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Abstract- In this paper we investigate a hybrid model 
based on the Discrete Gradient method and an 
evolutionary strategy for determining the weights in a 
feed forward artificial neural network. The Discrete 
Gradient method has the advantage of being able to jump 
over many local minima and find very deep local minima. 
However earlier research has shown that a good starting 
point for the discrete gradient method can improve the 
quality of the solution point. Evolutionary algorithms are 
very suitable for global optimisation problems. 
Nevertheless they are cursed with longer training time 
often unsuitable for real world applications. For 
optimisation problems such as weight optimisation for 
ANNs in real world applications the dimensions are large 
and time complexity is critical. Hence the idea of a hybrid 
model can be a suitable option. In this paper we propose a 
hybrid model combining an evolutionary strategy with the 
discrete gradient method to obtain an optimal solution 
much quicker. Comparative results on a range of 
standard datasets are provided with other hybrid neural 
learning models such as an evolutionary strategy 
combined with least square based methods. The 
comparative results are also given based on the 
evolutionary based search and discrete gradient. The 
results confirm that, in general improved weight 
determination is delivered and the memory complexity is 
improved. 
 

I. INTRODUCTION 
A learning algorithm is at the heart of a neural network based 
system. Over the past decade, a number of learning 
algorithms have been developed. However, in most cases 
learning or training of a neural network is based on a trial and 
error method. There are many fundamental problems such as 
a long and uncertain training process, selection of network 
topology and parameters that still remain unsolved. Learning 
can be considered as a weight-updating rule of the ANN. 
   Error Back Propagation (EBP) is probably the most cited 
learning algorithm in the field of Artificial Neural Networks 
(ANNs) [9]. Rumelhart et al [10] developed the back 
propagation learning for the Multi Layer Perceptron. Back-
propagation is based on the gradient descent minimization 
method. The ANN is presented with an input pattern, for 
which an output pattern is generated. Then, the error between 
desired and actual output can be determined, and passed 
backwards through the ANN. Based on these errors, weight 
adaptations are calculated, and errors are passed to a previous 
layer, continuing until the first layer is reached. The error is 
thus propagated back through the ANN. Most of the calculus-
based ANN algorithms depend on the gradient information of 

the error surface, which may not always be available or 
expensive to find. Also the algorithm may very easily be 
trapped in a local minimum [3] – [4]. 
   One of the alternative learning techniques that attracted 
research is the genetic algorithm. Genetic algorithms are a 
stochastic search method introduced in the 1970s in the 
United States by John Holland [11] and in Germany by Ingo 
Rechenberg [12]. Much of the research however has focused 
on the training of feed forward networks [13] - [14]. Just as 
neurobiology is the inspiration for artificial neural networks, 
genetics and natural selection are the inspiration of the 
genetic algorithm. It is based on a Darwinian type `survival of 
the fittest’ strategy. An advantage of using GAs for training 
neural networks is that they may be used for networks with 
arbitrary topologies. Also, GAs do not rely on calculating the 
gradient of the cost function. Cost functions need to be 
calculated to determine their fitness. Because of the stochastic 
nature of this algorithm the learning process can reach an 
optimal solution with much higher probability than many 
standard neural based techniques, which are based on the 
gradient information of the error surface.  
   One of the problems though, with this global search based 
technique is the time complexity of the algorithm. For a very 
large application size, a very powerful computation facility is 
required to solve the problem. Hence there was a further need 
for an improvement of this approach in terms of the time 
complexity (and to some extent the quality of solution) by 
fine tuning the search within the local neighborhood area of 
the global solution obtained by the genetic algorithm. This 
suggests that a hybrid of the GA and some other fine tuning 
algorithm could be advantageous. Most of the hybrid 
algorithms developed for ANNs have used GA and some kind 
of a local search method. Amongst the local search 
techniques, EBP has been used most extensively. Earlier 
research in this area had shown that hybrid training was 
successful [15] –[16]. There were a number of researchers 
who used GA and EBP hybrids and reported an improvement 
of the algorithm over traditional GA or EBP [17] – [18]. 
Some recent work also suggested an improvement for hybrid 
algorithms by running several parallel combinations of global 
and local search [19] – [21]. 
   Earlier work by Ghosh and Verma [9], suggested an 
alternative learning methodology, which uses a hybrid 
technique by using evolutionary learning for the hidden layer 
weights and least square based solution method for the output 
layer weights. The proposed algorithm solved the problems of 
time complexity of the evolutionary algorithm by combining 
a fast searching methodology using a least squares technique. 
However the memory complexity was quite high. The order 
of memory complexity on  average could be 4-5 times higher 



