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Abstract— We propose a new method for inferring S-system
models of large-scale genetic networks. The proposed method is
based on a problem decomposition strategy and a cooperative
coevolutionary algorithm. The problem decomposition strategy
divides the genetic network inference problem into several
subproblems that are then solved using the cooperative coevolu-
tionary algorithm. The cooperative coevolutionary algorithm is
an extension of the evolutionary algorithm. It consists of several
subpopulations, each of which contains competing individuals for
each subproblem. As the subpopulations interact with each other
through the gene expression curves, the model inferred by the
proposed method computationally simulates the genetic network.
The availability of the inferred model for the computational
simulation is important, since the computational simulation
brings about a better understanding of genetic networks. The
effectiveness of the proposed method is verified through numer-
ical experiments.

I. INTRODUCTION

Advances in DNA microarrays and other technologies allow
us to measure gene expression patterns on a genomic scale
[4]. Many researchers have become interested in the inference
of underlying genetic networks using the observed time-series
data of gene expression patterns, and the development of this
methodology has become a major topic in the bioinformatics
field [18]. Numerous models have been proposed to describe
networks, and numerous algorithms have been proposed for
inferring individual models of genetic networks [1], [2], [5],
[12], [18].

The S-system model is an ideal means of inferring genetic
networks. The model possesses a rich structure capable of
capturing various dynamics, and methods are available for
analyzing the model [7], [20]. The S-system model is a set
of non-linear differential equations of the form

dXi

dt � αi

N

∏
j � 1

X
gi � j
j � βi

N

∏
j � 1

X
hi � j
j ��� i � 1 �
	�	�	�� N  � (1)

where Xi is the state variable and N is the number of
components in the network. In a genetic network, Xi is the
expression level of the i-th gene and N is the number of genes
in the network. αi and βi are multiplicative parameters called
rate constants, and gi � j and hi � j are exponential parameters
called kinetic orders.

Several network inference algorithms based on the S-system
model have been proposed [7], [14], [20], [21]. These algo-
rithms estimate the S-system parameters (αi, βi, gi � j and hi � j)

using observed time-series data for gene expression patterns.
Because the number of S-system parameters is proportional
to the square of the number of network components, the
algorithms must simultaneously estimate a large number of
S-system parameters if they are to be used to infer large-scale
network systems containing many network components. This
is why inference algorithms based on the S-system model have
been applied only to small-scale networks of less than five
genes.

To resolve the high-dimensionality of the genetic network
inference problem in the S-system model, a problem decom-
position strategy, that divides the original problem into several
subproblems, has been proposed [13], [9]. This approach
enables us to infer S-system models of larger-scale genetic
networks. However, when the given time-series data contain
the measurement noise, the inferred model cannot be used
to computationally simulate a genetic network. This is one
of disadvantages of the problem decomposition approach,
since the computational simulation is needed to analyze and
understand the genetic network.

In this paper, we propose a new method that eliminates
the disadvantage of the problem decomposition approach.
The proposed method simultaneously solves the decomposed
subproblems using a cooperative coevolutionary algorithm
[16]. In the proposed coevolutionary algorithm, all of the
subproblems interact with each other through the gene ex-
pression curves which are updated when more reasonable
curves are obtained. Because of this interaction, the proposed
method has the ability to infer an S-system model that is
ready for the computational simulation. In order to verify its
effectiveness, the proposed method was applied to a genetic
network inference problem containing 30 genes.

II. GENETIC NETWORK INFERENCE PROBLEM

A. Canonical Problem Definition

The genetic network inference problem is defined as a
function optimization problem to minimize the following sum
of the squared relative error [20].

f � N

∑
i � 1

T

∑
t � 1

�
Xi � cal � t � Xi � exp � t

Xi � exp � t � 2 � (2)

where Xi � exp � t is an experimentally observed gene expression
level at time t of the i-th gene, Xi � cal � t is a numerically



computed gene expression level acquired by solving a system
of differential equations (1), N is the number of components
in the network, and T is the number of sampling points of
observed data.

Since 2N � N � 1  S-system parameters must be determined
in order to solve the set of differential equations (1), this
function optimization problem is 2N � N � 1  dimensional. This
problem is too high-dimensional for non-linear function opti-
mizers in cases where we try to infer S-system models of large-
scale genetic networks containing many network components
[12].

