
A hybrid neural learning algorithm combining evolutionary Algorithm with discrete
gradient method

Moumita Ghosh, Adil Bagirov, Ranadhir Ghosh, John Yearwood
School of Information Technology and Mathematical Sciences, University of Ballarat

PO Box 663, Victoria
Australia

{m.ghosh, a.bagirov, r.ghosh, j.yearwood} @ballarat.edu.au

Abstract- In this paper we investigate a hybrid model
based on the Discrete Gradient method and an
evolutionary strategy for determining the weights in a
feed forward artificial neural network. The Discrete
Gradient method has the advantage of being able to jump
over many local minima and find very deep local minima.
However earlier research has shown that a good starting
point for the discrete gradient method can improve the
quality of the solution point. Evolutionary algorithms are
very suitable for global optimisation problems.
Nevertheless they are cursed with longer training time
often unsuitable for real world applications. For
optimisation problems such as weight optimisation for
ANNs in real world applications the dimensions are large
and time complexity is critical. Hence the idea of a hybrid
model can be a suitable option. In this paper we propose a
hybrid model combining an evolutionary strategy with the
discrete gradient method to obtain an optimal solution
much quicker. Comparative results on a range of
standard datasets are provided with other hybrid neural
learning models such as an evolutionary strategy
combined with least square based methods. The
comparative results are also given based on the
evolutionary based search and discrete gradient. The
results confirm that, in general improved weight
determination is delivered and the memory complexity is
improved.

I. INTRODUCTION
A learning algorithm is at the heart of a neural network based
system. Over the past decade, a number of learning
algorithms have been developed. However, in most cases
learning or training of a neural network is based on a trial and
error method. There are many fundamental problems such as
a long and uncertain training process, selection of network
topology and parameters that still remain unsolved. Learning
can be considered as a weight-updating rule of the ANN.
 Error Back Propagation (EBP) is probably the most cited
learning algorithm in the field of Artificial Neural Networks
(ANNs) [9]. Rumelhart et al [10] developed the back
propagation learning for the Multi Layer Perceptron. Back-
propagation is based on the gradient descent minimization
method. The ANN is presented with an input pattern, for
which an output pattern is generated. Then, the error between
desired and actual output can be determined, and passed
backwards through the ANN. Based on these errors, weight
adaptations are calculated, and errors are passed to a previous
layer, continuing until the first layer is reached. The error is
thus propagated back through the ANN. Most of the calculus-
based ANN algorithms depend on the gradient information of

the error surface, which may not always be available or
expensive to find. Also the algorithm may very easily be
trapped in a local minimum [3] – [4].
 One of the alternative learning techniques that attracted
research is the genetic algorithm. Genetic algorithms are a
stochastic search method introduced in the 1970s in the
United States by John Holland [11] and in Germany by Ingo
Rechenberg [12]. Much of the research however has focused
on the training of feed forward networks [13] - [14]. Just as
neurobiology is the inspiration for artificial neural networks,
genetics and natural selection are the inspiration of the
genetic algorithm. It is based on a Darwinian type `survival of
the fittest’ strategy. An advantage of using GAs for training
neural networks is that they may be used for networks with
arbitrary topologies. Also, GAs do not rely on calculating the
gradient of the cost function. Cost functions need to be
calculated to determine their fitness. Because of the stochastic
nature of this algorithm the learning process can reach an
optimal solution with much higher probability than many
standard neural based techniques, which are based on the
gradient information of the error surface.
 One of the problems though, with this global search based
technique is the time complexity of the algorithm. For a very
large application size, a very powerful computation facility is
required to solve the problem. Hence there was a further need
for an improvement of this approach in terms of the time
complexity (and to some extent the quality of solution) by
fine tuning the search within the local neighborhood area of
the global solution obtained by the genetic algorithm. This
suggests that a hybrid of the GA and some other fine tuning
algorithm could be advantageous. Most of the hybrid
algorithms developed for ANNs have used GA and some kind
of a local search method. Amongst the local search
techniques, EBP has been used most extensively. Earlier
research in this area had shown that hybrid training was
successful [15] –[16]. There were a number of researchers
who used GA and EBP hybrids and reported an improvement
of the algorithm over traditional GA or EBP [17] – [18].
Some recent work also suggested an improvement for hybrid
algorithms by running several parallel combinations of global
and local search [19] – [21].
 Earlier work by Ghosh and Verma [9], suggested an
alternative learning methodology, which uses a hybrid
technique by using evolutionary learning for the hidden layer
weights and least square based solution method for the output
layer weights. The proposed algorithm solved the problems of
time complexity of the evolutionary algorithm by combining
a fast searching methodology using a least squares technique.
However the memory complexity was quite high. The order
of memory complexity on average could be 4-5 times higher