than EBP. The high memory complexity order was due to the 
use of extensive matrix operations for the least squares 
method, which has high memory demands for solving the 
linear equations to find output layer weights. The other 
problem with the method was producing large weights for the 
output layers. Such large weight modification tends to destroy 
previously acquired knowledge and likely thus decrease the 
generalizing ability of the neural network. 
   Derivative free methods seem to be the best option to deal 
with this kind of problem with a large number of variables 
(weights). Such methods can overcome stationary points, 
which are not local minima and some shallow local minima. 
Two widely used derivative free methods – the Powell 
method and the Nelder-Mead Simplex method are effective 
when the objective function is smooth and the number of 
variables is less than twenty. However in many problems the 
number of variables is much larger than twenty and 
sometimes the objective function is non-smooth. Another 
popular derivative free method is the discrete gradient 
method.  
   Bagirov et al in 2004 [22] have applied discrete gradient 
methods in generating the neural network weights. The 
discrete gradient is a finite difference estimate to a 
subgradient. Unlike many other finite difference estimates to 
subgradient, the discrete gradient is defined with respect to a 
given direction, which allows a good approximation for the 
quasidifferential. The algorithm calculates discrete gradients 
step by step, and after a finite number of iterations either the 
descent direction is calculated or it is found that the current 
point is an approximate stationary point. In the Discrete 
gradient method Armijo’s algorithm is used for a line search. 
Hence at a given approximation, the method calculates the 
descent direction by calculating the discrete gradients step by 
step, and improving the approximation of the Demayibv-
Rubinov quasidifferential. Once the descent direction is 
calculated, Armijo’s algorithm is used for line search. The 
local minima is chosen as the next approximation. Hence the 
Discrete Gradient method jumps over many local minima and 
finds very deep local minima. However earlier research has 
shown that a good starting point for the discrete gradient 
method can improve the quality of the solution point.  In this 
paper we combine an Evolutionary algorithm with the 
discrete gradient method to find the weights in the neural 
network. The evolutionary algorithm  generates a near 
optimal solution after several generations. That near optimal 
solution is passed through the discrete gradient method as a 
starting point. The discrete gradient method generates the 
final solution. 
 

II. METHODOLOGY 
 

A. Discrete gradient method 
 
   The discrete gradient method is a bundle method where the 
sub-gradients are replaced by their approximations. Detailed 
description of this method can be found in [5] – [7]. The 
Discrete gradient of a function f at a point x is defined with 
respect to a given direction (g) and is calculated using a step 
( λ ) along that direction. The coordinates of the discrete 
gradient are defined as finite difference estimates to a 

gradient in some neighbourhood of the point gx λ+ . The ith 

coordinate of the discrete gradient is defined so as to 
approximate a sub gradient of the function f. Thus discrete 
gradient contains some information about the behaviour of the 
function f in some region around the point x. 
   The next step is to compute the descent direction. We take 
any direction and calculate the first discrete gradient. Then we 
calculate the least distance between the convex hull of the 
discrete gradients and the origin. This problem is reduced to a 
quadratic programming problem and can be effectively solved 
by Wolf’s terminating algorithm. If this distance is less than 
some tolerance 0>∂ , the algorithm stops and we consider 
that point as an approximated stationary point. Otherwise a 
search direction is calculated. If this direction is a descent 
direction, the algorithm terminates, else we calculate a new 
discrete gradient with respect to this direction to improve the 
approximation of the set of generalised gradients. Since the 
discrete gradient contains some information about the 
behaviour of the function in some regions around the point x, 
this algorithm can find descent directions in stationery points, 
which are not local minima.  
   Supervised learning of a neural network is an optimisation 
problem [1] – [2], that involves minimising the error function 
given some set of training data. Hence the neural network 
weights can be determined using the discrete gradient method 
(DG) with the sum of squared error function. The sum of 
squared error function is defined as 
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   Here act denotes the activation function, OW denotes the 

matrix of output layer weights, kW denote hidden layer 

weights, px  denotes the pth input pattern, py  the pth output 

pattern and phid  denotes the hidden layer output for pth 

pattern and pO  denotes the output layer output for pth pattern. 

pat denotes the total number of training pattern exists. 