B. Decomposition of the Problem

Because of the high-dimensionality, function optimizers
have difficulty inferring S-system models of large-scale genetic
networks. To resolve this high-dimensionality, the strategy of
dividing the genetic network inference problem into several
subproblems was proposed [13]. In this strategy, each sub-
problem corresponds to each gene. The objective function of
the subproblem corresponding to the i-th gene is

fi � T

∑
t � 1

�
Xi � cal � t � Xi � exp � t

Xi � exp � t � 2 � (3)

where Xi � cal � t is a numerically computed gene expression level
at time t of the i-th gene, as described in the previous subsec-
tion. In contrast to the previous subsection, however, X i � cal � t is
obtained by solving the following differential equation.

dXi

dt � αi

N

∏
j � 1

Y
gi � j
j � βi

N

∏
j � 1

Y
hi � j
j � (4)

where

Y j � �
X j � if j � i �
X̂ j � otherwise � (5)

X̂ j is an estimated gene expression level that is acquired not
by solving a differential equation, but by making a direct
estimation from the observed time-series data. In this study,
we call X̂ j an estimated gene expression curve of the j-th
gene, and the local linear regression [3] is used to obtain the
estimated gene expression curves.

The equation (4) is solvable when 2 � N � 1  S-system param-
eters (i.e., αi � βi, gi � 1 �
	�	
	�� gi �N , hi � 1 �
	�	
	 , hi �N) are given. There-
fore, the problem decomposition strategy divides a 2N � N � 1 
dimensional network inference problem into N subproblems
that are 2 � N � 1  dimensional.

C. Use of a Priori Knowledge

The genetic network inference problem based on the S-
system model may have multiple optima because the degree-
of-freedom of the model is high and the observed time-series
data are usually polluted by the measurement error. To increase
the probability of inferring a correct S-system model, we
introduced a priori knowledge of the genetic network into the
objective function [9].

Genetic networks are known to be sparsely connected [19].
When an interaction between two genes is clearly absent, the

S-system parameter values corresponding to the interaction
(i.e., gi � j and hi � j) are zero. We incorporated this knowledge
into the objective function (3) by using a penalty term, as
shown below [9].

Fi � T

∑
t � 1

�
Xi � cal � t � Xi � exp � t

Xi � exp � t � 2 � c
N � I

∑
j � 1

���Gi � j � � �Hi � j �  � (6)

where Gi � j and Hi � j are given by rearranging gi � j and hi � j,
respectively, in descending order of their absolute values (i.e.,

�Gi �1 �����Gi �2 �	� 	
	�	
���Gi �N � and �Hi �1 �����Hi � 2 �	� 	
	
		���Hi �N � ).
c is a penalty coefficient and I is a maximum indegree. The
maximum indegree determines the maximum number of genes
that directly affect the i-th gene.

The penalty term is the second term on the right hand side
of the equation (6). This term forces most of the kinetic orders
(gi � j and hi � j) down to zero. In other words, when the penalty
term is applied, most of the genes are disconnected from each
other. However, when the number of genes that directly affect
the i-th gene is smaller than the maximum indegree I, the
term has no penalty effect. Thus, the optimum solutions to the
objective functions (3) and (6) are identical when the number
of interactions that affect the focused (i-th) gene is lower than
the maximum indegree. In this paper, we use the equation (6)
as an objective function that should be minimized.

The same parameter values used in reference [9] were used
in this paper; the maximum indegree I � 5, and the penalty
coefficient c � 1 � 0.

III. COEVOLUTIONARY ALGORITHM

FOR INFERENCE OF GENETIC NETWORKS

A. Concept

The problem decomposition strategy mentioned in the pre-
vious section enables us to infer large-scale genetic networks
[13], [9]. However, when the given time-series data contain
the measurement noise, the inferred model cannot be used for
the computational simulation of genetic networks.

