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Abstract— Local feature values derived by hybrid ap-
proaches to fuzzy clustering and multivariate data anal-
ysis have been used for knowledge discovery in databases
(KDD). They often, however, fail to reveal intrinsic struc-
ture because observed variables are easily influenced by
external variables. This paper proposes an enhanced
technique of local independent component analysis (Lo-
cal ICA), which extracts independent components uncor-
related to some external criteria. The new technique is
applied to knowledge discovery from POS transaction data
with the goal of the analysis being to reveal the relationship
between the number of customers and days of the week.

Keywords— Fuzzy clustering, independent component
analysis, external criterion, projection pursuit.

I. Introduction

Independent component analysis (ICA) [1], [2], [3] is an
unsupervised technique, which uses higher order statistics
than principal component analysis (PCA) to reveal the in-
trinsic structure of data sets, and is useful for projection
pursuit as well [4]. Projection Pursuit has been devel-
oped in statistics for finding “interesting” features of mul-
tivariate data and its goal is to find the one-dimensional
projections of multivariate data which have “interesting”
distributions for visualization purposes. Typically, the in-
terestingness is measured by the non-Gaussianity that is
also used in ICA algorithms for measuring the mutual de-
pendence of reconstructed variables. Therefore, the basis
vectors of ICA should be especially useful in projection
pursuit and in extracting characteristic features from nat-
ural data.

In spite of their usefulness, the linear ICA models are
often too simple for describing real-world data. So, several
non-linear ICA approaches that were used in conjunction
with some suitable clustering algorithms have been pro-
posed. Karhunen et al. proposed local ICA models [6], in
which the data are grouped in several clusters based on the
similarities between the observed data ahead of the pre-
processing of linear ICA using some clustering algorithms
such as K-means. Honda et al. [7] enhanced the idea to
the technique that uses Fuzzy c-Varieties (FCV) clustering
method [8] for extracting local independent components.
The FCV algorithm partitions an observed data set into
linear fuzzy clusters based on the similarities of mixing
matrices. Because the observed data are assumed to be
the linear combinations of source signals in linear ICA
models, the linear clustering methods such as the FCV

algorithm are suitable for the preprocessing of the ICA
algorithms. The local ICA is useful not only for blind
source separation (BSS) but also for knowledge discovery
in databases (KDD), and have been applied to feature ex-
traction from POS (Point-Of-Sales) transaction data [9],
[10].

However, in real applications, it is often the case that we
fail to reveal intrinsic structure of databases using feature
values extracted by linear models because they are influ-
enced by external variables. Yanai [11] proposed PCA
with external criteria that extracts latent variables uncor-
related to some external criteria. In the technique, the in-
fluences of external criteria are first removed from a data
matrix by using regression analysis. Oh et al. [12] en-
hanced the modified PCA technique for local linear mod-
eling by using Fuzzy c-Regression Models (FCRM) [13]
instead of regression analysis. FCRM is a switching re-
gression model that performs fuzzy clustering and regres-
sion analysis, simultaneously.

This paper proposes an enhanced technique of local
independent component analysis (Local ICA), which ex-
tracts independent components uncorrelated to some ex-
ternal criteria. In [7], local independent components were
extracted by replacing the preprocessing of ICA with the
FCV clustering. In this paper, the preprocessing is per-
formed by using the fuzzy clustering algorithm that ex-
tracts local principal components uncorrelated to exter-
nal criteria. The new technique is applied to knowledge
discovery from POS transaction data with the goal of the
analysis being to reveal the relationship between the num-
ber of customers and days of the week.