   Let ( )Oh WWW ,= . The Discrete gradient method applied 

in neural network learning is as follows 
 

• Step1:  Choose any starting point 0W  at 0=k . 

• Step2:  Set 0=s and kk
s WW = . 

• Step3: Calculate the descent direction at k
sWW = and 

k∂=∂ .   
• Step 4: We calculate the least distance between the 

convex hull of the discrete gradients and the origin. 
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• Step 5: Calculate the search direction (ksg ). 
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• Step 6: If k
k
sv ∂≤  then set k

s
k WW =+1 , 1+= kk  

and go to Step 2. 
• Step 7: Construct the following iteration 
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k gWW σ+=+1 , where sσ  is defined as follows  
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• Step 8: Set 1+= ss . Go to step 3. 
 
 
B. Evolutionary Algorithm 
 
   Evolutionary algorithms (EAs) are search methods that take 
their inspiration from natural selection and survival of the 
fittest in the biological world. EAs differ from more 
traditional optimization techniques in that they involve a 
search from a "population" of solutions, not from a single 
point. Each iteration of an EA involves a competitive 
selection that rejects the poor solutions. The solutions with 
high "fitness" are "recombined" with other solutions by 
swapping parts of a solution with another. Solutions are also 
"mutated" by making a small change to a single element of 
the solution. Recombination and mutation are used to 
generate new solutions that are biased towards regions of the 
space for which good solutions have already been seen.  

   Let ( )Oh WWW ,=  be an n dimensional solution vector 

and σ  be the corresponding step size. Let m be the number 
of the population in a generation where each population is the 

pair ( )eeW σ, . 

   In the first generation m populations are generated 
randomly. In the subsequent generations the population set is 
created by selection and mutation. The Evolutionary 
algorithm is as follows 
 
• Step1:  Randomly initialize m population vector. 
• Step2:  The parents are mutated as follows 

for j = 1, 2, …, n 

( ) ( ) ( ) ( )( )1,01,0exp ''
jii NNjj ττσσ +=  

( ) ( ) ( ) ( )1,0''
jiii NjSjWjW σ+=  

       where the values of 'τ and τ  as follows 
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( )jWi , ( )jWi
' , ( )jiσ , and ( )ji

'σ  denote the jth 

component of  the vectors iW , 
'

iW , iσ , i
'σ  

respectively. N(0,1) denotes a normally distributed one-
dimensional random number with mean and variance of 0 
and 1 respectively. Nj(0,1) indicates that the random 
number is generated afresh for each value of j. S is a sign 
variance operator whose value is either positive or 

negative based on a normal probability distribution 
N(0,1). 

• Step3:  Calculate the fitness of individual population in 
the generation. 

• Step4:  Create a new generation by extracting members 
of the current population using a roulette wheel selection 
scheme.  

• Step5:  If the stopping criteria are satisfied stop, else go 
to Step 2. 

 
C. Hybridization of the evolutionary algorithm and discrete 
gradient method (EADG) 
 
   In this method we are applying the Evolutionary algorithm 
for a certain number of generations to converge to a near 
optimal solution. Then we apply the Discrete gradient method 
as a local search with the starting point provided by the 
evolutionary algorithm as the best solution in the final 
generation. The algorithm is described as follows 
 
• Step1- Step 5 as above  
• Step6:  Calculate the fitness of an individual population 

in the current generation. 
• Step7: Extract the best solution in the current generation. 

Let the best solution be bW .  

• Step8:  Set the start point of the discrete gradient method 

bWW =0  at 0=k . 

• Step9:  Set 0=s and kk
s WW = . 

• Step10: Calculate the descent direction at k
sWW = and 

k∂=∂ .   
• Step 11: We calculate the least distance between the 

convex hull of the discrete gradients and the origin. 
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• Step 12: Calculate the search direction (ksg ). 
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• Step 13:  If k
k
sv ∂≤  then set k

s
k WW =+1 , 

1+= kk and go to Step 9. 
• Step 14: Construct the following iteration 
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Step 15: Set 1+= ss . Go to step 10. 
 
