
Training Radial Basis Function Networks Using the
Differential Evolution Based Approaches

Junhong Liu Saku Kukkonen Jouni Lampinen
Department of Information Technology, Lappeenranta University of Technology

P.O.Box 20, FIN–53851 Lappeenranta
email: liu@lut.fi, Saku.Kukkonen@lut.fi, jlampine@lut.fi

Abstract— The Differential Evolution algorithm (DE) is a
floating-point encoded evolutionary algorithm for global opti-
mization. It has been demonstrated to be an efficient, effective,
and robust optimization method, especially for problems con-
taining continuous variables. This paper concerns applying DE
and two DE-based methods to training Radial Basis Function
(RBF) networks with variable widths. The Euclidean distance
and the Mean Square Error from the desired outputs to the
actual network outputs are applied as the objective functions
to be minimized. Training the networks is demonstrated by
approximating a set of functions using three approaches related
to DE and two of them are also applied to reconstructing the
spectra of oil samples and classification. In the experiments,
each approach works effectively, while the DE-based growing
approach is the most efficient one and a comparison of the net
performances with another approach reported in the literature is
performed and shows the resulting network generally performs
well. The results show that the DE-based methods are potential
ways to train Gaussian RBF networks.

I. INSTRUCTION

Radial Basis Functions (RBFs) emerged as a variant of
artificial neural networks in the late 80’s. RBFs are embedded
in a three layer neural network, i.e., the input layer, the hidden
layer, and the output layer, where each hidden unit implements
a radial activation function. The output units implement a
weighted sum of hidden unit outputs. Approximation capa-
bilities of RBFs have been studied in [1], [2]. Due to their
nonlinear approximation properties, RBF networks are able
to model complex mappings [3], [4]. RBFs have been used
to build a class of nonlinear models, i.e., RBF models for
multivariate approximation partially because the RBF models
have the properties of localization, boundedness, stability,
good interpolation, and smoothness.

The performance of a trained RBF neural network depends
on the number of the radial basis functions as well as their
locations, shapes, widths, and the method used for learning the
input-output mapping. Finding the variable factors of RBFs
is called network training. If a set of input-output pairs,
called the training set, is at hand, the network parameters
are optimized in order to fit the network outputs to the given
inputs. The fit is evaluated by means of a cost function. After
training, the RBF network can be used to respond to data
whose underlying statistics is similar to that of the training
set. Different approaches for training radial basis function
networks have been developed and can be divided into three
categories [5], [6], [7], [8], [9], [10], [11], [12], [13]: (�)

Learning the centres and widths in the hidden layer; (��)
Learning the connection weights from the hidden layer to the
output layer; (���) Learning the network structure; and (iv)
hybrid learning: learning the centres, widths, weights, or the
network structure together. On-line training algorithms adapt
the network parameters to the changing data statistics [6], [14],
[15], [16]. RBF networks have been successfully applied to
a large diversity of applications including interpolation [17],
[18], signature recognition [10], heart disease classification [7],
production and process control [19], handwritten digit recogni-
tion [20], radar target recognition [21], image restoration [22],
3-D object representation [23], motion estimation and moving
object segmentation [24].

Artificial neural networks are widely recognized for their
ability to approximate complicated non-linear relationships
and to estimate underlying trends, even when substantial noise
is present in the data. But it is often difficult to design appro-
priate neural network models since the basic principles gov-
erning the processing of information in neural networks are not
well understood. As a result, conventional design techniques
usually become inapplicable when applied to mapping the
complex interactions among network units. Methods, which
are more efficient, are required for the development of neural
processing systems [13], such as Evolutionary techniques that
fit this purpose because of the following reasons:

1) Evolutionary algorithms have been successfully applied
to finding the global optima of various multidimensional
functions where local optima in the space of possible
solution are common.

2) Evolutionary algorithms are able to handle the optimiza-
tion of parameters for which no gradient information or
other auxiliary information is available.

3) Evolutionary algorithms can optimize a broader range
of network parameters; even adaptively change the type
of the transfer functions of nodes.

The Differential Evolution algorithm (DE) introduced by
Price and Storn [25], a floating-point encoded Evolutionary
Algorithm (EA) for global optimization, has been found to
be an efficient, effective, and robust optimization method,
especially for problems containing continuous problem vari-
ables [25], [26], [27]. The DE algorithm has become popular
and has been used in many practical cases mainly because it
has demonstrated good convergence properties and its basic

principles are easy to understand. DE is also particularly
easy to work with, having only a few control variables. This
paper applies DE to finding the set of parameters of RBFs
with variable widths that provides the best possible function
approximation.

The rest of the paper is structured as follows: the formula-
tion of an optimization problem is explained briefly in Sect.
II, the optimization systems of RBF networks, using DE, are
described in Sect. III, and experimental results are shown in
Sect. IV. The conclusion is given in Sect. V.