than EBP. The high memory complexity order was due to the
use of extensive matrix operations for the least squares
method, which has high memory demands for solving the
linear equations to find output layer weights. The other
problem with the method was producing large weights for the
output layers. Such large weight modification tends to destroy
previously acquired knowledge and likely thus decrease the
generalizing ability of the neural network.
 Derivative free methods seem to be the best option to deal
with this kind of problem with a large number of variables
(weights). Such methods can overcome stationary points,
which are not local minima and some shallow local minima.
Two widely used derivative free methods – the Powell
method and the Nelder-Mead Simplex method are effective
when the objective function is smooth and the number of
variables is less than twenty. However in many problems the
number of variables is much larger than twenty and
sometimes the objective function is non-smooth. Another
popular derivative free method is the discrete gradient
method.
 Bagirov et al in 2004 [22] have applied discrete gradient
methods in generating the neural network weights. The
discrete gradient is a finite difference estimate to a
subgradient. Unlike many other finite difference estimates to
subgradient, the discrete gradient is defined with respect to a
given direction, which allows a good approximation for the
quasidifferential. The algorithm calculates discrete gradients
step by step, and after a finite number of iterations either the
descent direction is calculated or it is found that the current
point is an approximate stationary point. In the Discrete
gradient method Armijo’s algorithm is used for a line search.
Hence at a given approximation, the method calculates the
descent direction by calculating the discrete gradients step by
step, and improving the approximation of the Demayibv-
Rubinov quasidifferential. Once the descent direction is
calculated, Armijo’s algorithm is used for line search. The
local minima is chosen as the next approximation. Hence the
Discrete Gradient method jumps over many local minima and
finds very deep local minima. However earlier research has
shown that a good starting point for the discrete gradient
method can improve the quality of the solution point. In this
paper we combine an Evolutionary algorithm with the
discrete gradient method to find the weights in the neural
network. The evolutionary algorithm generates a near
optimal solution after several generations. That near optimal
solution is passed through the discrete gradient method as a
starting point. The discrete gradient method generates the
final solution.

II. METHODOLOGY

A. Discrete gradient method

 The discrete gradient method is a bundle method where the
sub-gradients are replaced by their approximations. Detailed
description of this method can be found in [5] – [7]. The
Discrete gradient of a function f at a point x is defined with
respect to a given direction (g) and is calculated using a step
(λ) along that direction. The coordinates of the discrete
gradient are defined as finite difference estimates to a

gradient in some neighbourhood of the point gx λ+ . The ith

coordinate of the discrete gradient is defined so as to
approximate a sub gradient of the function f. Thus discrete
gradient contains some information about the behaviour of the
function f in some region around the point x.
 The next step is to compute the descent direction. We take
any direction and calculate the first discrete gradient. Then we
calculate the least distance between the convex hull of the
discrete gradients and the origin. This problem is reduced to a
quadratic programming problem and can be effectively solved
by Wolf’s terminating algorithm. If this distance is less than
some tolerance 0>∂ , the algorithm stops and we consider
that point as an approximated stationary point. Otherwise a
search direction is calculated. If this direction is a descent
direction, the algorithm terminates, else we calculate a new
discrete gradient with respect to this direction to improve the
approximation of the set of generalised gradients. Since the
discrete gradient contains some information about the
behaviour of the function in some regions around the point x,
this algorithm can find descent directions in stationery points,
which are not local minima.
 Supervised learning of a neural network is an optimisation
problem [1] – [2], that involves minimising the error function
given some set of training data. Hence the neural network
weights can be determined using the discrete gradient method
(DG) with the sum of squared error function. The sum of
squared error function is defined as

() ()��
= =

−=
pat

p

K

k
pkpkh yOwwE

1

2

1
0 ,min

where ()p
T
op hidwactO = and ()p

T
hp xwacthid =

 Here act denotes the activation function, OW denotes the

matrix of output layer weights, kW denote hidden layer

weights, px denotes the pth input pattern, py the pth output

pattern and phid denotes the hidden layer output for pth

pattern and pO denotes the output layer output for pth pattern.

pat denotes the total number of training pattern exists.

 Let ()Oh WWW ,= . The Discrete gradient method applied

in neural network learning is as follows

• Step1: Choose any starting point 0W at 0=k .