The differential equation (4) is not a suitable model for
analyzing genetic networks, because the perturbation in the
i-th gene does not affect the expression levels of the other
genes in this equation. Therefore, the set of equations (1) must
be used as the model for computational simulation, while the
differential equation (4) is used to compute the time courses of
the gene expressions in the decomposed subproblems. Solving
the equation (4) requires the gene expression curves X̂ j that
are directly estimated from the observed data. Because of the
noise in the observed data, these directly estimated curves
usually differ from those obtained from solving the differential
equations. Therefore, when the estimated parameters are used
to solve the set of differential equations (1), the solution does
not coincide with those of the equations (4). This means that
the estimated parameters do not always provide us with a
model that is fitted into the observed data. For this reason,
we cannot use the inferred model for the computational
simulation.

To use the inferred model for the computational sim-
ulation, each subproblem must be solved using the gene
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Fig. 1. The cooperative evolutionary model in this paper.

expression curves obtained from the candidate solutions of
other subproblems. The cooperative coevolutionary approach
[11], [15], [16] satisfies this requirement. The cooperative
coevolutionary algorithm is an extension of the evolutionary
algorithm [6]. It consists of several subpopulations, each of
which contains competing individuals (candidate solutions) for
each subproblem. The subpopulations are genetically isolated,
i.e., individuals mate only with other members of their sub-
population. These subpopulations interact with each other only
when the fitness values (objective values) are calculated. In
this paper, the subpopulations interact with each other only
through the gene expression curves that are obtained from the
best individuals in the subpopulations (see Fig.1).

B. Algorithm

On the basis of the idea described above, we propose a
new cooperative coevolutionary algorithm for inferring genetic
networks. The following is an algorithm of the proposed
method.

1) Initialize
Generate N subpopulations, where N is the number of
components in the genetic network. As an initial guess,
estimate the gene expression curves from the observed
time-series data. Set Generation � 0.

2) Execution of Function Optimization
Execute one cycle of a function optimization algorithm
on each subpopulation.

3) Update of Estimated Gene Expression Curves
Update all of the estimated gene expression curves using
the best individuals of the subpopulations.

4) Stop if halting criteria are satisfied. Otherwise,
Generation � Generation � 1 and go to step 2.

Each of these steps is described below in greater detail.
1) Step: Initialize: N subpopulations, each of which corre-

sponds to each subproblem, are generated. Each subpopulation
contains np individuals which are randomly created. At the
same time, initial estimations of the gene expression curves
X̂ j are made directly from the observed time-series data. In
this paper, the local linear regression [3] is used to estimate
the curves.

2) Step: Execution of Function Optimization: Any type
of function optimizer can be applied to the decomposed
subproblem. In this study, an evolutionary algorithm called
GLSDC [8] is used, since it has been successfully applied to
the genetic network inference problem [9], [10]. One cycle

(generation) of GLSDC is performed on each subpopulation
in this step.

When the algorithm calculates the fitness value of each
individual on each subpopulation, the differential equation
(4) is solved using the estimated gene expression curves. At
this time, an initial gene expression level, as well as the
S-system parameters, is required. In this study, the initial
gene expression level of the i-th gene was obtained from its
estimated gene expression curve, i.e., the value of X̂i � 0  was
used for Xi � cal �0 .

3) Step: Update of Estimated Gene Expression Curves:
The gene expression curves of the best individuals of the
subpopulations, each of which is given as a solution of
the differential equation (4), are calculated. The old gene
expression curves are then updated to these calculated curves.

The initial levels of the gene expression are required to
calculate the gene expression curves. These values are obtained
from the old curves, as described in the section III-B.2.
However, since the noise in the actual time-series data corrupts
the values of the initial gene expression levels, we should
estimate these values in addition to the S-system parameters
[10]. In this step, before the gene expression curves are
updated, the initial levels of the gene expression are adjusted
to fit the new calculated curves into the observed time-series
data.

The adjustment of the initial gene expression level of
the i-th gene is formulated as a single-dimensional function
minimization problem [10]. This is because the initial gene
expression level of the i-th gene is a unique variable and all
of the S-system parameters are fixed to the values of the best
individual. The objective function of this adjustment problem
is

Fad j
i � T

∑
t � 1

γt � 1
�

Xi � cal � t � Xi � exp � t
Xi � exp � t � 2 � (7)

where Xi � cal � t is acquired by solving the differential equation
(4), and γ (0 � γ � 1) is a discount parameter. Since the
fixed model parameters obtained from the best individual are
not always optimal, the calculated gene expression curve may
differ greatly from the actual curve. When the estimated curve
is incorrect, the algorithm should not fit the curve, especially
the latter half of it, into the observed data. Therefore, in this
study, we introduce a discount parameter γ.