II. FORMULATION OF AN OPTIMIZATION
PROBLEM

A. The Nonlinear Regression Model

A nonlinear regression model can be written as [28]

�� � ������� � ��� (1)

where �� is a vector of associated regressor variables or
independent variables for the ��� case, � is the expectation
function and at least one of the derivatives of the expectation
function with respect to the parameters depends on at least
one of the parameters. � is a vector of the parameters in
the nonlinear model. �� is a random variable representing the
response for case �� � � �� �� ���� � and has a deterministic
part and a stochastic part. The deterministic part, �������,
depends upon the parameters � and the predictor �� � ��,
where 	 is the dimensionality of the function �. The stochastic
part, represented by the random variable, ��, is a disturbance
that perturbs the response for that case.

When analyzing a particular set of data, the vectors ��,
� � �� �� ���� � , are considered as fixed and the intention is
on the dependence of the expected response on �. An � -
dimensional vector ����, having the ��� element, is created,

���� � �������� � � �� �� ���� �� (2)

and write the nonlinear regression model for � cases as

� � ���� � �� (3)

where � is the vector of random variables representing the data
that may be given and � is the vector of random variables
representing the disturbances, assumed to have a spherical
normal distribution. That is, ���� � �� �
���� � ����� � �
���, where � is an � �� identity matrix. The deterministic
part, �(�), a function of the parameters and regressor variables,
gives the mathematical model for the responses.

B. Radial Basis Functions Network

RBFs have their origin in the solution of the multivariate
interpolation problem [17]. Arbitrary function ����: � � � �
can be approximated by mapping, using a RBF network with
a single hidden layer of � units:

������� � �� �

��
���

��������� � ���

� �� �

��
���

������� � ��� ����� (4)

where � � ��; � is the vector of variable factors including
��, �� , �� , and �� ; � denotes the number of basis func-
tions; � � ���� ��� ���� ���

� contains the weight coefficients;
�� is the bias; ����� represents the 	-dimensional activation
function (also known as the radial basis function) from ��

to �; � � � is the Euclidean norm; �� � ����� ���� ���� ����
� ,

� � �� �� ���� �, are the centres of the basis functions; � � �
����� ���� ���� ����

� , � � �� �� ���� �, are the widths, which are
called scaling factors for the radii �� � ���, � � �� �� ���� �,
of the basis functions, respectively; and ���� is a non-linear
function that monotonically decreases (or increases) as �

moves away from �� and can be one of common RBFs:

���� � � (Linear)�

���� � �� (Cubic)�

���� � �������� (Thin plate spline)�

���� � ����	
�� (Gaussian)�

���� � ��� � ����� (Inverse multiquadric)�

���� � ��� � ���� (Multiquadric)�

where � � 	, � is a positive constant, � � 	, and 	 � � � �.
The Gaussian function was chosen from the above listed radial
basis functions. In order to simplify the notation, coordinate
axes-aligned Gaussian RBF functions are used:

����� � �
�

������
�

���
� � (5)

A multidimensional Gaussian RBF function can be represented
as the product of lower dimensional Gaussian RBF functions.
When a 2-dimensional Gaussian-type RBF is centred at the
centroids �� , it follows from (4) that

������� � �� �

��
���

���
�

������
�

���
�

� �� �

��
���

���
�

��������
�

���
�� �

�

��������
�

���
�� � (6)

where � is the vector of variable factors and can be written as

�� � �����
� ���

� � ��
� � ������

� � ��
� � ������

� � ��
� ��

� ���� ��� ���� ��� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ����
� � (7)

The network can be trained to approximate function ���� by
finding the optimal vector � given a (possibly noisy) training
set, � � 	���� ���
� � 	�� �� ���� ����� � �

�� �� � ��.

C. Cost Function

Given the number of radial basis functions and a training
set, the network parameters are found such that they minimize
the Euclidean distance between the desired and actual outputs,
i.e., the objective function:

���� �

����
�
���

�
�� � ��������

��

� (8)

In order to make comparisons with the former algorithm by
Esposito et al. [4], the Mean Square Error (MSE) will also be
considered:

���� �
�

�

�
���

�
�� � ��������

��

� (9)

D. Brief Description of the Differential Evolution Algorithm

The optimization target function is of the form

����
 �� � �� (10)

The optimization objective is to minimize the value of the
target function by finding the optimal values of its parameters,
� � ���� ��� ���� ���

� , where � denotes a vector composed of
� objective function parameters. Usually the parameters of
the target function are also subject to the lower and upper
boundary constraints � (L) and �(U):

�(L)

� � �� � �
(U)

� � � � �� �� ���� �� (11)

DE is a parallel direct search method. It utilizes ���� �-
dimensional parameter vectors, ����� � � �� �� ���� ����, as a
population for generation in order to minimize the target
function by finding an optimal objective function parameter
vector, where ���� is the number of population members.

The initial population is chosen randomly to cover the entire
parameter space uniformly (otherwise stated). The crucial idea
behind DE is a scheme for generating trial parameter vectors.
DE generates a new noisy parameter vector by adding the
difference weighted by mutation amplification ! between
two (or more) population vectors to the other vector subject
to perturbation during the mutation operation. In crossover
operation, each parameter of a trial vector may be chosen as
that of the former generated noisy vector or that of the target
vector (i.e., the predetermined population member), based on
the comparison result between crossover operator "� and a
uniformly distributed random number in �	� �� generated anew
for each parameter, except that one parameter will always
come from the noisy vector in order to ensure that the trial
vector differs from the target vector by at least one parameter
which index can be � (the last parameter) for all the trial
vectors [27] or chosen anew from ��� �� for each trial vector.
After crossover, if the resulting trial vector yields a lower or
equal objective function value than the predetermined popu-
lation vector, the newly generated trial vector will replace the
predetermined population vector in the following generation’s
population; otherwise, the predetermined population vector is
retained [29].

