1 k

+ λ

c+1∑
i=1

n∑
k=1

uik log
uik

πi

+
c∑

i=1

n∑
k=1

uik log |Ai|, (5)

where γ = δ + log α. δ and α are predetermined values
and correspond to dc+1 k and log |Ac+1| respectively.

When the number c of ordinary clusters is given, the
c + 1th cluster plays the role of the noise cluster.

From the necessary condition of optimality, for i ≤ c,
we have

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (6)

By denoting

Wk =
c∑

j=1

πj exp
(− 1

λ
djk

)|Aj |−1/λ

+ πc+1 exp
(−γ

λ

)
, (7)

we have for i ≤ c

uik = πi exp
(− 1

λ
dik

)|Ai|−1/λ/Wk (8)

and for i = c + 1

uik = πc+1 exp
(−γ

λ

)
/Wk. (9)



Matrix Ai is for i ≤ c

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)�∑n
k=1 uik

, (10)

and for i ≤ c + 1

πi =
∑n

k=1 uik∑c+1
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik. (11)

The clustering algorithm in this case is also the fixed point
iteration as in the conventional FCM.

B. KLFCM with kernel trick

The following theory used as a basis for applying the
kernel trick is based upon Reproducing Kernel Hilbert
Spaces (RKHS). A dot product in feature space has an
equivalent kernel in input space,

k(x, x′) = φ(x)�φ(x′) (12)

provided certain conditions (Mercer’s Conditions). These
kernel functions can be interpreted as representing the dot
product of data objects implicitly mapped into a nonlinear
related feature space. A typical example of Mercer kernel
is the Gaussian kernel as:

k(x, xi) = exp(−(x − xi)�(x − xi)/β). (13)

Let us consider that the original input data space will
be mapped into a high dimensional feature space through
some nonlinear mapping φ. Then the fuzzy covariance
matrix for the ith cluster is written in the matrix form as:

Si = ((nπi)−
1
2 M

1
2

i Φi)�((nπi)−
1
2 M

1
2

i Φi), (14)

where Φi = (φ(x1) − vφ
i , ..., φ(xn) − vφ

i )� and Mi =
diag(u1, ..., un). vφ

i is a cluster centroid in the extended
feature space. The dimension of φ and v is assumed to be
r in the extended feature space. Eigenvalue decomposition
of Si may be written as:

Si = Wi∆2
i W

�
i , (15)

where Wi = (wi1, ..., wir) is an r × r matrix and
wi1, ..., wir are eigenvectors associated with positive
eigenvalues (δ2

i1, ..., δ
2
ir) of Si. The vectors are normalized

as w�
ilwil = 1. ∆2 =diag(δ2

i1, ..., δ
2
ir) is a diagonal matrix

of the eigenvalues. vφ
i is a centroid for the ith cluster.

vφ
i =

∑n
k=1 uikφ(xk)∑n

k=1 uik
. (16)

By the singular value decomposition, we have

(nπi)−
1
2 M

1
2

i Φi = Fi∆iW
�
i , (17)

where Fi is an n×r matrix. If the left-hand side of Eq.(17)
is non-singular, the distance between φ(xk) and cluster
centroid vφ

i can be written as:

dik = (φ(xk) − vφ
i )�Wi∆−2

i W�
i (φ(xk) − vφ

i )

= nπiu
−1
ik f�

ikf ik, (18)

where Fi = (f i1, ..., fin)�. f ik ’s are r dimensional vec-
tors.

