
Color Image Segmentation
with SOCNet algorithm

Philippe Biela Enberg (1) (2); Jack-Gérard Postaire (2)

(1) ERASM - HEI
13 rue de Toul

59046 Lille Cedex - France
Philippe.Biela@hei.fr

(2) LAGIS - UMR CNRS 8146

Université des Sciences et Technologies de Lille
59655 Villeneuve d'Asq – France

Jack-Gerard.Postaire@univ-lille1.fr

Abstract - In this paper we present a neural
network algorithm for color image
segmentation. We use for image segmentation
some recent results from research in the field of
unsupervised classification of multidimensional
observations with self-organizing circular
networks (SOCNet). The segmentation is
performed thanks to a set of networks trained in
parallel, using a competitive strategy based on
unsupervised learning rules. The learning data
set is composed of the color pixels of the image.
At the end of the learning phase, each network
represents a specific cluster of pixels scattered in
the RGB color data space. A quantization task,
which consists of a classification procedure, is
used to replace the color of each pixel in the
image by an equivalent color extracted from the
closest network.

I. INTRODUCTION

Segmentation is an important stage in artificial
vision system, which includes region detection by
texture and color labeling. The segmentation
operation will produce a simplified image
containing labeled regions with similar attributes;
the new image can provide information to higher
vision modules tasks to allow an easier description
of the scene. Techniques for segmentation are
commonly: pixel-based techniques, region-based
techniques, edge-based techniques and fuzzy or
neural network techniques. In this paper we purpose
a new approach for segmentation of color images
with neural network technique as Self-Organizing
Circular Networks.

II. Self-Organizing Circular Networks

Our method for segmentation of color images is
based on the use of competitive neural networks
with circular architecture [1].

The neural network and the learning procedure
are related to Kohonen's maps, which makes it
possible to adapt the structure of the map to the
density distribution of the observations presented
inside the space of representation thanks to the self-
organizing and convergence properties of
Kohonen's maps [2] [3]. These properties have been
especially studied with 1D dimensional structure
and have given important mathematical results for
self-organization and convergence properties and in
the same way with data distribution representation
capacities [4].

Figure (1) shows the architecture of such a Self
Organizing Circular Network (SOCNet) composed
of K neurons arranged as a closed chain, so that
each unit is attached to its two contiguous
neighbors. The chain consists then in K neurons
units denoted Nk , k = 1, .., K. Each neuron is
associated with a weight vector Wk , k = 1, .., K
which corresponds to the position of the neuron
inside the data space observation. It means that
weight vectors and data observations have the same
dimension D. We denote X = [x1, x2, …, xd, …, xD]T
the vector for data observation and consider that the
data set sample is constituted by N observations X
as χ ={X1,…Xn,…XN }.

mailto:Philippe.Biela@hei.fr
mailto:Jack-Gerard.Postaire@univ-lille1.fr

Figure 1: Self Organizing Circular Network

architecture (SOCNet)

It means that all attributes xd are valued by
weight wkd before being computed by an activation
function F(.) for each neurone Nk. This function is
the same for every neurone and consists in
computing the Euclidean distance between the
position of the data X and the neurone Nk indicated
by its weight vector Wk inside the data space
observation. The result is present in output Ok of
neurone Nk.

We use a classical learning rule as LVQ [5] to
adapt the neurones in the observation data space
according to the density distribution of the data.
This procedure will adapt the weights of the
neurones in such a way that positions of the
neurones become close to the positions of parts of
the space where density distribution of the data is
the more important. At the end of the learning
procedure the shape of the neural architecture
shows a one dimensional structure which curves
among the data in such a way that neighboring
neurones by their index (k) inside the SOCNet
correspond to the data which are relatively close
each one the other by their positions inside the data
space representation.

The algorithm uses in a parallel way a few
identical SOCNets designed as S r , r = 1, 2, …, R.
Each one of these networks will indicate a cluster of
homogeneous data inside the data space
observation. The number of SOCNets used will
correspond to the number of clusters searched. In
case of applications in the field of color image
segmentation, the number of clusters searched is
often chosen in an emperical way in connection
with the nature of the images.

The learning procedure for SOCNets is
composed of two levels: one concerns adaptation of
networks in global position, while the second level
concern local adaptation of neurons inside each
SOCNet. We present these two levels with spots to
underline their complementarities in clustering
process for data samples.
The global step level is based on an iterative
adaptative process. At each duration step (t), an
observation X(t) is selected among the sample data
set and presented simultaneously to all

SOCNets. Then, Euclidean distance (Eq. 1)

is computed for every neuron from any SOCNet S

χ

)(tdEr
k

2

)

Tr
kD tw

)(

)

r

 r.
The output of neurone Nk

r is updated with the result
of the distance computed between the position of
neurone Nk

r given by Wk
r and the data X(t).

