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Abstract- In this paper we investigate a hybrid model
based on the Discrete Gradient method and an
evolutionary strategy for determining the weights in a
feed forward artificial neural network. The Discrete
Gradient method has the advantage of being able to jump
over many local minima and find very deep local minima.
However earlier research has shown that a good starting
point for the discrete gradient method can improve the
quality of the solution point. Evolutionary algorithms are
very suitable for global optimisation problems.
Nevertheless they are cursed with longer training time
often unsuitable for real world applications. For
optimisation problems such as weight optimisation for
ANNSs in real world applications the dimensions are large
and time complexity is critical. Hence the idea of a hybrid
model can be a suitable option. In this paper we propose a
hybrid model combining an evolutionary strategy with the
discrete gradient method to obtain an optimal solution
much quicker. Comparative results on a range of
standard datasets are provided with other hybrid neural
learning models such as an evolutionary strategy
combined with least square based methods. The
comparative results are also given based on the
evolutionary based search and discrete gradient. The
results confirm that, in general improved weight
determination is delivered and the memory complexity is
improved.

I. INTRODUCTION
A learning algorithm is at the heart of a neuralwmek based

system. Over the past decade, a number of learnijgorithm could be advantageous. Most of the hybrid

the error surface, which may not always be avaslabt
expensive to find. Also the algorithm may very Badie
trapped in a local minimum [3] — [4].

One of the alternative learning techniques tadtacted
research is the genetic algorithm. Genetic algorithare a
stochastic search method introduced in the 1970shén
United States by John Holland [11] and in Germaynyrigo
Rechenberg [12]. Much of the research however basskd
on the training of feed forward networks [13] - J14ust as
neurobiology is the inspiration for artificial nelimetworks,
genetics and natural selection are the inspiratbnthe
genetic algorithm. It is based on a Darwinian tygavival of
the fittest’ strategy. An advantage of using GAs tiaining
neural networks is that they may be used for neksvavith
arbitrary topologies. Also, GAs do not rely on edéting the
gradient of the cost function. Cost functions nededbe
calculated to determine their fitness. Becaus&é@ftochastic
nature of this algorithm the learning process ceach an
optimal solution with much higher probability thanany
standard neural based techniques, which are basetheo
gradient information of the error surface.

One of the problems though, with this globalrekebased
technique is the time complexity of the algorithor a very
large application size, a very powerful computafiacility is
required to solve the problem. Hence there wasthduneed
for an improvement of this approach in terms of time
complexity (and to some extent the quality of dohit by
fine tuning the search within the local neighborth@rea of
the global solution obtained by the genetic aldponit This
suggests that a hybrid of the GA and some other tiiming

algorithms have been developed. However, in mosesa algorithms developed for ANNs have used GA and skime

learning or training of a neural network is baseddrial and
error method. There are many fundamental problambk as
a long and uncertain training process, selectiomeativork
topology and parameters that still remain unsolNezhrning
can be considered as a weight-updating rule oAMN.

Error Back Propagation (EBP) is probably the tmoted
learning algorithm in the field of Artificial NeurdNetworks

of a local search method. Amongst the local
techniques, EBP has been used most extensivelyielEar
research in this area had shown that hybrid trginivas
successful [15] —[16]. There were a number of neteas
who used GA and EBP hybrids and reported an impneve:
of the algorithm over traditional GA or EBP [17] [48].
Some recent work also suggested an improvemeritytorid

(ANNs) [9]. Rumelhart et al [10] developed the backalgorithms by running several parallel combinatiofiglobal

propagation learning for the Multi Layer Perceptr@ack-
propagation is based on thyadient descenminimization
method. The ANN is presented with an input pattdar,
which an output pattern is generated. Then, ther &etween
desired and actual output can be determined, amsdefda
backwards through the ANN. Based on these erroesghw
adaptations are calculated, and errors are pagsse@revious
layer, continuing until the first layer is reachéthe error is
thus propagated back through the ANN. Most of @lewdus-
based ANN algorithms depend on the gradient inféionaof

and local search [19] — [21].