II. Fast ICA Algorithm and Local ICA

Approaches

A. ICA Formulation and Fast ICA Algorithm

Denote that y is an M dimensional observed data vec-
tor and s is an N dimensional source signal vector corre-
sponding to the observed data with N ≤ M ,

y = (y1, y2, · · · , yM )�,

s = (s1, s2, · · · , sN )�,

where � represents the transpose of vector. When the el-
ements of source signals (s1, s2, · · · , sN) are mutually sta-
tistically independent and have zero-means, the observed



data are assumed to be the linear mixtures of si as follows:

y = As, (1)

where unknown M × N matrix A is called a mixing ma-
trix. The goal of ICA is to estimate source signals si,
i = 1, · · · , N and mixing matrix A using only observed
data y.

It is useful to apply a preprocessing of whitening and
sphering by using PCA before applying the ICA algo-
rithm [1], [14], [15]. In the preprocessing, observed data
y are transformed into linear combinations z

z = P�y,

such that their elements zi, i = 1, · · · , N are mutually un-
correlated and all have unit variance. This preprocessing
implies that correlation matrix E{zz�} is equal to unit
matrix I, and is usually performed by PCA.

After transformation, we have

z = P�y = P�As = Ws,

where W = P�A is an orthogonal matrix due to the as-
sumption. Thus we can reduce the problem of finding
arbitrary full-rank matrix A to the simpler problem of
finding an orthogonal matrix W , which gives s = W�z.
Hyvärinen and Oja [16] used non-Gaussianity as the mea-
sure of the mutual dependence of reconstructed variables
and proposed the following objective function to be mini-
mized or maximized.

Lfica(w) = E{(w�z)4} − 3‖w‖4 + F (‖w‖2), (2)

where E{(w�z)4} − 3‖w‖4 is the fourth-order cumulant
or kurtosis that measures the Gaussianity of distribution.
Maximizing the non-Gaussianity of reconstructed signals
gives us one of independent components. The third term
denotes the constraint of w such that ‖w‖2 = 1.

The Fast ICA Algorithm that uses fixed-point itera-
tion [16] is represented as follows:

Step1 Take a random initial weight vector w(0) of
norm 1. Let r = 1.

Step2 Update w(r) using Eq.(3).

w(r) = E{z(w(r − 1)�z)3} − 3w(r − 1). (3)

Step3 Divide w(r) by its norm.
Step4 If |w(r)�w(r − 1)| is enough close to 1, stop:
otherwise return to Step2.

Vectors w(r) obtained by the algorithm constitute the
columns of orthogonal mixing matrix W . To estimate N
independent components, we need to run this algorithm N
times. We can estimate the independent components one
by one by adding projection operation in the beginning of
Step3.

B. Fuzzy Local ICA with FCV Clustering

Honda et al. [7] enhanced the Fast ICA algorithm to
Fuzzy Fast ICA that can handle fuzziness in the iterative

algorithm by using the FCV clustering as preprocessing.
The FCV clustering simultaneously performs fuzzy clus-
tering and PCA. The principal subspace of each cluster is
estimated as the prototypical linear variety of dimension
N that passes through point vc and is spanned by linearly
independent vectors pc1, · · · , pcN . The objective function
of FCV is composed of distances between data points and
prototypical linear varieties as follows:

Lfcv =
C∑

c=1

J∑
i=1

uci

{‖xi − vc‖ −
N∑

k=1

|p�
ck(xi − vc)|2

}

+λ

C∑
c=1

J∑
i=1

uci log uci, (4)

where C and J are the number of clusters and obser-
vation, respectively. uci is the degree of membership of
the ith data point to the cth cluster. In [7], the mem-
berships are fuzzified by using the entropy regularization
technique [17] instead of the weighting exponent used in
the standard FCV algorithm. The larger the λ, the fuzzier
the membership assignments. The fuzzification technique
has several merits, e.g., “singularities” do not occur even
if several sample points are on prototypes and cluster cen-
ters are the means of xi simply weighted by uci’s. Us-
ing a three-step iterative algorithm, we can estimate the
optimal fuzzy partition where prototypes of clusters are
linear varieties. Because the optimal pck is derived as the
fuzzy principal component vector of the cth cluster, the
FCV clustering can be regarded as a technique for local
PCA [18].