• Step2: Set 0=s and kk
s WW = .

• Step3: Calculate the descent direction at k
sWW = and

k∂=∂ .
• Step 4: We calculate the least distance between the

convex hull of the discrete gradients and the origin.

()
�
�
�

�
�
�

∈= k
sm

k
s WDvvv :min

• Step 5: Calculate the search direction (ksg).

k
s

k
s

k
s vvg

1−
−=

• Step 6: If k
k
sv ∂≤ then set k

s
k WW =+1 , 1+= kk

and go to Step 2.
• Step 7: Construct the following iteration

k
ss

k
s

k gWW σ+=+1 , where sσ is defined as follows

() (){ }k
s

k
s

k
s

k
ss vcWfgWf σσσσ ≤−+≥= :0maxarg

• Step 8: Set 1+= ss . Go to step 3.

B. Evolutionary Algorithm

 Evolutionary algorithms (EAs) are search methods that take
their inspiration from natural selection and survival of the
fittest in the biological world. EAs differ from more
traditional optimization techniques in that they involve a
search from a "population" of solutions, not from a single
point. Each iteration of an EA involves a competitive
selection that rejects the poor solutions. The solutions with
high "fitness" are "recombined" with other solutions by
swapping parts of a solution with another. Solutions are also
"mutated" by making a small change to a single element of
the solution. Recombination and mutation are used to
generate new solutions that are biased towards regions of the
space for which good solutions have already been seen.

 Let ()Oh WWW ,= be an n dimensional solution vector

and σ be the corresponding step size. Let m be the number
of the population in a generation where each population is the

pair ()eeW σ, .

 In the first generation m populations are generated
randomly. In the subsequent generations the population set is
created by selection and mutation. The Evolutionary
algorithm is as follows

• Step1: Randomly initialize m population vector.
• Step2: The parents are mutated as follows

for j = 1, 2, …, n

() () () ()()1,01,0exp ''
jii NNjj ττσσ +=

() () () ()1,0''
jiii NjSjWjW σ+=

 where the values of 'τ and τ as follows

n2

1' =τ

 ()n2

1=τ

()jWi , ()jWi
' , ()jiσ , and ()ji

'σ denote the jth

component of the vectors iW ,
'

iW , iσ , i
'σ

respectively. N(0,1) denotes a normally distributed one-
dimensional random number with mean and variance of 0
and 1 respectively. Nj(0,1) indicates that the random
number is generated afresh for each value of j. S is a sign
variance operator whose value is either positive or

negative based on a normal probability distribution
N(0,1).

• Step3: Calculate the fitness of individual population in
the generation.

• Step4: Create a new generation by extracting members
of the current population using a roulette wheel selection
scheme.

• Step5: If the stopping criteria are satisfied stop, else go
to Step 2.

C. Hybridization of the evolutionary algorithm and discrete
gradient method (EADG)

 In this method we are applying the Evolutionary algorithm
for a certain number of generations to converge to a near
optimal solution. Then we apply the Discrete gradient method
as a local search with the starting point provided by the
evolutionary algorithm as the best solution in the final
generation. The algorithm is described as follows

• Step1- Step 5 as above
• Step6: Calculate the fitness of an individual population

in the current generation.
• Step7: Extract the best solution in the current generation.

Let the best solution be bW .

• Step8: Set the start point of the discrete gradient method

bWW =0 at 0=k .

• Step9: Set 0=s and kk
s WW = .

• Step10: Calculate the descent direction at k
sWW = and

k∂=∂ .
• Step 11: We calculate the least distance between the

convex hull of the discrete gradients and the origin.

()
�
�
�

�
�
�

∈= k
sm

k
s WDvvv :min

• Step 12: Calculate the search direction (ksg).

k
s

k
s

k
s vvg

1−
−=

• Step 13: If k
k
sv ∂≤ then set k

s
k WW =+1 ,

1+= kk and go to Step 9.
• Step 14: Construct the following iteration

k
ss

k
s

k gWW σ+=+1 , where sσ is defined as follows

() (){ }k
s

k
s

k
s

k
ss vcWfgWf σσσσ ≤−+≥= :0maxarg

Step 15: Set 1+= ss . Go to step 10.

III. EXPERIMENTAL RESULTS

 Experiments were conducted using the benchmark data sets:
Breast cancer (Wisconsin) and Heart Disease (Cleveland).
Diabetes, and Liver data from the UCI Machine Learning
repository. Table 1 shows the details of the individual data set
used for training and testing for comparing all algorithms.