Earlier work by Ghosh and Verma [9], suggested a
alternative learning methodology, which uses a idybr
technique by using evolutionary learning for thddan layer
weights and least square based solution methaotthéooutput
layer weights. The proposed algorithm solved ttubjems of
time complexity of the evolutionary algorithm bynabining
a fast searching methodology using a least sqtecésique.
However the memory complexity was quite high. Theeo
of memory complexity on average could be 4-5 timnigher

search



than EBP. The high memory complexity order was wuthe
use of extensive matrix operations for the leastases
method, which has high memory demands for solvimg t
linear equations to find output layer weights. Tother
problem with the method was producing large weidgbitshe
output layers. Such large weight modification tetaldestroy
previously acquired knowledge and likely thus dasesthe
generalizing ability of the neural network.

Derivative free methods seem to be the besbwopt deal
with this kind of problem with a large number ofriadbles
(weights). Such methods can overcome stationaryt®oi
which are not local minima and some shallow localima.

Two widely used derivative free methods — the Pbwel

method and the Nelder-Mead Simplex method are tbfeec
when the objective function is smooth and the numiife
variables is less than twenty. However in many |aois the
number of variables is much
sometimes the objective function is non-smooth. tAep
popular derivative free method is the discrete igatd
method.

Bagirov et al in 2004 [22] have appligliscrete gradient
methods in generating the neural network weightee T
discrete gradient is a finite difference estimae &
subgradient. Unlike many other finite differencdireates to
subgradient, the discrete gradient is defined wégpect to a
given direction, which allows a good approximati@n the
quasidifferential. The algorithm calculates disergtadients
step by step, and after a finite number of itersieither the
descent direction is calculated or it is found ttieg current
point is an approximate stationary point. In thesdbéte
gradient method Armijo’s algorithm is used for melisearch.
Hence at a given approximation, the method calesldhe
descent direction by calculating the discrete gnaidi step by
step, and improving the approximation of the Derayi
Rubinov quasidifferential. Once the descent digectiis
calculated, Armijo’s algorithm is used for line sga The
local minima is chosen as the next approximatioend¢ the
Discrete Gradient method jumps over many local méanand
finds very deep local minima. However earlier reskahas
shown that a good starting point for the discretadignt
method can improve the quality of the solution poim this

paper we combine an Evolutionary algorithm with th

discrete gradient method to find the weights in tieiral
network. The evolutionary algorithm
optimal solution after several generations. Thatrreptimal
solution is passed through the discrete gradierthodeas a
starting point. The discrete gradient method gemerahe
final solution.

. METHODOLOGY
A. Discrete gradient method
The discrete gradient method ibandle methodvhere the
sub-gradients are replaced by their approximati@etailed

description of this method can be found in [5] 3. [The
Discrete gradient of a functidhat a pointx is defined with

respect to a given directiog)(and is calculated using a step ¢

(A) along that direction. The coordinates of the itz
gradient are defined as finite difference estimatesa

larger than twenty an

gradient in some neighbourhood of the paint Ag . The I

coordinate of the discrete gradient is defined S0 ta
approximate a sub gradient of the functionThus discrete
gradient contains some information about the behawf the
function f in some region around the point

The next step is to compute the descent dineciide take
any direction and calculate the first discrete gmad Then we
calculate the least distance between the convelxdfiuhe
discrete gradients and the origin. This problemeduced to a
quadratic programming problem and can be effegtigelved
by Wolf's terminating algorithm. If this distance ess than
some toleranced > 0, the algorithm stops and we consider
that point as an approximated stationary point.e@tise a
search direction is calculated. If this directiand descent
direction, the algorithm terminates, else we catla new
djiscrete gradient with respect to this directioniniprove the
approximation of the set of generalised gradieBtace the
discrete gradient contains some information abou t
behaviour of the function in some regions aroureghintx,
this algorithm can find descent directions in stagiry points,
which are not local minima.