)(WtX −

r
jw)

kdE

1
()()(∑

=

 −=

D

d

r
kdd

r
k twtxtdE (1)

with:
X(t) = [x1(t), …, xd(t), …, xD(t)]T

r
kd

r
k

r
k twtwtW

=),..,(),..,()(1

A Mahalanobis distance between the

data X(t) and the global position of the SOCNet S

(tdM r

 r
is simultaneously computed for each SOCNet.
Equation (2) gives details for distance dM where

r W represents the average position of the SOCNet

and represents the covariance matrix for

neurones positions inside SOCNet S

r
Σ

 r.

2/12/

1

)]([)2(

)()()()(
2
1

exp

)(

t

tttWtX

tdM

r D

rrTr

r

Σπ

 Σ

 −−

=

−

(2)

with:

K

tW
tW

K

k

r
k

r
∑
== 1

)(
)(

∑
=

−−=σ
K

k

r
kj

r
i

r
ki

r
ij www

1

2)((

As we dispose of Euclidean and

Mahalanobis distances, we determine which

neurone and which SOCNet are respectively closest
from the selected data X(t). The best matching
neurone and the best matching network are
respectively designed as "winner neuron" and
"winner SOCNet". At this time we mark the winner

neuron: where indexes ko and r1 design

respectively the winner neurone and the SOCNet
which contains it.

r

r dM

1r
ko

N

We mark the winner SOCNet with index as

R
2r

 r2, which is the closest from the selected data with
Mahalanobis distance.

Thanks to distances and , we

develop a competitive strategy among neurons and
SOCNets when the networks marked by index

and are the same. It means that the closer

network to the observation contains

also the closest neuron to the observation

.

)(tdM r

1r
ko

N

)(tdE r
k

)(t

1r

Xn

2r

S 2r Xn

)(t

We note that otherwise, if the networks and

are different, the procedure will not continue
the current adaptation but will restart with a new
randomly chosen observation . The step time
iteration (t) is not incremented in this case.

1r S
2r S

)(tX m

The adaptation of the network (with =

=) will be done for the neurons placed in the

neighborhood of the winner neuron with a

traditional competitive learning scheme as LVQ,
then the closest neuron and its neighbors inside the
SOCNet will be adapted. Nevertheless, all the
neighbors of the winner are not updated in the same
way. This competitive rule among the neurons

inside the SOCNet makes it possible to
distribute the neurons in an effective way in the
local data space set by each cluster as each spare
units will be ready to learn some future new input
vectors.

0r S

N

or

1r 2r
0r

ko

0r S

The learning algorithm is based on the weights
updating rule as defined in equation (3) :

())(,

)()()()()1(

tvk VNfor

tWtXttWtW

A
r

k

r
kn

r
k

r
k

∈

 −α+=+

 (3)

The adjustable parameters are the learning rate
and the adaptation neighborhood sizeV . To

increase the learning phase procedure inside each
network we also use a Rival Penalty Strategy. L.
Xu has used this rule for the purpose of
multidimensional data classification with Radial
Basis Functions (RBF) neural networks [6]. In its
first presentation, the mechanism of this adaptation
was to move the weights of the winner in the
direction given by the position of the observation
X(t) and also to repulse in opposite direction, the
position of the rival neurone which corresponds to
the second closer neuron from the position of the
observation X (t). For that purpose we define the

winner SOCNet and the rival SOCNet as for

the winner and to the rival. First we look at

which SOCNet as contains the

"second" closer neuron

from the selected

observation . The distance used here for the
rival penalty strategy is the Euclidean distance.
When the procedure has finished to determine the
second closest neuron (marked with index) to

the rival network (marked with index), the

neuron and its neighborhood inside a rival

topologic neighboring are pushed away from the
observation vector .

)(tα)(tA

0r S

/
0k

/
0r

)

)(t

/
0r S

r S

)t

X

 ,

)(
/

0

k

t
r

k

oα

)(0rr ≠
r

kN

)() tXn

)(tR

o

(Xn

)(t

=

 V

W

R

/
0
/
0

r

k
N

∈

)1

/
0

)(t

−

)(/ t

n

0r

t

/

(t

β

Equation (4) gives the rule of Rival Penalty
Strategy. The rule is controlled by parameters as
repulse rate β and rival neighboring V . (R

−β+(0
/

0

Nfor

WtW

r
k

r
k

r
k

(4)

When we use a large adaptation neighboring

 and rival neighboring V at beginning of
adaptation process, we allow the weights of the
neurones to globally take almost the same value,
forcing the neurones of the SOCNet to take place at
a local average position, which tends to mark the
center of one of the clusters inside the data space
observation. In the same way, with a large
neighboring for rival penalty, we can share and
distribute the SOCNets to some parts of the data
space occupied by homogeneous and consistent
clusters.

)(tVA

We gave some relative important initial values
to the parameters et , considering that we
need to strongly organize the SOCNets in the
beginning of the adaptation and rival penalty
procedures to give each one a global position and
shape which correctly reflect the distribution of the
data inside the observation data space.