When the explicit form of φ is not known, for obtaining
the values of Fi and ∆i, let us define an n × n matrix Ki

and rewrite it by using Eq.(17) as:

Ki = (nπi)−1M
1
2

i ΦiΦ�
i M

1
2

i

= Fi∆2
i F

�
i . (19)

Let Φ∗Φ∗� be a matrix in terms of dot product

Φ∗Φ∗� = (φ(xk)�φ(xl))n×n, (20)

where ( )n×n denotes a matrix of n×n dimension. The el-
ements of Φ∗Φ∗� are dot products of non-centered vectors
φ(x). Then centered ΦiΦ�

i can be written as:

ΦiΦ�
i = Φ∗Φ∗� − Φ∗Φ∗�ui1�

n×1

−1n×1ui
�Φ∗Φ∗�

+(1n×1ui
�)Φ∗Φ∗�(ui1�

n×1). (21)

1n×1 denotes the vector of dimension n×1 with all entries
equal to 1.

ui = (ui1/

n∑
k=1

uik, ..., uin/

n∑
k=1

uik)�. (22)

Thus ΦiΦ�
i can be calculated by replacing the dot product

in Φ∗Φ∗� with a kernel function k(xk, xl), such that

Φ∗Φ∗� = (φ(xk)�φ(xl))n×n = (k(xk, xl))n×n. (23)

Fi and ∆i are obtained from the eigenvalue decomposition
of Ki as in Eq.(19). The remaining value that we need for
updating uik is |Si|. If rank(Si) = r,

|Si| = |Wi||∆2
i ||W�

i | = |∆2
i | =

r∏
l=1

δ2
il. (24)

C. Robust local kernel PCA

In the feature space extended by some kernel function,
the dimensionality r or the number of positive eigenvalues
of Si is unknown but usually large, and the number of
observation n may exceed r. Because this kernel approach
can find up to c× n nonzero eigenvalues, reduction of the
number of decision variables (e.g., Fi) is significant.

Unlike the global nonlinear approaches, GMM or
KLFCM is to model nonlinear structure with a collection,
or mixture, of local linear sub-models of PCA. When es-
timating covariance structures in high dimensions, while
not over-constraining the model flexibility, Tipping and
Bishop proposed a way to control the number of param-
eters in the mixture of probabilistic principal component
analysis (PPCA) [17]. In [18], [19], a fuzzy counterpart
of probabilistic PCA mixture models was proposed based
on the relationship between Local PCA and linear fuzzy
clustering. The algorithm is regarded as a modified FCV



algorithm with regularization by K-L information. Al-
though in both of the approaches the number r should be
known, by making this parameter an adjustable one, we
apply the kernel trick to the clustering method in a high
dimensional feature space.

Let S′
i denotes an approximation of Si in Eq.(14) and

(15) for p < r as:

S′
i = W p

i ((∆p
i )

2 − σ2
i Ir)W

p�
i + Wi(σ2

i Ir)W�
i , (25)

where W p
i is an r × p matrix and ∆p

i is a p × p diagonal
matrix.

σ2
i =

1
r − p

(trace(Ki) −
p∑

l=1

δ2
il), (26)

Unfortunately r is an unknown dimensionality of the fea-
ture space mapped by an unknown function φ, so we make
r an adjustable parameter. As we will see in the numerical
example, this parameter does not significantly affect the
clustering results. The squared fuzzy Mahalanobis dis-
tance between a point φ(xk) and a cluster centroid vφ

i

can be approximated as:

dik = nπiu
−1
ik

(
fp�

ik fp
ik

+
1
σ2

i

(
uik

nπi
(φ(xk) − vφ

i )�(φ(xk) − vφ
i )

− f p�
ik (∆p

i )
2f p

ik)
)

, (27)

where fp
ik = (fik1, ..., fikp)� is p dimensional, and the k

th diagonal element of Eq.(21) is

(φ(xk) − vφ
i )�(φ(xk) − vφ

i ) = φ(xk)�φ(xk)
−2ui

�Φ∗�φ(xk) + ui
�Φ∗Φ∗�ui. (28)

ui is defined in Eq.(22).
It should be noted that uik must be positive in Eq.(18)

and (27). Thus we add a very small positive number as
1 × 10−7 to uik in each repetition of update.