III. OPTIMIZATION OF RADIAL BASIS FUNCTION
NETWORKS BY DIFFERENTIAL EVOLUTION

A. Representations of the Parameters of the Objective Func-
tion

1) Approach 1: When function ���� is computed using a
set of 	-dimensional Gaussian RBF functions as in (6)
and the optimization objective function is stated as in

TABLE I

CONTROL PARAMETERS’ SETTING

Variable Approach 1 Approach 2 Approach 3

���� � � � � �� 100 100

�� 0.9 0.9 0.9

� 0.9 0.9 0.9

Note: � denotes the number of Gaussian RBF functions.

(8), the optimization process using DE will minimize
���� by finding an optimal parameter vector � [8]:

�� � ���� ��� ���� �� � ���� ��

���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ����
� � (12)

The dimensionality of the parameter vector of the ob-
jective function, �, is �	 � � � ��� � �. When 	 � �,
� � ��� �, it follows that

�� � ���� ��� ���� �� � ���� ���

���� ���� ���� ���� ���� ���� ���� ����
� � (13)

Especially when 	 � �, � � �, �� � 	, �� � �, �� �

	��, �� � 	��, (6) becomes ���#��� � �� ��������

������ , where
�� � �	 � 	�� 	���� .

2) Approach 2: When the number of units, �, is not known
properly before hand, the minimum sized RBF networks
can be built to approximate functions with a dimension
changeable parameter vector �:

�� � ���� ��� ���� �� � ���� ���

��� ���� �� � ���� ���
� � (14)

using a DE-based heuristic explained as the following:
a) The � initial centres, called set ", are selected

randomly from training set � . Those in � that have
not been sampled constitute the set ��.

b) Dimensionality� � ����$, where $ is the number
of new centre candidates added in each adjusting
operation.

c) Evolution: adapt the widths and the weights of
RBFs, using DE.

d) After a certain number of generations, say �, then
adjust by:
i) Deletion: delete ��s, if �� is small, i.e., if

��%
�
 � &�, where &� is a threshold; set
" is renewed by deleting the related centres
��� � � � �� �� ���� 	. � is renewed by subtracting
the number of deleted weights.

ii) Addition: if �� is not empty, take randomly $
centre candidates from ��, add to ", renew �
by adding $, go to Step 2c.

e) Terminate the process if none of the basis functions
has been removed during Step 2(d)i and the change

of weights between two deletion operations is
small, in addition to that of no element being left
in ��. Otherwise go to Step 2c.

3) Approach 3: Combine Approach 1 and Approach 2
stated above and get a DE-based heuristic to approx-
imate functions with growing RBF networks. The ob-
jective function is defined as in (9) to minimize the
Mean Square Error. The entire samples in training set
� are used for training and �� � ��� � � �� �� ���� � ,
are possible centre candidates.

a) The sample pair ���� ��� from set � , for which
the function approximation is the worst, having
the biggest difference between the desired and the
actual outputs of the existing RBF network, is
chosen to be taken as a new node centre, i.e.,
� ��
���������
 � ���	
�� � ���������
� ���� ��� �
�� � � �� �� ���� ��, where ����� is the existing
Gaussian RBF network.

b) Growing: (�) � is increased by 1; (��) the chosen
node �� is added to centres’ set " � 	���
 � �
�� �� ���� �� � � �� �� ���� 	�, where � is the number
of hidden nodes present in the RBF network; and
(���) the weight of this node is set as �� � �� �
���������, i.e., the error between the desired output
and the existing RBF network output (i.e., before
adding the new node).

c) Local tuning: find the width of the newly added
node after ��
�� generations, using DE.

d) Global tuning: the widths of the present nodes of
the entire RBF network are learned after ������

generations, using DE with dimensionality � as �,
as the parameter vector � of the objective function
can be written as

�� � ���
� � �����

�
� � �����

�
� �

� � (15)

where in �� , ��� � ��� � ��� � ���, � � �� �� ���� �,
i.e., the RBFs have circular cross sections.

e) Criterion: if ���� � &� and � � ����, where &�
is a threshold and ���� is the maximum number
of nodes of the RBF network, go to Step 3a.
Otherwise, stop the process.

f) Testing the performance of the DE-based approach:
for each function, testing set ��, which is different
from training set � , contains the same number of
samples as in � and the samples are uniformly
distributed random values in the function domain.