Supervised learning of a neural network is atintipation
problem [1] — [2], that involves minimising the errfunction
given some set of training data. Hence the neustivark
weights can be determined using the discrete gnadiethod
(DG) with the sum of squared error function. Thensaf
squared error function is defined as

. pat K 2
minE(w,,w,)=>" (Opk - ypk)

p=1 k=1
where O, = act(w hid ) and hid , = act{w{ x, )

Here act denotes the activation functio¥V, denotes the
matrix of output layer weightsW, denote hidden layer
weights, X, denotes the ‘hinput pattern,y the " output
pattern andhid, denotes the hidden layer output fdf p

pattern ancDp denotes the output layer output fStgattern.
ghat denotes the total number of training pattefstex
LetW = (Wh ,Wo). The Discrete gradient method applied

generates arne jn neural network learning is as follows

Stepl: Choose any starting pOiWO atk =0.
Step2: Sets=0andW) =W¥.

Step3: Calculate the descent direction\t =W, and
0=0“.

Step 4: We calculate the least distance between the
convex hull of the discrete gradients and the origi

- min{”v” VO D, (W )}

Step 5: Calculate the search directiogz ).
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«  Step6: If <0, then sebW**" =W}, k =k +1

and go to Step 2.
e Step 7: Construct the following iteration

Wk :WSk + asg's‘, where 0 is defined as follows

o, = argmax{az 0: f(\NS" +ag§)— f(\lvs")s co

ve

}

k
Vs

+ Step8 SetsS=S+1. Goto step 3.

B. Evolutionary Algorithm

Evolutionary algorithms (EAs) are search methibds take
their inspiration from natural selection and sualivf the
fittest in the biological world. EAs differ from me
traditional optimization techniques in that thewolve a
search from a "population” of solutions, not fronsiagle
point. Each iteration of an EA involves a compedti
selection that rejects the poor solutions. The temig with
high "fitness" are "recombined” with other solusorby
swapping parts of a solution with another. Solwgiane also
"mutated” by making a small change to a single elenof
the solution. Recombination and mutation are used
generate new solutions that are biased towardsnegif the
space for which good solutions have already been.se

Let W = (Wh,WO) be an n dimensional solution vector
and 0 be the corresponding step size. Let m be the numbe

of the population in a generation where each paioulas the
pair (We,de).

In the first generation m populations are getegla

randomly. In the subsequent generations the pdpnlaet is
created by selection and mutation.
algorithm is as follows

* Stepl: Randomly initializem population vector.
e« Step2: The parents are mutated as follows
forj=1,2,...n

a,(i)= o, (i)exdr N(0g) + N, (01))
W'(j)=wi(j)+so;(i)N; (02)

where the values df and T as follows

: 1

T =—

J2n

1
T=——

2J/n
W.(j), W(j). ,(j). and o,(j) denote thejth
component of the vectorsV,, W, og,, O
respectively. N(0,1) denotes a normally distributexb-

The Evolutionary

negative based on a normal probability distribution
N(0,1).

e Step3: Calculate the fitness of individual population i
the generation.

« Stepd: Create a new generation by extracting members

of the current population using a roulette wheét®n
scheme.

Step5: If the stopping criteria are satisfied stop eef®
to Step 2.

C. Hybridization of the evolutionary algorithm amliscrete
gradient method (EADG)

In this method we are applying the Evolutionakyorithm
for a certain number of generations to converge tnear
optimal solution. Then we apply the Discrete gratimethod
as a local search with the starting point providsd the
evolutionary algorithm as the best solution in tfieal
generation. The algorithm is described as follows

e Stepl- Step 5 as above

e Step6: Calculate the fitness of an individual populatio
in the current generation.