In order to perform ICA in each fuzzy cluster, observed
data y is normalized to zc so that E{zcz

�
c } = I is satisfied

in each cluster where E{·} means the weighted average.
The measure of non-Gaussianity is also modified to fuzzy
kurtosis as follows:

fuzzy kurtosis =

J∑
j=1

ucj(w�
c xcj)4

J∑
j=1

ucj

− 3‖wc‖4.

Then, local independent components of each cluster are
estimated by the Fast ICA algorithm considering mem-
berships of observed data.

III. Local Independent Component Analysis

with External Criteria

A. Preprocessing with Principal Components Uncorre-
lated to External Criteria

Assume that M observed variables y1, · · · , yM are influ-
enced by K external criteria x1, · · · , xK and the two data
matrices are given as follows:

X =




x�
1

x�
2
...

x�
J


 =




x11 x12 . . . x1K

x21 x22 . . . x2K

...
...

. . .
...

xJ1 yJ2 . . . xJK


 ,



Y =




y�
1

y�
2
...

y�
J


 =




y11 y12 . . . y1M

y21 y22 . . . y2M

...
...

. . .
...

yJ1 yJ2 . . . yJM


 ,

where each variable is normalized as

J∑
j=1

xjk = 0 ; k = 1, · · · , K, (5)

J∑
j=1

yjl = 0 ; l = 1, · · · , M. (6)

In this subsection, we consider to extract independent
components ignoring the influences of external criteria
x1, · · · , xK, i.e., we try to estimate independent compo-
nents uncorrelated to the external criteria.

Yanai [11] proposed a technique for estimating principal
components that are independent to some external crite-
ria. In the technique, influences of external criteria are
first removed from observed variables by considering the
following linear regression model.

y� = x�B + e�, (7)

where B is the partial regression coefficient matrix,

B =




b11 b12 . . . b1M

b21 b22 . . . b2M

...
...

. . .
...

bK1 bK2 . . . bKM


 , (8)

and e is the error term. Minimizing the least squares
criterion

Lra(B) =
J∑

j=1

‖y�
j − x�

j B‖2

= ‖Y − XB‖2

= tr
(
(Y − XB)�(Y − XB)

)
, (9)

the optimal B is estimated as

B = (X�X)−1X�Y, (10)

and data matrix Y is decomposed into

Y = X(X�X)−1X�Y

+
(
I − X(X�X)−1X�

)
Y

= YX + YX̄ , (11)

where the first term of Eq.(11) is the matrix composed of
the elements predictable perfectly by the external criteria
and the second term is composed of the elements indepen-
dent of X. So covariance matrix CY Y is also decomposed
into

CY Y =
1
J

Y �Y

=
1
J

Y �(YX + YX̄)

=
1
J

Y �X(X�X)−1X�Y

+
1
J

(
Y �Y − Y �X(X�X)−1X�Y

)

= CY XC−1
XXCXY

+(CY Y − CY XC−1
XXCXY )

= CY Y.X + CY Y.X̄ , (12)

CY Y.X = CY XC−1
XXCXY , (13)

CY Y.X̄ = CY Y − CY XC−1
XXCXY , (14)

where CXX is the variance covariance matrix of X, and
CXY is the covariance matrix of X and Y . Here, it can be
said that we can estimate principal components of CY Y

by analyzing CY Y.X and CY Y.X̄ separately and the fac-
tors extracted from CY Y.X̄ is free from the influences of
external criteria [11].

In this paper, we consider to apply the ICA algorithm
to principal components extracted by Yanai’s technique.
Let P = (p1, p2, · · · , pN ) be the N × N matrix composed
of N principal eigenvectors of CY Y.X̄ . Normalized data
ZX̄ to be analyzed is calculated as

ZX̄ = YX̄P

=
(
I − X(X�X)−1X�

)
Y P. (15)

Here,

CXZX̄
=

1
J

X�
(
I − X(X�X)−1X�

)
Y P = O

implies that the covariance matrix of ZX̄ and X is O (zero
matrix), i.e., the normalized data are uncorrelated to the
external criteria.