B. Control Parameters’ Setting of DE

The strategy used is DE%rand%�%bin.
Realizing the above proposed approaches, the parameters

of the objective function, stated in (8) or (9), usually corre-
spond to the network architecture. The evolutionary process
starts with a population of the above mentioned parameters,
randomly generated, based on the defined region and the
boundaries of the discussed function, ����, i.e., � � � ��	����
�(L)� 	��� � �(U)�, �� � �	� ��(U) � �(L)�%��, and �� � ��� �

(a)

(b)

Fig. 1. The objective function value history during the optimization process
(� � �): the average of 10 independent runs for functions. (a) A Hermite
polynomial; (b) 1D sine wave

�
������ �
�
����, where �(L) and �(U) are the vectors of
the lower limits and the upper limits of � respectively, and

�
��� is the maximum of the absolute function values of
the computed function ����. For every member of this initial
population, the objective function value, calculated according
to (8) or (9), is evaluated, based on the given data set.

The control parameters’ setting affects the performance
of the proposed approaches, and its values, in the case of
Approach 1, were chosen based on discussions in [29], [30],
[31] and are given in column 2 of Table I. In the case of
Approach 2 and Approach 3, the control parameters were
different and are shown in columns 3 and 4 of Table I.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiments with Functions

In this section, the proposed approaches are applied
to single-input-single-output and two-input-single-output test
functions without any disturbance [8]:

1) The first benchmark problem is a Hermite polynomial
approximation problem, given by

���#� � ��� � ��� # � �#�� � ��
��

� � # � �������� (16)

as shown in Fig. 2a.

TABLE II

EXPERIMENTAL RESULTS WITH TEST FUNCTIONS IN (16) AND (17)

Function Approach 1 Approach 2 Approach 3

���� � Genera- �� ���� � � Genera- �� ���� � � ��

in (8) tions (���) in (8) tions (���) in (8)� in (9) (����) (���)

�� 0.0384 201 � � ��� 600 0.3337 41 4 5,200 52 0.0973 9.4636 100 11 7.7

�� 0.0969 201 � � ��� 600 1.1437 41 3 5,200 52 0.1262 15.935 100 12 8.4

Note: �� stands for the number of the objective function evaluations. (�): the Euclidean distance transformed from the MSE.

(a)

(b)

Fig. 2. Net functions and their approximations by 5-centroid RBF networks.
(a) A Hermite polynomial; (b) 1D sine wave (figure legends: ‘-”—net
function; “�”—approximation)

2) The second problem is a 1-D sine wave function:

���#� � ������#�� # � �	� ��� (17)

as shown in Fig. 2b.
3) The third function is given by:

���#� �

��
���

�
� � ���

�
�����	����

	
� # � �������� (18)

4) The fourth function is:

���#� � #� # � �	����� (19)

5) The fifth function is:

�
��� � #
�
� � #

�
� � �#�� #�� � �������� (20)

6) The sixth function is:

����� � �� �#�� � #
�
��� �#�� #�� � �������� (21)

For continuous function ����, the input is considered as
data set � , containing � data points in the function domain:

� �

���� ��� � �

� ��� � � � � �
 �� � �����
�
�

where 	 denotes the dimension of the discussed function ����,
(i.e., 	 � � for single-input functions and so on) and ��,
� � �� �� ���� � , are � uniformly spaced noiseless points in
the defined region of the computed function except that they
are uniformly distributed random values in Approach 3.

The functions in (16) – (21) were used, realizing the
approaches stated in Sect. III-A. (�) Approach 1: � � �, DE
ran with the control parameter’ setting from column 1 of Table
I and the experiment for each function was repeated 10 times;
(��) Approach 2: � is variable and initially set as 5 while
$ � �; and (���) Approach 3: � is initially set as zero. Key
experimental results are:

1) a) Fig. 1 shows the optimization processes realizing
Approach 1, i.e., the average of objective function
values stated in (8) based on 10 independent runs.
After �	� 			 generations, the objective function
value decreases from 10.0053 to 0.0384 for � � and
from 8.2830 to 0.0969 for ��, the approximation
error is under ��� ��	�� and ��� ��	�� respectively,
and the standard deviations are ������ � �	�� and
������ � �	�� individually. Fig. 2 shows the net
functions and their RBF network outputs.

b) Figs. 1 and 2 reveal that the optimization process
converges effectively after a certain number of
generations for each of the tested functions. It
also shows that the less the complexity of the
function, the faster the optimization process (i.e.,
�� is slightly more complex than ��, concerning
the number of turns in the function domain).

2) a) Fig. 3 shows the implementation using Approach
2 with training set � of the size of 41. Fig. 3a-
b shows how the objective function value changes
when the number of the centres of RBF networks
changes during the optimization process, and Fig.
3c shows the net function, the final network output
as well as its composing centres, Gaussian RBFs,
and the bias when approximating ��; and Fig. 3d-f

(a) (b) (c)

(d) (e) (f)

Fig. 3. Building minimum-sized RBF networks when � is variable. (a) The objective function value history when approximation ��; (b) The number of
centres; (c) A Hermite polynomial and its approximation; (d) The objective function value history when approximation ��; (e) The number of centres; (f)
1D sine wave and its approximation (figure legends in c and f: “*”—centres; “-”— Gaussian RBFs and the bias; “�”—approximation; “– -”—net function)

gives the similar information when using Gaussian
RBF networks to approximate ��.

b) From Fig. 3, it can be seen that 4-centroid and
3-centroid RBF networks are finally chosen for
optimally approximating �� and ��, respectively.
The method can solve the problem of how many
hidden units should be used when building RBF
networks to approximate functions.