We approximate |Si| by the product of largest p eigen-
values of Ki and σ

2(r−p)
i where r is some estimated posi-

tive integer.

|S′
i| � (

p∏
l=1

δ2
il)σ

2(r−p)
i . (29)

When σi is set to a small positive number, this method
reduces to a FCV type clustering by the property shown
in [18], [19]. By denoting

Wk =
c∑

j=1

πj exp
(− 1

λ
djk

)|S′
i|−1/λ

+ πc+1 exp
(−γ

λ

)
, (30)

the membership to cluster uik is written for i ≤ c as:

uik = πi exp
(− 1

λ
dik

)|S′
i|−1/λ/Wk, (31)

and for i = c + 1

uik = πc+1 exp
(−γ

λ

)
/Wk. (32)

and the ratio πi may be written as:

πi =
∑n

k=1 uik∑c
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik. (33)

The algorithm is the repetition of these update for all
clusters, i.e., i = 1, ..., c and may be described as:

Noise Kernel-KLFCM algorithm
Step 1: Initialize uik for all i and k with random num-

bers.
Step 2: Calculate πi for all i by Eq.(33).
Step 3: Calculate Ki and its eigenvalue decomposition

for all i using Eqs.(19)-(23).
Step 4: Calculate uik for all i and k by Eqs.(26)-(32).
Step 5: If

max
i, k

‖uNEW
ik − uOLD

ik ‖ < ε

is satisfied, then terminate, else go to Step 2.

III. Numerical Example

To provide some intuition on how proposed robust ker-
nel PCA approach clarifies the data structure in feature
space, we show a set of experiments with an artificial 2-D
data, using a Gaussian kernel and a polynomial kernel.
PCA is an orthogonal transformation of the coordinate
system in which we describe our data. It is often the case
that a small number of principal components is sufficient
to account for most of the structure in the data. Fig.1
shows the projection of data obtained by PCA on the full
dataset in feature space defined by dot products in terms
of the Gaussian kernel. From left to right and from top
to bottom, the first 4 principal components are plotted,
in order of decreasing eigenvalue size. The 2-D data in in-
put space is shown on the left bottom of the figure. Fig.2
shows the 8 largest eigenvalues.

Figs.3 and 4 show the projection of data obtained by
Noise Kernel-KLFCM on the data respectively in the 1st
(c=1) and the noise (c=2) clusters in feature space. The
obtained 4 principal components are plotted. The dimen-
sionality of the feature space was assumed to be 9 (r=9),
and the number of eigenvectors p=4. Other parameters
were chosen as λ=2.0, γ=10, β=70. The 2-D data in in-
put space was clustered as shown on the left bottom of the
figures in which the data in the 1st and noise clusters are
depicted crisply by the largest membership values and rep-
resented by circles and triangles respectively. Fig.5 shows
the 8 eigenvalues for the 1st cluster (left) and the noise
cluster (right) obtained by the same algorithm as above,



in which r=13 and p=8. Though the number of used
eigenvectors (p=8) was greater than the result in Figs.3
and 4 (p=4), we had similar results. Thus the number p is
not deemed to significantly affect the results. The largest
2 eigenvalues contribute greatly for both the clusters.

From Eq.(13), we see that these results are invariant
with respect to origins of coordinates x, but are not scale
invariant. Although the circular cluster is clearly detected
as in Fig.4, slightly vague clusters are obtained in Figs.6
and 7 for the data x multiplied by 0.01. Fig.8 shows the
result with polynomial kernel k(xi, xj) = (x�

i xj)4, λ =
2, γ = 0, p = 2 and r = 3. The eigenvalues explain
that the data distribution in feature space is almost within
two dimensions. The learning curve is shown on the right
bottom of the figure.
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Fig. 1. Projections of data in feature space by PCA on full dataset.
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Fig. 2. Eigenvalues by PCA on full dataset.

IV. Conclusion

We have proposed a kernel based noise fuzzy clustering
for local robust PCA on the feature space mapped objects.
The data structure is clarified by the robust PCA. The
common case such as in computer vision applications in-
volves intra-sample outliers which affect some, but not all,
of the variables in a data sample. Taking this point into
consideration, comparisons with the de-noising by kernel
based PCA [12], [13] is left for future study.
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Fig. 7. Projections of data by Noise Kernel-KLFCM on noise cluster
(c=2) multiplied by 0.01.
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Fig. 8. Result by Noise Kernel-KLFCM with polynomial kernel.
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