¢ Step7: Extract the best solution in the current generati

Let the best solution b, .
e Step8: Set the start point of the discrete gradienthmet
W° =W, atk =0.
Step9: Sets=0andW, =W,
. Stepl0: Calculate the descent direction\dt =W, and
0 =0
Step 11: We calculate the least distance between the
convex hull of the discrete gradients and the arigi

_ min{||v||2VDEm(Wsk)}

e  Step 12: Calculate the search directiogz ).

k
Vs

— 1ok
s =~ Vs
< Step13: If <0, then sebV**"' =W,

k =k +1and go to Step 9.
e Step 14: Construct the following iteration

WKt =WX + g g¥, whered is defined as follows
o, = argmax{az 0: f(\NS" +ag's‘)— fﬁNj)s co|
Step 15: SetS=S+1. Go to step 10.
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IIl. EXPERIMENTAL RESULTS

dimensional random number with mean and variande of Experiments were conducted using the benchmetk skts:

and 1 respectively. Nj(0,1) indicates that the mand
number is generated afresh for each value $fs a sign

Breast cancer (Wisconsin) and Heart Disease (Gledgl
Diabetes, and Liver data from the UCI Machine Laagn

variance operator whose value is either positive orepository. Table 1 shows the details of the indlial data set

used for training and testing for comparing all caithms.



The following comparisons were made: our algorithm

(EADG) with a hybrid EA and LS method (EALS), Résilt

back propagation (RP) and DG method.

Table 4 Results for all the data set for RP

RP
Classification
Table 1 Data set information Dataset #HN Accuracy CPU Time (s)
Data Input details _ Attribu_te Austral 2 87.8 203
infor mation L
Astral Pattern length = 690 | # Input columns = 14 Breast Cancer 4 98.8 28.7
Training pattern = 600| # Output column =1 Cleveland 4 78.4 29.3
— ;eftting Ipa“frf]“ :62(; — - Diabetes | 3 78 30.1
reas attern length = nput columns = .
cancer Training pattern = 600 | # Output column = 1 Liver 7 75.6 8
Wisconsin Testing pattern = 85 . .
( ) 9p The following table (Table 5) shows the classifion
Cleveland Pattern length = 297 | # Input columns = 13 accuracy as a percentage and the CPU time in sedonthe
Training pattern = 200| # Output column =1 DG method.
Testing pattern = 97
Diabetes Pattern length = 768 | # Input columns =8 Table 5 Results for all the data set for DG
Training pattern = 700| # Output column =1
Testing pattern = 68 DG
Liver Pattern length = 345 | # Input columns = 6 Classification
Training pattern = 300 | # Output column =1 .
Testing pattern = 45 Dataset #HN Accuracy CPU Time ()
Austral 2 86.7 29.69
The results of the experir_nents are given in é’al_ﬁL 5. The |Breast Cancer 2 100 13.12
_res_ul_ts are compar(—?d with the results ot_)talned _Ihg tl cleveland 2 80 13.9
individual methods. Time take for all the algorithare given X
as well. Diabetes 4 76.5 59.22
The following table (Table 2) shows the classifion Liver 3 86.7 14.07

accuracy of the ANN as a percentage, CPU time ¢orsis

for the EADG method

Table 2 Results for all data sets for EADG

Dataset [#HN C'a’s‘f'cat('(;)”)’*cc”racy CPU Time (s)
Austral| 3 91 68.4
Breast
Cancen 3 100 57
Clevela

nd 3 90 36.2
Diabetes 5 83 53
Liver | 3 88 94

The following table (Table 3) shows the classifion
accuracy as a percentage, CPU time in secondshéoEA

and LS method [8].

Table 3 Results for all the data set for hybrid &#&l LS method

Dataset | #HN C'E?;L'f:gon CPU Time ()
Austral 4 90 91
Breast
Cancer 6 81 102
Cleveland 6 90 85
Diabetes 6 81 87
Liver 8 88 82

The following table (Table 4) shows the classifion
accuracy as a percentage and the CPU time in se¢on&P.

The following figure (Figure 1) shows the conipan of

classification accuracy for all the four algorithms

Figurel: Comparison of classification accuracy
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The following figure (Figure 2) shows the companisid time

complexity for all the four algorithms.




Figure2: Comparison of time complexity prices, Applied Optimization, vol. 30: Progress in
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