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Abstract- The emission of dioxins from waste incinerators 
is one of the most important environmental problems 
today. It is known that optimization of waste incinerator 
controllers is a very difficult problem due to the complex 
nature of the dynamic environment within the incinerator. 
In this paper, we propose applying recurrent neural 
networks to predict waste incinerator emission. We show 
that recurrent neural networks can project the emission of 
dioxins with a fair degree of accuracy 
 

I. Introduction 
 
  Dioxyne emission from waste incinerator plants is one of 
the hottest ecological problems today. In waste incinerator 
plants, the chemical reactions in the incinerator occur under a 
very dynamic environment, making its control a very 
complex task, and current state-of-the-art incinerator facilities 
have not succeeded in completely removing the dioxyne 
emission. The volume, density and contents of the garbage to 
be incinerated are not constant, so it is impossible to control 
the combustion as in a laboratory environment. One of the 
causes of dioxyne emission in waste incinerator plants is due 
to the fluctuations in the amount of garbage fed in the 
incinerator. The fluctuation in garbage fed leads to temporary 
deterioration of the combustion state (i.e. oxygen rate), and 
short peaks of dioxyne emission occur. 

There has been past research in intelligent estimation of 
dioxyne emission from waste incinerators. Fujiyoshi et al [1] 
has proposed applying fuzzy control to incinerator control to 
decrease the dioxyne emission. Ichihashi et. al [4] has applied 
statistical analysis to calculate the correlation of various input 
signals with dioxyne emissions. Fukushima [5] has proposed 
applying fractal fuzzy control in order to estimate and control 
dioxyne emission. 
  For this research, we investigate methods applying 
recurrent neural networks for the prediction of dioxyne 
emission to be used for the combustion control in order to 
decrease the dioxyne emission. Recurrent neural network 
structure was selected for the ability of recurrent networks in 
finding patterns in sequential data. Our aim is to compare 
emission prediction accuracy of the black-box method using 
neural networks against the results of previous statistical 
methods and fuzzy decision methods. 
 

 
II. Training requirements for waste 

incinerators 
 
  For this research, we used real waste incinerator data 
provided by Hitachi Zosen Corporation. Fluidized bed 
incinerator data from the Ryotsu City Clean Center in Niigata 
prefecture, Japan, was used. Figure 1 shows the schematic 
diagram of the fluidized bed waste incinerator. 
  The data consists of the following sensor values measuring 
various conditions of the incinerator. Flapper angle(0 ～
100.00%), oxygen concentration in incinerator exit (0～
25.000%), garbage rate(t/H), incinerator temperature(0 ～
1200.0�), carbon monoxide concentration(0～ 500.0ppm), 
incinerator pressure(-2000.0 ～ 1000.0ppm), cooling liquid 
rate(0～1.0000m3/h), conveyer belt speed(0～ 7.000rpm), 
primary air supply(0～7.500KNm3/h), secondary air supply 
base(0～7.500Nm3/h), secondary air supply modification(0～
7.500KNm3/h). 

The flapper is lifted as garbage is carried by the conveyer 
belt, and the flapper angle is used as the measure of garbage 
volume. The above sensor data was collected in 
approximately 2 second intervals. 
  It is known that CO (carbon monoxide) concentration over 
100ppm show strong correlation with dioxyne concentration. 
For this research, we use the CO concentration as the target 
output, and aim to reduce the average CO concentration as 
well as to reduce the number of CO concentration peaks over 
100ppm. 
  From the collected data, it can be observed that when the 
flapper angle (garbage volume) increases, after a time delay 
the oxygen concentration decreases, and after further time 
delay the carbon monoxide concentration increases. This can 
be explained by the following. The increased garbage 
measured by the flapper takes some time before arriving at 
the incinerator. The increased garbage in the incinerator 
increases the combustion and consumes more oxygen, which 
lowers the oxygen concentration. The temporarily decreased 
oxygen concentration deteriorates the combustion state and a 
peak in carbon monoxide occurs due to imperfect combustion. 
Since the carbon monoxide sensor is placed at the incinerator 
emission, the peak in carbon monoxide concentration is 
displayed after a further time delay. 