If we apply the ICA algorithm to this normalized data
by multiplying orthogonal matrix W , reconstructed data
matrix S are derived as

S = ZX̄W, (16)

and the covariance matrix of S and X is calculated as

CXS = CXZX̄
W = O. (17)

Therefore, the independent components are also uncorre-
lated to the external criteria. In this way, we can extract
independent components uncorrelated to some external
criteria by removing the influences of the external criteria
in the preprocessing with PCA.

B. Extraction of Local Independent Components Uncorre-
lated to External Criteria

In this subsection, we consider generalization of the ICA
technique proposed in the previous subsection to local
ICA. Oh et al. [12] proposed a fuzzy clustering algorithm
that extracts local principal components uncorrelated to



external criteria. In the clustering technique, Fuzzy c-
Regression Models (FCRM) [13], which simultaneously
performs fuzzy clustering and regression analysis, is used
not only for partitioning a data set into fuzzy clusters but
also for removing the influences of external criteria from
fuzzy scatter matrices. Solving the eigenvalue problems
of the fuzzy scatter matrices, local principal components
uncorrelated to external criteria are derived. In the fol-
lowing, we try to estimate local independent components
from the local principal components.

FCRM is a switching regression model that estimates lo-
cal linear models. In order to use the switching regression
model as the preprocessing of PCA, Oh et al. modified
the local linear models as

ycjl =
K∑

k=1

xcjkbckl + ecjl, (18)

where xcjk = xjk − vx
ck and ycjl = yjl − vy

cl. vx
c =

(vx
c1, · · · , vx

cK)� and vy
c = (vy

c1, · · · , vy
cM )� are the center

of the cth cluster. The objective function of FCRM is
defined as

Lfcrm =
C∑

c=1

J∑
j=1

ucj

M∑
l=1

(ycjl −
K∑

k=1

xcjkbckl)2

+λ
C∑

c=1

J∑
j=1

ucj log ucj

=
C∑

c=1

tr
(
(Yc − XcBc)�Dc(Yc − XcBc)

)

+λ

C∑
c=1

J∑
j=1

ucj log ucj, (19)

where Yc = {ycjl} and Xc = {xcjk}. Dc is the diago-
nal matrix whose the jth diagonal element is ucj. Bc is
the partial regression coefficient matrix of the cth cluster.
Necessary condition for the optimality ∂Lfcrm/∂Bc = O
reduces the optimal Bc as

Bc = (X�
c DcXc)−1X�

c DcYc. (20)

In the same way, the optimal uck, vx
c and vy

c are de-
rived from ∂Lfcrm/∂ucj = 0, ∂Lfcrm/∂vx

c = 0 and
∂Lfcrm/∂vy

c = 0, respectively. A three-step iterative al-
gorithm derives the optimal data partition and local linear
models.

Using the local linear models, the data matrix to be
analyzed is decomposed in each cluster as follows:

Yc = XcBc + (Yc − XcBc)
= YXc + YX̄c

. (21)

Then, the fuzzy scatter matrix of the cth cluster is also
decomposed as

Sfc = Y �
c DcYc

= Y �
c Dc(YXc + YX̄c

)

= Y �
c DcXcBc + {Y �

c DcYc − Y �
c DcXcBc}

= SfcX + SfcX̄ , (22)

where

SfcX = Y �
c DcXc(X�

c DcXc)−1X�
c DcYc, (23)

SfcX̄ = Y �
c DcYc

−Y �
c DcXc(X�

c DcXc)−1X�
c DcYc. (24)

Here, SfcX is closely related to Xc while SfcX̄ is indepen-
dent to Xc. So, the local principal components uncorre-
lated to the external criteria are derived by solving the
eigenvalue problems of SfcX̄ , and local independent com-
ponents are estimated from the local principal components
by using the Fuzzy Fast ICA algorithm.