III. SOCNet Algorithm: application to
segmentation of color images

We present here some results obtained in the

field of color images segmentation. We use Lena's
image in 24 bit true color BMP format. The size of
selected image is 256 rows by 256 lines. The data
set sample concerns in each case pixels from
images: each step time (t) a pixel is the selected

from the image in a random way. The attributes of
the data are the color values of the selected pixel.
As we work with BMP image file format it means
that we select the (r, g, b) values as data attributes.
Each attribute takes its value in the range [0 …
255]. The number of final colors inside the
segmented image result is defined by the user and
set to R in the general case. We show the results on
reference image for different values of R: (4,5,6,7).
The pixels are assigned to the different clusters
according their distances compared to the networks
representative of each cluster.

We seek the nearest neuron for each pixel of the
image tested. The network to which this neuron
belongs indicates the cluster to which the pixel
observation considered is assigned.
One modifies then the initial color of the pixel by
giving to it the color representative of the cluster,
determined by the average position of the SOCNet
in space color as defined by equation (2) to r W .

We present the results for image "Lena" (figure
2) given by the SOCNet algorithm, which have
been tested with 4, 5, 6 and 7 SOCNets: we obtain
respectively images with 4, 5, 6 and 7 final colors
(figures 3 to 6). The parameters used for the
experiments have been tuned as follow:

Figure 2: Image « Lena »: 256x256 pixels RGB

The different parameters for SOCNet algorithm

have been set as follows:

- Number of neurones per SOCNet K = 120
- Maximum number of iterations Tmax = 20.000
- Initial neighboring adaptation size V = 60 oA

- Initial neighboring repulsive adapt. size = 60 oRV
- Initial value of gain for adaptation = 0.5 oα
- Initial value of gain for repulsion oβ = 0.001

Experimentation has shown that the value for
parameters is not crucial for the segmented image
result.

Figure 3: 4 SOCNets ; 120 neurones / SOCNet

Figure 4: 5 SOCNets ; 120 neurones / SOCNet

Figure 5: 6 SOCNets ; 120 neurones / SOCNet

Figure 6 : 7 SOCNets ; 120 neurones / SOCNet

We do comparison of segmentation image

results by SOCNets with another method as K-
means. Results are given in table (1), we give for
each case evaluation parameters as number of
colors (R) inside segmented image which
corresponds with the number of SOCNets, number
of regions inside segmented image (R(I)) and
global mean square error (MSE).

 Kmeans SOCNets Kmeans SOCNets
Image Fig. 3 Fig. 3 Fig. 4 Fig. 4

 R 4 4 5 5
MSE 435 228 387 186
R(I) 784 1002 1201 907

Table 1 : Evaluation for segmentation results of the
"Lena" image of figure (2)

Conclusion

In this article we have presented an application
of the SOCNets to segmentation task for color
images. The SOCNet method which usually is used
for clustering problems with multidimensional data
show that they are particularly well adapted to the
segmentation of color images.

We have seen how efficient it could be to
compute few neural networks as the SOCNets in a
parallel way to carry out an unsupervised
classification task, here dedicated to a segmentation
color images.

The joint use of different nature as Euclidean
and Mahalanobis distances and calling upon
antagonistic adaptive mechanisms, make it possible
to make evolve simultaneously and in parallel to the
Self-Organizing Circular Networks. In the end of

the training period each network will reveal clusters
of pixels with homogeneous characters in color data
space representation.

References

[1] P. Biela Enberg, D. Hamad, J.-G. Postaire.
"Unsupervised Data Classification with Neural
Elastic Networks and Genetic Algorithms"
MENDEL 98 4th Int. Mendel Conference, Brno, pp.
249-254, 24-26 June 1998.

[4] C. Bouton, G. Pagès, "Convergence in
distribution of the one-dimensional Kohonen
algorithm when the stimuliare not uniform"
Advanced in Applied Probability, 26,1,March 1994.

 [2] T. Kohonen. "A simple paradigm for the self-
organized formation of structured maps", Lecture
notes in biomathematics, S. Amari and M.A. Arbib,
Eds, Berlin: Spinger-Verlag, pp. 248-266, 1982.

[3] T. Kohonen, K. Makisara, O. Simula. "Self-
organizing maps: Optimization approach", in
Artificial Neural Networks, Elseiver Science, New-
York, pp. 981-990, 1991.

[5] T. Kohonen, "Self-Organizing maps" , 3rd
Edition Spinger-Verlag Berlin Heidelberg New
York, 2001.

[6] L. Xu, A. Krzyzak, E. Oja. "Rival Penalized
competitive learning for clustering analysis, RBF
net, and curve detection", IEEE Trans. On Patt.
Analysis and Machine Intell., vol. PAMI-4, pp.
636-649, 1993.

 Kmeans SOCNets Kmeans SOCNets
Image Fig. 5 Fig. 5 Fig. 6 Fig. 6

R 6 6 7 7
MSE 331 181 271 155
R(I) 1075 1303 1216 1788

	I. Introduction
	II. Self-Organizing Circular Networks
	III. SOCNet Algorithm: application to segmentation of color images
	Kmeans
	
	
	
	SOCNets

	Kmeans
	
	
	
	
	SOCNets
	Fig. 3
	Fig. 4

	Kmeans
	
	
	
	
	SOCNets

	Kmeans
	
	
	
	SOCNets