From the above observation, for this paper we especially 



concentrate on flapper angle and oxygen concentration as 
input for predicting CO output. 

 
III. Incinerator control using 
recurrent neural networks 

 
  For each of the different types of incinerator sensor data, 
there is an apparent correlation just described, but direct 
correlation between the sensor data and carbon monoxide 
concentration is not very strong. This is because the 
environment in the incinerator is a complex dynamic 
environment in which the different items are dependent on 
each other, and is not a simple dependency relationship. 
  Artificial neural networks can be characterized by its 
"black box" approach to learn and classify complex data 
patterns. For this research, we propose applying recurrent 
neural networks (RNN) in incinerator emission prediction, 
using the RNN to learn the complex relationship between 
incinerator sensor data. Recurrent neural networks are known 
to classify time series data efficiently, using the feedback 
network connection to reference past series data. 
  For the neural network structure, we considered the 
recurrent network proposed by Jordan[2] and Elman[3]. 
Figure 2 shows the structure comparison of Jordan and Elman 
networks. Both network structures were compared using 3 
layer network (1 input layer, 1 hidden layer, 1 output layer) 
using BP (backward propagation) training. From preliminary 
experiments we found that the Elman network produced 
higher accuracy, and for further experiments we used the 
Elman recurrent neural network structure. 

The proposed incinerator emission prediction network is 
part of a larger incinerator controller system plan. The 
incinerator controller system using artificial neural networks 
is divided into 2 sections, the dioxyne prediction section and 
the combustion controller section. Each section uses 
independently trained neural networks. The dioxyne 
prediction network uses incinerator sensor input and predicts 
the carbon monoxide (hence dioxyne) emission rate before 
the actual emission occurs. The combustion controller 
network uses input from the dioxyne prediction network as 
well as incinerator sensors, and outputs incinerator control 
values which will decrease the carbon monoxide emission. 
  For this paper, we will propose methods applying recurrent 
neural networks to construct the dioxyne prediction network. 
We will discuss the combustion controller network in future 
works. 
 

IV. Dioxyne prediction network 
 
  For the dioxyne prediction network, we considered the 3 
layer Elman recurrent neural network with BP (back 
propagation) training. 
  For the network input data, we use all of the sensor data 
except carbon monoxide concentration values, and the single 
output of the network is used to predict the correct carbon 
monoxide concentration. 

For the network training we use the database of incinerator 
sensor data collected, and apply BP training based on the 

difference between predicted carbon monoxide concentration 
and the actual carbon monoxide concentration recorded for 
the same time frame. 
  As a preliminary experiment, we constructed a neural 
network taking all of the sensor values except carbon 
monoxide values as input data, and trained the network to 
output carbon monoxide values directly. 
 
Figure 3 shows the training results of the preliminary 
experiment. From the results of the preliminary experiment, 
we found that the prediction accuracy is completely different 
between normal range carbon monoxide values, and high 
carbon monoxide values. The network learned to accurately 
predict normal range carbon monoxide values fairly quickly, 
but the same network failed to learn abnormal (high) range 
carbon monoxide values during the same training period. 
When network training was continued in order to increase the 
abnormal range carbon monoxide prediction, this time the 
accuracy of normal range carbon monoxide prediction 
deteriorated. This finding confirms our initial estimate that it 
would be difficult to train the neural network due to the 
complexity (if any) of the correlation between carbon 
monoxide concentration and each of the other sensor values. 
  For this reason, we decided to focus on detection of 
abnormally high carbon monoxide emission (>100ppm) as the 
preliminary goal of the dioxyne prediction network. 

The network output was changed from direct carbon 
monoxide concentration prediction value, to binary output 
where 1 predicts high carbon monoxide concentration 
(>100ppm) and 0 predicts normal carbon monoxide 
concentration (<= 100ppm). 
  As for the neural network input, we considered the 
possibility that the large number of input nodes increases the 
problem domain and complicates the classification, causing 
an adverse affect on the network training efficiency. With this 
assumption, we decided to minimize the number of input 
nodes in order to first achieve a workable learning curve and 
prediction accuracy. 