A golden section search [17] is used to solve the
one-dimensional function minimization problem mentioned
above. The search region for this problem was set to�

30 % of the observed initial gene expression level (i.e.,�
0 � 7Xi � exp � 0 � 1 � 3Xi � exp � 0 � ). After the adjustment, the new calcu-

lated gene expression curves are substituted for the old ones. In
this paper, a discount parameter γ � 0 � 75 was used. This value
was determined through several preliminary experiments.

IV. NUMERICAL EXPERIMENTS

To show the effectiveness of the proposed method, we
applied it to a genetic network inference problem consisting of
30 genes. Lacking actual biological data, we used an artificial
genetic network model as a case study.



TABLE I

S-SYSTEM PARAMETERS OF THE TARGET MODEL.

αi 1 � 0
βi 1 � 0

g1 � 14 =-0.1, g5 � 1 =1.0, g6 � 1 =1.0, g7 � 2 =0.5, g7 � 3 =0.4, g8 � 4 =0.2,
g8 � 17 =-0.2, g9 � 5 =1.0, g9 � 6 =-0.1, g10 � 7 =0.3, g11 � 4 =0.4, g11 � 7 =-0.2,
g11 � 22 =0.4, g12 � 23 =0.1, g13 � 8 =0.6, g14 � 9 =1.0, g15 � 10 =0.2, g16 � 11 =0.5,

gi � j g16 � 12 =-0.2, g17 � 13 =0.5, g19 � 14 =0.1, g20 � 15 =0.7, g20 � 26 =0.3,
g21 � 16 =0.6, g22 � 16 =0.5, g23 � 17 =0.2, g24 � 15 =-0.2, g24 � 18 =-0.1, g24 � 19 =0.3,
g25 � 20 =0.4, g26 � 21 =-0.2, g26 � 28 =0.1, g27 � 24 =0.6, g27 � 25 =0.3,
g27 � 30 =-0.2, g28 � 25 =0.5, g29 � 26 =0.4, g30 � 27 =0.6, other gi � j = 0.0

hi � j 1 � 0 if i � j, 0.0 otherwise.

A. Problem Setup

As a target genetic network, we used an S-system model
with the parameters listed in Table I [12]. This model consists
of 30 genes (N � 30).

15 sets of time-series data, each covering all 30 genes,
were used as observed gene expression patterns. In practice,
these sets of time-series data are obtained from biological
experiments where some gene is disrupted or overexpressed.
The sets of time-series data began from randomly generated
initial values in

�
0 � 0 � 2 � 0� and were obtained by solving the set

of differential equations (1) for the target model. We added
10% Gaussian noise to the time-series data, in order to sim-
ulate the measurement noise that often corrupts the observed
data obtained from actual measurements of gene expression
patterns. We assigned 11 sampling points for the time-series
data on each gene in each set, assuming that it would be
difficult to measure the gene expression patterns more times in
actual biological experiments. Thus, the observed time-series
data for each gene consisted of 15 � 11 � 165 sampling points.

As this network model contains 30 genes, we have to
estimate 2 � 30 � � 30 � 1  � 1860 S-system parameters in
order to infer the network. In addition, we have to estimate
all of the initial levels of the gene expression, which totaled
30 � 15 � 450. Therefore, 1860 � 450 � 2310 parameters must
be estimated in this problem.

B. Experimental Setup

The following parameters in GLSDC [8] were used in this
paper; the population size n p is 3n, where n is the dimension
of the search space and n equals 62 in this section; the number
of children generated by the crossover per selection nc is 10;
and the number of applied the converging operations N0 is np.

Five runs were carried out. Each run was continued until
the number of generations reached 75. The search regions of
the parameters were

�
0 � 0 � 3 � 0� for αi and βi,

� � 3 � 0 � 3 � 0� for
gi � j and hi � j, and

�
0 � 7Xi � exp � 0 � 1 � 3Xi � exp � 0 � for the initial levels

of the gene expression described in the section III-B.3. The
experiments were executed in parallel on a PC cluster.