3) a) The experimental results of realizing Approach 1
and Approach 2 reveal that after 5,200 generations,
the average distance ����%� , which is obtained
from the objective function value (the Euclidean
distance) divided by the size of the training set
in order to get rid of the influence from the size
of the training set, is 0.0190 and 0.0081 for � �
respectively, and 0.0170 and 0.0279 for � � as well.

b) The experimental results of realizing Approach 1
and Approach 2 reveal that after ��	� 			 function
evaluations, the average distance ����%� is 0.0210
and 0.0081 for �� respectively, and 0.0174 and
0.0279 for �� as well.

c) Approach 2 gave worse results in the case of �� in
the above two comparisons, because �� has more
turns in the function domain than �� (three turns

over eight for �� and four turns over one for ��)
and the training set of �� contains less information
when the size of training set is the same.

4) a) Using Approach 3 (��
�� � �	� ������ � �),
the objective function value stated in (9) is ������ �
�	�
 with an 11-RBF network for approximating
�� and ������ � �	�� with a 12-RBF network for
approximating ��, as shown in Table II.

b) After ��� 			 objective function evaluations, the
best objective function value in (8) was 5.0674
using Approach 1 and 0.0973 using Approach 3
for ��, 4.5245 using Approach 1 and 0.1262 using
Approach 3 for ��.

c) As shown in Table II: (i) for ��, the optimization
process got the best objective function value in
(8) 0.0973 after ��� 			 function evaluations using
Approach 3, and 0.3337 after ��	� 			 function
evaluations using Approach 2; and (ii) for ��,
the optimization process got the best objective
function value in (8) 0.1262 after ��� 			 function
evaluations using Approach 3 and 1.1437 after
��	� 			 function evaluations using Approach 2.

d) Seen from the above two comparisons, Approach
3 worked most efficiently among these three.

TABLE III

EXPERIMENTAL RESULTS WITH TEST FUNCTIONS IN (18)–(21)

Func- Method Training Testing Maximum � �

tion error error error � �

�� DE 120 130 0.0270 400 6

EA 22 24 400 6

�� DE 1.0986 1.1035 0.0138 1000 5

EA 1.4 1000 6

�� DE 940 970 0.3475 900 10

�� DE 98.724 150 0.3419 900 11

Note: Training error and testing error are of the order of ���� .

e) Table III shows more results of using Approach
3 (short as DE), including comparisons with the
method proposed by Esposito et al [4]—an in-
cremental algorithm for growing RBF networks
by means of an evolutionary strategy and showed
their strategy can achieve better performance than a
greedy algorithm [32] and Wavelet Neural Network
[33] both in terms of net size and in terms of
computation time, which is short as EA: (i) the
method by Esposito et al worked better in �� with
testing error having the value of ��� � �	�� than
the DE-based approach having the testing error of
�����	�� when the number of nodes is 6, but worse
in �� with testing error of the value of ��� � �	�

with six RBFs than the DE-based approach having
the testing error of ����	�	� ��	�
 with five RBFs;
and (ii) the DE-based approach obtained an MSE
less than ��� ��	�� (on testing set) for test function
�
 with 10 nodes and an MSE less than ��� � �	��

(on testing set) for test function �� with 11 nodes.

B. Experiments with Real-Life Data

The proposed Approach 1 (� � �) and Approach 3 were also
applied to a set of 1-dimensional nuclear magnetic resonance
(1D ��C NMR) spectra of oil samples, where the control
parameters are taken from Table I. Key experimental results
are:

1) a) Fig. 4 shows the spectra measured, which is com-
plicated, and reconstructed by the RBF networks
with Approach 1. Fig. 4a shows the measured
spectra of the 18 oil samples transformed into a
data format that can be used in Matlab. � � �	�
out of 4501 spectral values are selected for each
sample. Fig. 4b shows the approximated spectra
of the 18 samples found by the RBF networks
for each sample respectively. Fig. 5 shows the
optimization processes finding the parameters of
the RBF networks.

b) The results show that the suggested method is
feasible for finding particular RBF parameters for
each spectrum so that each sample can be seen to

be significantly different from each other and can
be classified correctly. The results illustrate some
of the advantages of training RBF networks using
DE in the analysis of complex spectroscopic data,
i.e., RBF networks training by DE-based methods
will automatically focus on the most relevant sub-
structures of the compounds.