The following comparisons were made: our algorithm
(EADG) with a hybrid EA and LS method (EALS), Resilient
back propagation (RP) and DG method.

Table 1 Data set information
Data Input details Attribute

information
Astral Pattern length = 690

Training pattern = 600
Testing pattern = 90

Input columns = 14
Output column = 1

Breast
cancer

(Wisconsin)

Pattern length = 685
Training pattern = 600
Testing pattern = 85

Input columns = 9
Output column = 1

Cleveland

Pattern length = 297
Training pattern = 200
Testing pattern = 97

Input columns = 13
Output column = 1

Diabetes

Pattern length = 768
Training pattern = 700
Testing pattern = 68

Input columns = 8
Output column = 1

Liver

Pattern length = 345
Training pattern = 300
Testing pattern = 45

Input columns = 6
Output column = 1

 The results of the experiments are given in Tables 2- 5. The
results are compared with the results obtained by the
individual methods. Time take for all the algorithms are given
as well.
 The following table (Table 2) shows the classification
accuracy of the ANN as a percentage, CPU time in seconds
for the EADG method

Table 2 Results for all data sets for EADG

Dataset #HN Classification Accuracy
(%) CPU Time (s)

Austral 3 91 68.4
Breast
Cancer 3 100 57
Clevela

nd 3 90 36.2
Diabetes 5 83 53

Liver 3 88 94

 The following table (Table 3) shows the classification
accuracy as a percentage, CPU time in seconds for the EA
and LS method [8].

Table 3 Results for all the data set for hybrid EA and LS method

Dataset #HN Classification
Accuracy CPU Time (s)

Austral 4 90 91
Breast
Cancer 6 81 102

Cleveland 6 90 85

Diabetes 6 81 87

Liver 8 88 82

 The following table (Table 4) shows the classification
accuracy as a percentage and the CPU time in seconds for RP.

Table 4 Results for all the data set for RP

RP

Dataset #HN
Classification

Accuracy CPU Time (s)

Austral 2 87.8 29.3

Breast Cancer 4 98.8 28.7

Cleveland 4 78.4 29.3

Diabetes 3 78 30.1

Liver 7 75.6 78

 The following table (Table 5) shows the classification
accuracy as a percentage and the CPU time in seconds for the
DG method.

Table 5 Results for all the data set for DG

DG

Dataset #HN
Classification

Accuracy CPU Time (s)

Austral 2 86.7 29.69

Breast Cancer 2 100 13.12

Cleveland 2 80 13.9

Diabetes 4 76.5 59.22

Liver 3 86.7 14.07

 The following figure (Figure 1) shows the comparison of
classification accuracy for all the four algorithms.

Figure1: Comparison of classification accuracy

Comparison of classification accuracy

0
20
40
60
80

100
120

Aus
tra

l

Bre
as

t C
an

ce
r

Clev
ela

nd

Diab
et

es
Liv

er

EADG

EALS

DG

RP

The following figure (Figure 2) shows the comparison of time
complexity for all the four algorithms.

Figure2: Comparison of time complexity

Comparison of time complexity

0
50

100
150

A
us

tr
al

B
re

as
t

C
an

ce
r

C
le

ve
la

nd

D
ia

be
te

s

Li
ve

r
Datasets

T
im

e(
s)

EADG

EALS

DG

RP

 The following figure (Figure 3) shows the comparison of
memory complexity for all the four algorithms.

Figure3: Comparison of memory complexity

Comparison of memory complexity

0
1000
2000
3000
4000
5000
6000

A
us

tr
al

C
le

ve
la

nd

Li
ve

r

EADG

EALS

DG

RP

IV. CONCLUSION

 The results in Tables 2-5 indicate that the hybrid EADG
method achieves improvement in classification accuracy over
other algorithms such as EALS, DG, and RP.
 Figure 3 shows that the memory complexity is improved for
the hybrid EADG method from the earlier EALS hybrid
method.
 The time complexity of the EADG approach for weight
determination in ANNs is very favorable when compared
with other algorithms.