In order to reduce the computational cost, we applied a
structure skeletalizing technique [20]. This technique assigns
a value of zero to the kinetic orders (gi � j and hi � j) whose
absolute values are less than the given threshold δs. Structure
skeletalizing reduces the computational cost because the ex-
ponential calculation of the equation (4) can be omitted when
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Fig. 2. Samples of calculated time courses obtained from A) the proposed
coevolutionary approach, and B) the problem decomposition approach. Solid
line: the solution of the set of differential equations (1) where the estimated
values are used as the model parameters. Dotted line: time course obtained
at the end of the search, i.e., the solution of the differential equation (4). +:
noisy time-series data given as the observed data.

the kinetic orders are zero. In this paper, the given threshold
δs was 1 � 0 � 10 � 3.

To confirm the effectiveness of the coevolutionary approach,
we compared its results to those of a non-coevolutionary
method that did not consider the interactions between de-
composed subproblems. In this paper, this non-coevolutionary
method is referred to as the problem decomposition approach
[10].

C. Results

Fig. 2 shows the calculated gene expression curves obtained
from the method with and without the coevolution. As shown
in Fig. 2A, when the proposed coevolutionary approach was
applied, the time course obtained by solving the set of equa-
tions (1) was almost identical to that obtained by solving the
equation (4). Therefore, even when the values estimated by our
method are used as the model’s parameters, the system of the
differential equations (1) produces a model that is fitted into
the observed time-series data. On the other hand, the calculated
time courses of the problem decomposition approach differed
greatly (see Fig. 2B). In this case, we cannot use the set of
differential equations (1) as the mathematical model because
it may not be what we are trying to infer.

Typical results are shown in Tables II and III. The S-system
parameters estimated with and without the coevolution are
listed for the 11th, 20th and 24th subproblems. The tables
show that both methods failed to infer some of the interactions
present in the target model, and they inferred several erroneous
interactions that had absolute parameter values too large to
ignore. As it is difficult to estimate true gene expression
curves under noisy environment, the failure to infer the correct



TABLE II

SAMPLES OF S-SYSTEM PARAMETERS ESTIMATED BY THE PROPOSED METHOD FOR THE 11TH, 20TH AND 24TH SUBPROBLEMS.

Estimated S-system parameters for the 11th subproblem
α11

� 0 � 719 g11 � 4 � 0 � 401, g11 � 7 ��� 0 � 253, g11 � 10
��� 0 � 340, g11 � 11

��� 0 � 106, g11 � 22
� 0 � 579, other g11 � j � 0 � 00

β11
� 0 � 728 h11 � 7 � 0 � 0408, h11 � 10

��� 0 � 677, h11 � 11
� 1 � 25, h11 � 14

� 0 � 0550, h11 � 30
� 0 � 0880, other h11 � j � 0 � 00

Estimated S-system parameters for the 20th subproblem
α20

� 0 � 850 g20 � 3 ��� 0 � 250, g20 � 8 � 0 � 233, g20 � 15
� 0 � 686, g20 � 20

��� 0 � 202, g20 � 26
� 0 � 293, other g20 � j � 0 � 00

β20
� 0 � 826 h20 � 17

��� 0 � 201, h20 � 18
��� 0 � 0672, h20 � 20

� 0 � 935, h20 � 27
��� 0 � 104, h20 � 29

��� 0 � 0848, other h20 � j � 0 � 00

Estimated S-system parameters for the 24th subproblem
α24

� 0 � 474 g24 � 1 ��� 0 � 255, g24 � 15
��� 0 � 442, g24 � 17

� 0 � 541, g24 � 23
� 0 � 820, g24 � 24

��� 0 � 298, other g24 � j � 0 � 00
β24

� 0 � 472 h24 � 16
��� 0 � 115, h24 � 17

� 0 � 196, h24 � 23
� 0 � 548, h24 � 24

� 2 � 23, h24 � 28
� 0 � 185, other h24 � j � 0 � 00

TABLE III

SAMPLES OF S-SYSTEM PARAMETERS ESTIMATED BY THE PROBLEM DECOMPOSITION APPROACH.