As mentioned before, is can be noted that oxygen 
concentration, flapper angle and carbon monoxide 
concentration are related, from the similar changes seen 
sequential data. Based on this assumption, for the initial 
model we use only flapper angle and oxygen concentration 
data as neural network input. Further, we assume that flapper 
angle, oxygen concentration and carbon monoxide 
concentration each show a particular time delay in their 
relationship. For this reason, in order to predict the carbon 
monoxide value for a given instance, the flapper angle and 
oxygen values must take into account the time delay. Data at 
some fixed time frame previous to the given instance should 
be used as the input data. The recurrent network structure 
could be used to automatically treat such time sequence data 
effectively, but for the initial model, we map sequential data 
of flapper angle and oxygen concentration of specified time 
delay to individual input nodes to the network. Specifically, 
we used 60 second delay for flapper angle (t-60) and 30 
second delay for oxygen data (t-30), to predict the emission 
for time t. 



 
V. Experiment results 

 
  In order to confirm the effectiveness of the proposed 
dioxyne prediction network, we trained the proposed 
recurrent neural network using BP and compared the 
prediction accuracy. A standard sigmoid function was used as 
the neuron's base synapse function. The number of neurons 
used in each layer was 3 input neurons (2 inputs and 1 fixed 
input), 6 hidden layer neurons, and 1 output neuron. For 
recurrent training we considered 5 recurrent cycles (past 5 
data) to be used for BP training. 
  For the training data, 100 cases of normal range carbon 
monoxide data and 100 cases of abnormal (>100ppm) carbon 
monoxide data, for a total of 200 cases were randomly 
selected from the incinerator sensor database. For the 
untrained data used to plot the training curve of network 
accuracy, 100 cases of normal range carbon monoxide data 
and 100 cases of abnormal range (>100ppm) carbon 
monoxide data, for a total of 200 cases were randomly 
selected from the incinerator sensor database. 
  Figure 4 shows the change in output error for the untrained 
dataset of the proposed neural network. The output error for 
normal range carbon monoxide values, output error for 
abnormal range (>100ppm) carbon monoxide values, and 
total output error is graphed. 

Figure 5 is the graph of prediction accuracy for the same 
training results as Figure 4. The prediction accuracy shown 
here is the rate the network correctly predicted either normal 
or abnormal output. Here, output < 0.5 for normal carbon 
monoxide cases and output > 0.5 for abnormal carbon 
monoxide cases were considered as correct prediction. The 
prediction accuracy for normal range carbon monoxide values, 
prediction accuracy for abnormal range (>100ppm) carbon 
monoxide values, and total prediction accuracy is graphed.  
 

VI. Conclusion 
 
  The final prediction accuracy shown in Figure 5 was 0.83 

for total prediction accuracy, 0.78 for normal range carbon 
monoxide values, and 0.89 for abnormal range carbon 
monoxide values. As was seen in the preliminary experiment, 
when the network is trained to increase the abnormal range 
output prediction, the normal range output prediction in turn 
decreased. But for this current proposed model the aim was to 
achieve workable prediction accuracy, and in this light we 
believe we achieved the goal. Further, as the original aim of 
the proposed dioxyne prediction network is to predict the 
occurrence of abnormal carbon monoxide emission (hence 
dioxyne emission), we believe it is acceptable to put priority 
over accuracy of abnormal range carbon monoxide output 
compared to accuracy of normal range carbon monoxide 
output. 
  For future works, we will consider methods to improve 
prediction accuracy, including the increase in the types of 
sensor input data, reevaluation of neural network structure 
(including using fuzzy rules to treat input data), as well as 
effect of using different base synapse functions for neurons.  
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Figure 1. Schematic diagram of Fluidized Bed Incinerator 
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Figure 2. Comparison of recurrent network structures 
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Figure 3. Preliminary experiment results of prediction error for untrained data 
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Figure 4. Prediction error of untrained data using proposed method 
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Figure 5. Prediction accuracy of untrained data using proposed method 