2) a) Table IV shows the numerical results obtained,
using Approach 3. For each sample, training set
� contains every second point of the full spectrum
starting from the beginning, and the rest is put in
testing set ��.

b) Working samples (� ���
� , � ���

� ,� � �� �� ���� ��, where

�
���
� and � ���

� are the test set and full spectrum of
the ��� sample) were input to the respective RBF
networks learned to see if the working samples
will be classified properly. The process can be
explained in the following: given the ��� working
sample’s spectrum, get its outputs from each of
the learned RBF networks, find the difference
between them, i.e., the Mean Square Error ��� �� ;
this working sample is classified into the class �,
which has the smallest difference, i.e., ����
 �
�������	����� � � � �� �� ���� ���. The experi-
mental results and classification results are shown
in Table V and Table VI.

c) From Table V and Table VI, it can be seen
that most of the samples were classified correctly
except that: (�) � ���

� was classified as class 17
since ������
 is slightly smaller than ������ and
�
���
� could be put into class 8, 15 or 17 because

������ � ������
 � ������
; (��) � ����
� was

classified as class 2 since ������� is slightly
smaller than �������� and � ����

� could be put into
class 2 or 14 because ������� � ��������; (���)
the ���� sample was classified as class 10 since
�������� is slightly smaller than ��������; (�#)
�
����
� could be classified as class 9 or 18 since

their differences are equal and � ����
� can be put

into class 9 or 18 because of the same reason. The
classification percentage is 77.78.

V. CONCLUSION

The Differential Evolution algorithm and two DE-based
methods were applied to training Radial Basis Function net-
works with variable widths for approximating functions and
for reconstructing data, which represents particular features
of a set of oil samples. The choice of the optimal network
parameters corresponds to the minimum Euclidean distance or
the Mean Square Error between the desired and actual outputs.
The tests based on a set of test functions and real-life data
demonstrated the approaches. The obtained results suggest that
the original DE and the DE-based approaches are effective in
optimizing the parameters of Gaussian-type RBF networks and
the DE-based growing approach is the most efficient among

TABLE IV

EXPERIMENTAL RESULTS OF 1-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE SPECTRA

Sample Training error Testing error Maximum error � Size of � Size of ��

�� �	�	

 � ���� 		���� � ���� 0.6252 10 2251 2250

�� �		��� � ���� �	
�
� � ���� 0.3959 10 2251 2250

�� �	� � ���� �	� � ���� 0.4637 10 2251 2250

�� �	� � ���� �	� � ���� 0.4664 10 2251 2250

�� �	���
 � ���� �	�	�� � ���� 0.3303 10 2251 2250

�� �		 � ���� �	
 � ���� 0.3749 15 2251 2250

�� �	� � ���� �	� � ���� 0.4319 15 2251 2250

�� �	���
 � ����
	

�� � ���� 0.3964 15 2251 2250

�	 �	��
� � ���� �	

	� � ���� 0.2325 10 2251 2250

��
 		

�
 � ���� �	��	� � ���� 0.4483 10 2251 2250

��� 		� � ���� 		� � ���� 0.8376 10 2251 2250

��� 		
 � ����
	� � ���� 0.6655 10 2251 2250

��� �	���� � ���� �	��	
 � ���� 0.4354 10 2251 2250

��� �	�	�	 � ���� �	���
 � ���� 0.5609 10 2251 2250

��� �		��� � ����
	
��� � ���� 0.2739 9 2251 2250

��� �	
��� � ���� �	�	�� � ���� 0.3686 1 2251 2250

��� �	�

 � ���� �	��

 � ���� 0.2287 10 2251 2250

��� �	
	�� � ����
	�	
� � ���� 0.3583 10 2251 2250

(a) (b)

Fig. 4. Spectra of the 18 samples: the samples are indexed from left to right top to bottom. (a) Measured spectra of the 18 oil samples: 101 out of 4501
spectral values are selected for each sample; (b) Reconstructed spectra of the 18 samples, each of which is approximated by a 4-centroid RBF network

these three. The comparison to another incremental algorithm
reported in the literature has showed the DE-based growing
approach performs well in terms of the net size.

Future research should include tests with higher data dimen-
sionalities and with less smooth data as well as possible ways
of improving the classification percentage and the efficiency
of the Differential Evolution based training process.

ACKNOWLEDGEMENTS

This work was partial supported by the Fortum Foundation
of the Fortum Company, Finland. The authors would like
to thank Mika Ala-Korpela and Igor Monastyrnyi for their
assistance with the spectral data.

TABLE V

THE DIFFERENCE BETWEEN THE REAL SPECTRA AND THE ESTIMATED FROM RBF NETWORKS

Working the Mean Square Error (����)

sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

�
���
� � 17 19 51 37 44 40 37 28 36 122 431 14 18 36 37 25 29

�
���
�

� 18 20 53 39 46 39 37 28 38 119 425 14 19 36 38 26 30

�
���
� 23 � 22 41 27 36 22 18 8 22 122 433 21 12 18 24 7 11

�
���
�

21 � 21 41 27 36 20 17 8 23 117 426 22 11 17 24 9 12

�
���
� 35 29 �� 55 44 32 29 30 35 38 96 350 32 32 33 32 30 37

�
���
� 34 30 �� 55 46 32 27 29 36 40 91 344 34 31 33 32 31 38

�
���
� 64 49 56 �� 19 74 65 49 49 44 127 424 54 51 55 47 47 50

�
���
�

60 47 55 �� 19 71 62 46 47 43 121 416 54 48 52 45 45 48

�
���
� 54 34 45 19 � 69 55 37 34 26 133 445 47 40 43 34 31 36

�
���
�

50 34 44 20 � 67 53 36 33 27 127 437 48 37 40 33 30 35

�
���
� 53 33 32 66 56 �	 26 31 34 50 101 301 50 43 27 30 33 33

�
���
�

50 32 32 66 57 �	 25 31 36 52 99 295 53 42 27 31 35 35

�
���
� 50 25 32 67 55 28 �� 20 23 45 102 326 43 33 19 31 22 25

�
���
�

48 25 32 67 56 27 �� 20 25 47 100 320 45 33 19 33 24 27

�
���
� 45 17 31 45 31 42 16 8 9 22 113 391 36 26 8 20 � 11

�
���
� 41 16 30 44 31 40 15 � 10 23 110 385 38 24 � 21 � 13

�
�	�
� 33 08 31 43 29 41 19 13 � 24 122 428 28 20 11 23 5 4

�
�	�
�

31 8 30 43 30 40 17 13 � 25 119 422 31 18 11 23 6 5

�
��
�
� 51 26 42 37 23 68 45 32 26 � 132 451 43 37 35 29 22 27

�
��
�
�

46 25 40 37 23 65 43 30 24 � 126 443 43 32 32 27 21 26

�
����
� 133 120 102 135 132 100 101 110 125 123 �� 216 128 129 102 100 116 123

�
����
�

130 120 103 135 132 100 100 110 127 126 �� 211 130 128 102 101 118 124

�
����
� 314 300 281 315 312 244 271 284 304 309 239 	� 308 308 258 258 297 301

�
����
�

311 300 281 315 312 243 271 285 306 312 238 	� 311 308 259 261 299 303

�
����
� 13 16 24 46 34 51 42 38 28 36 130 450 � 11 39 41 24 31

�
����
� 12 16 24 47 35 51 41 37 28 37 126 443 � 12 39 41 26 32

�
����
� 22 � 24 41 28 44 30 25 13 27 128 450 14 6 26 31 12 17

�
����
�

20 � 23 41 29 43 28 24 13 27 124 442 16 � 25 32 13 18

�
����
� 48 22 37 50 38 37 17 11 13 29 109 366 42 33
 19 11 12

�
����
�

45 22 37 50 38 36 16 11 15 31 108 361 46 32 � 21 13 15

�
����
� 51 27 40 34 20 65 50 31 25 �� 141 460 43 36 35 19 22 26

�
����
�

46 25 38 33 19 62 47 29 23 �� 135 452 42 31 32 17 21 24

�
����
� 38 11 30 40 25 45 21 10 5 18 122 431 31 22 11 21 � 7

�
����
�

34 11 29 39 25 43 19 10 5 19 119 423 33 19 10 21 � 8

�
����
� 38 13 31 44 31 33 17 12 � 26 112 385 34 25 8 18 7 �

�
����
� 35 13 31 45 33 33 17 13
 29 111 379 37 24 9 20 9

Note: The bold items are the ones having the smallest value in their respective rows.

REFERENCES

[1] T. Poggio and F. Girosi. Networks for approximation and learning, Proc.
IEEE, MIT, Cambridge, MA, USA, September 1990, vol. 78, no. 9, pp.
1481–1497, 1990.

[2] J. Park and J. W. Sandberg. Universal approximation using radial-basis-
function networks, Neural Computation, vol. 3, pp. 246–257, 1991.

[3] S. Haykin, Neural networks: a comprehensive foundation, Macmillan
College Publishing Company, New York, 1994.

[4] A. Esposito, M. Marinaro, D. Oricchio, and S. Scarpetta. Approximation
of continuous and discontinuous mappings by a growing neural RBF-
based algorithm, Neural Networks, vol. 13, pp. 651–665, 2000.

[5] Z. Wang and T. Zhu. An efficient learning algorithm for improving

generalization performance of radial basis function neural networks,
Neural Networks, vol. 13, pp. 545–553, 2000.

[6] A. Alexandridis, H. Sarimveis, and G. Bafas. A new algorithm for online
structure and parameter adaptation of RBF networks, Neural Networks,
vol. 16, pp. 1003–1017, 2003.

[7] A. Leonardis and H. Bischof. An efficient MDL-based construction of
RBF networks, Neural Networks, vol. 11, pp. 963–973, 1998.

[8] J. Liu and J. Lampinen. Differential evolution algorithm as a tool of
training radial basis function networks, in Graduate student workshop of
Genetic and Evolutionary Computation Conference, Seattle, Washington,
USA, June 26-30, 2004.

[9] J. Liu, S. Kukkonen, and J. Lampinen. Function approximation with
pruned radial basis function networks using a DE-based algorithm: an
initial investigation, in ���� Int’l Conf. on Soft Computing (MENDEL

TABLE VI

CLASSIFICATION RESULTS

Working class Working class class

sample classified sample classified belong

�
���
� 1 �

���
�

1 1

�
���
� 2 �

���
�

2 2

�
���
� 3 �

���
� 3 3

�
���
� 4 �

���
�

4 4

�
���
� 5 �

���
�

5 5

�
���
� 6 �

���
� 6 6

�
���
� 7 �

���
�

7 7

�
���
� 17 �

���
�

8,15,17 8

�
�	�
� 9 �

�	�
� 9 9

�
��
�
� 10 �

��
�
�

10 10

�
����
� 11 �

����
� 11 11

�
����
� 12 �

����
�

12 12

�
����
� 13 �

����
�

13 13

�
����
� 2 �

����
� 2,14 14

�
����
� 15 �

����
�

15 15

�
����
� 10 �

����
�

10 16

�
����
� 17 �

����
� 17 17

�
����
� 9,18 �

����
�

9,18 18

Fig. 5. Optimization processes of finding the RBF parameters. In each figure,
the horizontal axis represents generations and the vertical axis represents the
objective function values (samples indices are numbered from left to right top
to bottom)