Estimated S-system parameters for the 11th subproblem
α11

� 0 � 609 g11 � 4 � 0 � 503, g11 � 10
��� 0 � 352, g11 � 11

��� 0 � 289, g11 � 16
� 0 � 0813, g11 � 22

� 0 � 701, other g11 � j � 0 � 00
β11

� 0 � 624 h11 � 7 � 0 � 352, h11 � 10
��� 0 � 730, h11 � 11

� 1 � 47, h11 � 22
� 0 � 214, h11 � 30

� 0 � 0792, other h11 � j � 0 � 00

Estimated S-system parameters for the 20th subproblem
α20

� 0 � 729 g20 � 15
� 0 � 498, g20 � 20

��� 0 � 200, g20 � 26
� 0 � 214, g20 � 27

� 0 � 169, g20 � 29
� 0 � 164, other g20 � j � 0 � 00

β20
� 0 � 712 h20 � 3 � 0 � 182, h20 � 8 ��� 0 � 237, h20 � 15

��� 0 � 246, h20 � 17
��� 0 � 180, h20 � 20

� 1 � 00, other h20 � j � 0 � 00

Estimated S-system parameters for the 24th subproblem
α24

� 0 � 412 g24 � 3 � 0 � 523, g24 � 5 � 0 � 261, g24 � 21
� 0 � 212, g24 � 22

��� 0 � 413, g24 � 24
��� 0 � 340, other g24 � j � 0 � 00

β24
� 0 � 434 h24 � 1 � 0 � 813, h24 � 20

��� 0 � 214, h24 � 24
� 2 � 34, h24 � 29

� 0 � 500, h24 � 30
��� 0 � 158, other h24 � j � 0 � 00

TABLE IV

S-SYSTEM PARAMETERS OF THE SMALL-SCALE TARGET MODEL.

i αi gi � 1 gi � 2 gi � 3 gi � 4 gi � 5 βi hi � 1 hi � 2 hi � 3 hi � 4 hi � 5
1 5.0 0.0 0.0 1.0 0.0 -1.0 10.0 2.0 0.0 0.0 0.0 0.0
2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
3 10.0 0.0 -1.0 0.0 0.0 0.0 10.0 0.0 -1.0 2.0 0.0 0.0
4 8.0 0.0 0.0 2.0 0.0 -1.0 10.0 0.0 0.0 0.0 2.0 0.0
5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

TABLE V

S-SYSTEM PARAMETERS ESTIMATED BY THE PROPOSED METHOD.

i αi gi � 1 gi � 2 gi � 3 gi � 4 gi � 5 βi hi � 1 hi � 2 hi � 3 hi � 4 hi � 5
1 4.917 -0.009 -0.003 1.019 -0.017 -1.014 9.922 2.021 -0.009 0.002 -0.009 -0.009
2 10.030 1.995 0.002 -0.002 0.006 -0.001 10.026 0.002 1.995 -0.002 0.002 0.000
3 9.851 -0.005 -0.991 -0.004 -0.003 0.002 9.835 -0.004 -0.993 2.036 -0.010 0.002
4 8.020 -0.007 0.006 2.000 -0.002 -0.998 10.054 0.001 0.003 0.008 1.988 0.007
5 9.875 -0.002 0.003 0.018 2.015 -0.020 9.892 0.004 0.002 0.008 -0.010 2.017

interactions occurred even when the proposed method was
applied. The failure to infer the correct interactions, however,
does not seriously hinder our investigation, as the inferred
model is intended mainly for use by biologists as a tool
for generating hypotheses and for facilitating the design of
experiments. The necessary interactions that were not correctly
inferred should be added, and the wrong interactions should
be removed in either of two ways, by using more sets of time-
series data obtained from additional biological experiments, or
by using further a priori knowledge about the genetic network.
The availability of the model inferred by the proposed method
for the computational simulation is also convenient for the
model refinement.