REFERENCES

[1] O. L. Mangasarian, Mathematical programming in neural
networks, ORSA Journal on Computing, vol. 5, pp. 349-360,
1993
[2] X. M. Zhang and Y. Q. Chen, Ray-guided global
optimization method for training neural networks,
Neurocomputing, vol. 30, pp. 333-337, 2000.
[3] T. Masters, Practical neural network recipes in C++,
Academic Press, Boston, 1993.
[4] T. Masters, Advanced algorithms for neural networks : a
C++ sourcebook, Wiley, New York, 1995.
[5]. A.M. Bagirov, Derivative-free methods for unconstrained
nonsmooth optimization and its numerical analysis,
Investigacao Operacional, vol. 19, pp. 75-93, 1999.
[6]. A.M. Bagirov, Minimization methods for one class of
nonsmooth functions and calculation of semi-equilibrium

prices, Applied Optimization, vol. 30: Progress in
Optimization: Contribution from Australasia. A. Eberhard et
al. (eds.), Kluwer Academic Publishers, Dordrecht, pp. 147-
175, 1999.
[7]. A.M. Bagirov, A method for minimization of
quasidifferentiable functions, Optimization Methods and
Software, vol. 17,n No. 1, pp. 31-60, 2002.
[8] R. Ghosh and B. Verma, Finding Architecture and
Weights for ANN Using Evolutionary Based Least Square
Algorithm, IJNS International Journal on Neural Systems,
vol. 13, no. 1, pp. 13-24, 2003.
[9] W. Schiffmann, M. Joost and R. Werner, Comparison of
optimized backpropagation algorithms, Proceedings of The
European Symposium on Artificial Neural Networks,
Brussels, pp. 97-104, 1993.
[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
Learning internal representation by error propagation,
Parallel Distributed Processing, Exploring the Macro
Structure of Cognition, Cambridge, MA: MIT Press, 1986.
[11] J. H. Holland, Adaptation in natural and artificial
systems, Ann Arbor, MI: The University of Michigan Press,
1975.
[12] I. Rechenberg, Cybernatic solution path of an
experimental problem, Royal Aircraft Establishment, Library
Translation no. 1122, Farnborough, Hants, U.K, Aug, 1965.
[13] D. Whitley, T. Starkweather, and C. Bogart, Genetic
algorithms and neural networks - optimizing connections and
connectivity, Parallel Computing, vol. 14, pp. 347-361,
1990.
[14] D. Montana and L. Davis, Training feed forward neural
networks using genetic algorithms, Proceedings of 11th
International Joint Conference on Artificial Intelligence
IJCAI-89, vol. 1, pp. 762-767, 1989.
[15] M. Koeppen, M. Teunis, and B. Nickolay, Neural
network that uses evolutionary learning, Proceedings of IEEE
International Conference on Neural Networks, vol. 5, pp.
635-639, IEEE press, Piscstaway, NJ, USA, 1994.
[16] A. Likartsis, I. Vlachavas, and L. H. Tsoukalas, New
hybrid neural genetic methodology for improving learning,
Proceedings of 9th IEEE International Conference on Tools
with Artificial Intelligence, Piscataway, NJ, USA, pp. 32-36,
IEEE Press, 1997.
[17] S. Omatu and S. Deris, Stabilization of inverted
pendulum by the genetic algorithm, Proceedings of IEEE
Conference on Emerging Technologies and Factory
Automation, ETFA’96., Piscataway, NJ, USA, vol. 1, pp.
282-287, IEEE Press, 1996.
[18] S. Omatu and M. Yoshioka, Self tuning neuro PID
control and applications, Proceedings of IEEE International
Conference on Systems, Man, and Cybernatics, Picatasway,
NJ, USA, vol. 3, pp. 1985-1989, IEEE Press, 1997.
[19] A. Abraham, Neuro-Fuzzy Systems: State-of-the-Art
Modeling Techniques, Connectionist Models of Neurons,
Learning Process, and Artificial Intelligence, Springer-Verlag
Germany, LNCS 2084, Jose Mira and Alberto Prieto
(Editors), Spain, pp. 269-276, 2001.
[20] A. Abraham and B. Nath, Is Evolutionary design the
solution for optimising neural networks?, Proceedings of 5th
International Conference on Cognitive and Neural Systems

(ICCNS 2001), Published by Boston University Press,
Boston, USA, 2001.
[21] G. Beliakov and A. Abraham, Global optimization of
neural networks using deterministic hybrid approach, Hybrid
Information Systems, Proceedings of 1st International
Workshop on Hybrid Intelligent Systems, HIS 2001, Springer
Verlag, Germany, pp 79-92, 2002.
[22] A. Bagirov, J. Yearwood, and R. Ghosh, Weight
Optimization of Feedforward MLPs Using the Discrete
Gradient Method, Accepted in International Conference on
Computational Intelligence for Modelling Control and
Automation - CIMCA'2004 , 12 - 14 July 2004, Gold Coast ,
Australia