The procedure for extracting local independent compo-
nents uncorrelated to external criteria can be written as
follows:

Step1 Perform the FCRM clustering to estimate local
regression models.

Step2 Perform the whitening of observed data in each
cluster using local PCA with external criteria.

Step3 Extract local independent components of each
cluster using Fuzzy Fast ICA algorithm.

IV. Knowledge Discovery from POS

Transaction Data

In this section, we show the characteristic features of
the proposed method through a real world application to
knowledge discovery from POS (Point-Of-Sales) transac-
tion data. The POS transaction data set, which was used
in [10], was collected in 1997 at two supermarkets in Osaka
and includes 333 sample data. Each sample datum is com-
posed of 10 values: national holiday, 7 days of the week
and the numbers of customers in each supermarket. The
items of days of week and national holyday are dummy
variables. The goal of the analysis is to extract useful
knowledge from the 2-D projections of local independent
components.

First, we briefly review the result shown in [10]. The
ICA algorithms are useful for projection pursuit, in which
one tries to describe the structure of high dimensional data
by projecting them onto a low dimensional subspace. The
structure of the POS transaction data set, however, was
too complicated to derive effective 2-D projection with
single linear ICA model. Then, the Fuzzy Fast ICA al-
gorithm [7] was applied to interpret the local structure of
the data set intuitively following the preprocessing with
the FCV clustering. In the FCV clustering stage, the
data set was partitioned into two linear clusters. One
mainly consisted of Tuesday, Wednesday, Friday and Sun-
day, and the other included the remaining days. Table I
shows the correlation coefficients of independent compo-
nents and original variables derived in each cluster. In the
table, “—” indicates that the cluster did not include the
day when we partitioned the data based on the maximum
membership assignments.

Fig.1 shows the projection onto the two-dimensional
space spanned by the two local independent components
(IC1 and IC2). In the figure, the horizontal and vertical
axes were named based on the correlations between the



TABLE I

Correlation coefficients of independent components and

original variables derived by local ICA with FCV

Correlation coefficient
Variable c = 1 c = 2

IC1 IC2 IC1 IC2
Holiday — — 0.27 0.17
Monday — — 0.93 -0.26
Tuesday 0.55 0.69 — —

Wednesday -0.47 -0.43 — —
Thursday — — -0.69 -0.69

Friday 0.54 -0.07 — —
Saturday — — -0.25 0.93
Sunday -0.73 0.33 — —

Supermarket A 0.06 0.70 -0.75 -0.04
Supermarket B -0.21 0.76 -0.41 0.62

Tues.

Wed. Fri.

Sun.

busy
slack

IC1

IC2

-1 0-2

-1

0

1
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B
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A-busy A-slack
IC1

IC2

-1 0 1

-1

0

1

a. c = 1 b. c = 2

Fig. 1. Projection of independent components derived by local ICA
with FCV

independent components and the number of customers.
“A-busy” (“B-busy”) means supermarket A (B) had many
customers while supermarket B (A) did not have large cor-
relation with the independent component, and vice versa.
For example, in the second cluster, IC1 has the negative
correlation with the number of customers of supermarket
A while IC2 has positive correlation with the number of
customers of supermarket B. Fig.1-a shows the character-
istic feature that is common to both the two supermarkets.
The number of customers is large on Sunday and Tuesday
but small on Wednesday and Friday. On the other hand,
Fig.1-b reveals the respective characteristics of each super-
market. The number of customers is large at supermarket
A but small at supermarket B on Thursday and the su-
permarket B is especially busy on holiday because •’s are
located above each mass in the second clusters. These
characteristic features are closely related to the average
numbers of customers for each day of the week shown in
Table II. In this way, the local linear approach is use-
ful for revealing the characteristic features of large scale
databases.