2004), Brno, Czech Republic, June 16-18 2004, pp. 139–144.
[10] Q. Zhu, Y. Cai, and L. Liu. A global learning algorithm for a RBF

network, Neural Networks, vol. 12, pp. 527–540, 1999.
[11] V. P. Plagianakos and M. N. Vrahatis. Neural network training with

constrained integer weights, Proc. 1999 Congress on Evolutionary Com-
putation, Washington, DC USA, 6-9 July 1999, vol. 3, pp. 2007–2013.

[12] S. A. Billings and G. L. Zheng. Radial basis function networks con-
figuration using genetic algorithms, Neural Networks, vol. 8, no. 6, pp.
877–890, 1995.

[13] G. P. J. Schmitz and C. Aldrich. Combinatorial evolution of regression
nodes in feedforward neural networks, Neural Networks, vol. 12, pp. 175–
189, 1999.

[14] A. G. Bors and I. Pitas. Median radial basis function neural network,
IEEE Trans. on Neural Networks, vol. 7, no. 6, pp. 1351–1364, 1996.

[15] C. F. Fung, S. A. Billings, and W. Luo. On-line supervised adaptive
training using radial basis function networks, Neural Networks, vol. 9,
no. 9, pp. 1597–1617, 1996.

[16] M. Marinaro and S. Scarpetta. On-line learning in RBF neural networks:
a stochastic approach, Neural Networks, vol. 13, pp. 719–729, 2000.

[17] D. S. Broomhead and D. Lowe. Multivariable functional interpolation
and adaptive networks, Complex Systems, vol. 2, pp. 321–355, 1988.

[18] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels.
On the training of radial basis function classifiers, Neural Networks, vol.
5, pp. 595–603, 1992.

[19] R. J. Kuo and P. H. Cohen. Multi-sensor integration for on-line tool
wear estimation through radial basis function networks and fuzzy neural
network, Neural Networks, vol. 12, pp. 355–370, 1999.

[20] Y. S. Hwang and S. Y. Bang. An efficient method to construct a radial
basis function neural network classifier, Neural Networks, vol. 10, no. 8,
pp. 1495–1503, 1997.

[21] Q. Zhao and Z. Bao. Radar target recognition using a radial basis
function neural network, Neural Networks, vol. 9, no. 4, pp. 709–720,
1996.

[22] I. Cha and S. A. Kassam. RBFN restoration of nonlinearly degraded
images, IEEE Trans. on Image Processing, vol. 5, no. 6, pp. 964–975,
1996.

[23] H. Bischof and A. Leonardis. View-based object representation using
RBF networks, Image and Vision Computing, vol. 19, pp. 619–629, 2001.

[24] A. G. Bors and I. Pitas. Optical flow estimation and moving object
segmentation based on median radial basis function network, IEEE Trans.
on Image Processing, vol. 7, no. 5, pp. 693–702, 1998.

[25] R. Storn and K. Price. Differential Evolution - a simple and efficient
heuristic for global optimization over continuous spaces, Journal of
Global Optimization 11(4): 341–359, December 1997.

[26] R. Storn. Differential evolution design of an IIR-filter, in Proc. of IEEE
Int’l Conf. on Evolutionary Computation, Nagoya Japan, 20-22 May
1996, pp. 268–273.

[27] R. Storn and K. Price. Differential Evolution - a simple evolution
strategy for fast optimization, Dr. Dobb’s Journal 22(4): 18–24 and 78,
April 1997.

[28] D. M. Bates and D. G. Watts. Nonlinear regression analysis and its
applications, New York: Wiley, 1988.

[29] R. Storn and K. Price. On the usage of Differential Evolution for function
optimization, in 1996 Biennial Conference of the North American Fuzzy
Information Processing Society (NAFIPS), Berkeley, CA USA, 19-22
June, pp. 519–523, 1996.

[30] J. Lampinen and I. Zelinka. On stagnation of the differential evolution
algorithm, in ��� Int’l Conf. on Soft Computing (MENDEL 2000), Brno,
Czech Republic, June 7-9 2000, pp. 76–83.

[31] J. Liu and J. Lampinen. On setting the control parameters of the
differential evolution algorithm, in 	�� Int’l Conf. on Soft Computing
(MENDEL 2002), Brno, Czech Republic, June 5-7 2002, pp. 11–18, 2002.

[32] V. Vinod and S. Ghose. Growing nonuniform feedforward networks for
continuous mapping. Neural computing, vol. 10, pp. 55-69, 1996

[33] F. Yong and T. Chow: Neural network adaptive wavelets for function
approximation. Intern report. Department of Electrical Engineering. City
University of Hong Kong, 1996