The model inferred by the proposed method contained
58 � 4 �

2 � 1 true-positive interactions and 241 � 6 �
2 � 1 false-

positive interactions on average. In addition, our method failed

to infer an average of 9 � 6 �
2 � 1 interactions that were present

in the target model (i.e., the number of the false-negative
interactions was 9 � 6 �

2 � 1). On the other hand, in the exper-
iment of the problem decomposition approach, the numbers
of true-positive, false-positive and false-negative interactions
averaged 57 � 6 �

2 � 3, 242 � 4 �
2 � 3 and 10 � 4 �

2 � 3, respectively.
The proposed method seems to slightly enhance the probability
of finding the correct interactions. This may be because the
proposed method updates the estimated gene expression curves
X̂ j. In this study, the algorithm uses the estimated gene expres-
sion curves to solve the decomposed subproblems. Therefore,
in order to increase the probability of finding the correct
interactions, these estimated gene expression curves must
be precise. Because the proposed coevolutionary approach
updates these curves, their precision may be improved through
searches. Solving this inference problem required about 45.3



hours on the PC cluster (Pentium III 933MHz � 32 CPUs).

V. DISCUSSION

In the experiments described above, the proposed method
failed to estimate the correct S-system parameters because
of the noise in the given data. When a sufficient amount of
noise-free data is available, however, our method can correctly
estimate the S-system parameters.

We used a small-scale model as the target genetic network.
The target model consisted of 5 genes (N � 5). Table IV
lists the model’s parameters [7]. As a sufficient amount of
observed data, we gave 15 sets of noise-free time-series data.
The search regions of the parameters were

�
0 � 0 � 20 � 0� for αi

and βi,
� � 3 � 0 � 3 � 0� for gi � j and hi � j, and

�
0 � 7Xi �exp � 0 � 1 �3Xi � exp � 0 �

for the initial levels of the gene expression. Other experimental
conditions were identical to those described in the previous
section. This problem has 2 � 5 � � 5 � 1  � 5 � 15 � 135
parameters to be estimated.

The estimated S-system parameters are listed in Table V.
As can be seen from the table, our method was unable to
estimate the parameter values with perfect precision. However,
they were precise enough to biologically interpret the network.

In this experiment, the effectiveness of the proposed method
was confirmed by estimating both the initial gene expression
levels and the S-system parameters. In practice, however, it is
not necessary to estimate the initial levels of the gene expres-
sion when the observed data seem to contain no measurement
error. When the initial gene expression levels do not need to
be estimated, the estimated parameters are more precise since
the problem contains fewer unknown parameters.

VI. CONCLUSION

In this paper, we proposed a new method for inferring
the S-system models of large-scale genetic networks. The
proposed method uses the problem decomposition strategy
to divide the genetic network inference problem into several
subproblems. The decomposed subproblems are then solved
using the cooperative coevolutionary algorithm. Because the
decomposed subproblems interact with each other through
their calculated gene expression curves, the inferred model
can be used in the computational simulation. This feature
is important because the computational simulation provides
us with a better understanding of genetic networks. Through
numerical experiments, we showed that the proposed method
slightly enhanced the probability of finding the correct interac-
tions of a network. Updating the gene expression curves also
seems to enhance the probability of inferring a correct network
structure.

When attempting to analyze actual DNA microarray data,
many hundreds or thousands of genes must be handled. This
task lies far beyond the powers of the coevolutionary method
proposed in this paper. As things stand at present, the high-
dimensionality of the problems render this method incapable
of inferring networks containing more than a few hundred
network components. One possible strategy to improve its in-
ference capability is to use the clustering technique to identify

genes with similar expression patterns and group them together
[5]. By treating groups of similar genes as single network
components, the proposed coevolutionary method may be
capable of analyzing systems containing many hundreds of
genes. In the future, we will attempt to combine the the
proposed method and the clustering technique.
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[19] D. Thieffry, A.M. Huerta, E. Pérez-Rueda and J. Collado-Vides, ”From
specific gene regulation to genomic networks: a global analysis of
transcriptional regulation in Escherichia coli,” BioEssays, Vol.20, pp.
433-440, 1998.

[20] D. Tominaga, N. Koga and M. Okamoto, ”Efficient Numerical Opti-
mization Algorithm Based on Genetic Algorithm for Inverse Problem,”
Proc. of GECCO 2000, pp. 251-258, 2000.

[21] T. Ueda, I. Ono and M. Okamoto, ”Development of System Identifi-
cation Technique Based on Real-Coded Genetic Algorithm,” Genome
Informatics, Vol.13, pp. 386-387, 2002.