 

III. EXPERIMENTAL RESULTS 
 
   Experiments were conducted using the benchmark data sets: 
Breast cancer (Wisconsin) and Heart Disease (Cleveland). 
Diabetes, and Liver data from the UCI Machine Learning 
repository. Table 1 shows the details of the individual data set 
used for training and testing for comparing all algorithms. 



The following comparisons were made: our algorithm 
(EADG) with a hybrid EA and LS method (EALS), Resilient 
back propagation (RP) and DG method. 
 
 

Table 1 Data set information 
Data  Input details Attribute 

information 
Astral Pattern length = 690 

Training pattern = 600 
Testing pattern = 90 

# Input columns = 14 
# Output column = 1 

Breast 
cancer 

(Wisconsin) 
 

Pattern length = 685 
Training pattern = 600 
Testing pattern = 85 

# Input columns = 9 
# Output column = 1 

Cleveland 
 

Pattern length = 297 
Training pattern = 200 
Testing pattern = 97 

# Input columns = 13 
# Output column = 1 

Diabetes 
 

Pattern length = 768 
Training pattern = 700 
Testing pattern = 68 

# Input columns = 8 
# Output column = 1 

Liver 
 

Pattern length = 345 
Training pattern = 300 
Testing pattern = 45 

# Input columns = 6 
# Output column = 1 

 
   The results of the experiments are given in Tables 2- 5. The 
results are compared with the results obtained by the 
individual methods. Time take for all the algorithms are given 
as well. 
   The following table (Table 2) shows the classification 
accuracy of the ANN as a percentage, CPU time in seconds 
for the EADG method  

 
Table 2 Results for all data sets for EADG 

 

Dataset #HN Classification Accuracy 
(%) CPU Time (s) 

Austral 3 91 68.4 
Breast 
Cancer 3 100 57 
Clevela

nd 3 90 36.2 
Diabetes 5 83 53 

Liver 3 88 94 
 

   The following table (Table 3) shows the classification 
accuracy as a percentage, CPU time in seconds for the EA 
and LS method [8]. 
 
Table 3 Results for all the data set for hybrid EA and LS method 
 

Dataset #HN Classification 
Accuracy CPU Time (s) 

Austral 4 90 91 
Breast 
Cancer 6 81 102 

Cleveland 6 90 85 

Diabetes 6 81 87 

Liver 8 88 82 
 

   The following table (Table 4) shows the classification 
accuracy as a percentage and the CPU time in seconds for RP. 

 
Table 4 Results for all the data set for RP 

 

RP 

Dataset #HN 
Classification 

Accuracy CPU Time (s) 

Austral 2 87.8 29.3 

Breast Cancer 4 98.8 28.7 

Cleveland 4 78.4 29.3 

Diabetes 3 78 30.1 

Liver 7 75.6 78 
 

   The following table (Table 5) shows the classification 
accuracy as a percentage and the CPU time in seconds for the 
DG method. 
 

Table 5 Results for all the data set for DG 
 

DG 

Dataset #HN 
Classification 

Accuracy CPU Time (s) 

Austral 2 86.7 29.69 

Breast Cancer 2 100 13.12 

Cleveland 2 80 13.9 

Diabetes 4 76.5 59.22 

Liver 3 86.7 14.07 
 

   The following figure (Figure 1) shows the comparison of 
classification accuracy for all the four algorithms. 
 

Figure1: Comparison of classification accuracy 
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The following figure (Figure 2) shows the comparison of time 
complexity for all the four algorithms. 
 



Figure2: Comparison of time complexity 
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   The following figure (Figure 3) shows the comparison of 
memory complexity for all the four algorithms. 
 

Figure3: Comparison of memory complexity 
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IV. CONCLUSION 
 
   The results in Tables 2-5 indicate that the hybrid EADG 
method achieves improvement in classification accuracy over 
other algorithms such as EALS, DG, and RP. 
   Figure 3 shows that the memory complexity is improved for 
the hybrid EADG method from the earlier EALS hybrid 
method. 
   The time complexity of the EADG approach for weight 
determination in ANNs is very favorable when compared 
with other algorithms. 
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