However, it seems that they are influenced by other el-
ements since the data of each day of the week form a long
and slender mass in Fig.1. In this experiment, we tried to
reveal intrinsic relationship between day of the week and

TABLE II

Average numbers of customers for each day of week

Average numbers of customers
Day of week Supermarket A Supermarket B

Holiday 647.9 703.7
Monday 613.4 595.9
Tuesday 693.7 671.0

Wednesday 439.4 478.3
Thursday 827.6 652.0

Friday 592.0 562.1
Saturday 748.6 750.3
Sunday 720.8 759.9

the number of customers by removing influences of exter-
nal criteria. We picked up three meteorological elements
(Average temperature of the day, Humidity, Precipitation)
as the external criteria, and partitioned the data set into
two clusters using local PCA with external criteria [12].
The dimensionality of principal subspace and the coeffi-
cient of entropy term were set to be 2 and 2.0, respectively.
One cluster mainly consisted of Tuesday, Thursday, Sat-
urday and Sunday, and the other included the remaining
days. We applied the Fuzzy Fast ICA algorithm to the
local principal components uncorrelated to the external
criteria in each cluster. Table III shows the correlation co-
efficients of the independent components and the original
variables. Fig.2 shows the 2-D plots of the local indepen-
dent components of each cluster. In Fig.2, the data of each
day of the week form a spherical mass. It is because the
intrinsic relationships between the variables are empha-
sized by removing the influences of the external criteria.
Fig.2-a indicates that the number of customers is large on
Saturday and Sunday but small on Thursday only in the
supermarket B.

These intrinsic features are different from the knowl-
edge derived in [10]. Especially, in supermarket A, the
knowledge on Friday, Saturday and Sunday is in conflict
with the previously extracted ones. The differences can
be interpreted by taking account of the average values of
the meteorological elements for each day of the week as
shown in Table IV. The table indicates that Friday had
many rainy days and it was few on Saturday and Sun-
day. Then, it can be said that the numbers of customers
in supermarket A were greatly influenced by the meteoro-
logical elements and the number of customers must have
been large on Fridays if we had little rain on Fridays. On
the other hand, the numbers of customers in supermarket
B were only slightly influenced by the external elements.

As we have demonstrated above, the proposed local ICA
technique is useful for extracting the intrinsic knowledge
from large scale databases by using it together with con-
ventional projection pursuing methods.
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Fig. 2. Projection of independent components derived by local ICA
with FCRM

TABLE III

Correlation coefficients of independent components and

original variables derived by local ICA with FCRM

Correlation coefficient
Variable c = 1 c = 2

IC1 IC2 IC1 IC2
Holiday — — -0.47 0.01
Monday — — -0.92 0.08
Tuesday 0.20 0.28 — —

Wednesday — — 0.42 0.86
Thursday -0.38 0.77 — —

Friday — — 0.62 -0.76
Saturday -0.66 -0.73 — —
Sunday 0.83 -0.28 — —

Supermarket A -0.27 0.22 -0.39 -0.56
Supermarket B 0.14 -0.51 -0.53 -0.41

V. Conclusion

In this paper, we proposed a technique for extracting
independent components uncorrelated to some external
criteria. In the technique, the influences of the external
criteria are first removed from observed data by regression
analysis before applying the ICA algorithm. In the BSS
problem, the preprocessing can be regarded as removing
the noise signals that are given in advance.

The proposed technique was also extended to local ICA
by using the FCRM clustering that is a switching regres-
sion method. In a real world application, we demonstrated
that intrinsic knowledge can be discovered from large scale
databases by using the proposed local ICA technique to-
gether with the conventional projection pursuing methods.

Although independent components uncorrelated to ex-
ternal criteria were extracted in this paper, we can also
estimate independent components that are closely related
to the external criteria using the remaining parts of fuzzy
scatter matrices. Potential future works may include pro-
jection pursuit regression [5].
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