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Abstract— This paper discusses saliency-based scene learning
and recognition in which objects in attended spots are quickly
learned and recognized based on the competitively growing
neural network using temporal coding. This neural network
represents objects using latency-based temporal coding and grows
size and recognizability through learning and self-organization.
Through simulation experiments of a robot equipped with a
camera, it is shown that quick self-organized learning and glance
recognition of objects in scenes are well performed by our model.

I. I NTRODUCTION

A human can learn scenes in almost one shot and also
recognize them at a glance. In these processes, spatially
circumscribed regions of the visual field are selected based on
saliency-based attention as well as volition-controlled attention
before further processing. The former is rapid, bottom-up and
task-independent attention and the latter is slow, top-down
and task-dependent attention [3] [4]. These small regions are
highly processed through the cortical visual hierarchy, and as a
result scene memory is considered to be composed of attended
objects, complexes of objects and their spatial relation from
the egocentric point of view.

In this paper, we discuss saliency-based scene learning and
recognition in which objects in attended spots are quickly
learned and recognized based on the competitively growing
neural network using temporal coding [5], which is named
the COGNET (COmpetitively Growing NEural network using
Temporal coding). In learning and recognition, objects in
attended spots are sequentially encoded to be invariant with
respect to position and size by this network and their positions
and sizes are encoded simultaneously [6]. In this network,
objects are internally represented using latency-based temporal
coding. This network enables fast self-organized learning
of objects based on recruiting neurons and similarity-based
sorting of neurons and quick glance recognition of objects
based on the latency-based temporal coding.

This paper is organized as follows. In section II, a model of
saliency-based scene memory is outlined, and then in section
III, the COGNET is described in detail. In section IV, learning
and recognition performance of objects and scenes, especially
quick self-organized learning and glance recognition perfor-
mance of objects in scenes, are evaluated through simulation
experiments of a robot equipped with a camera.

II. A M ODEL OF SCENE MEMORY

A model of saliency-based scene memory is shown in
Figure 1. In the retina of primates, early visual features
such as contrast, its shift and opponent colors are processed
before further “what” and “where” visual processing. Also it
is reported that the parietal and frontal cortices, the pulvinar
nuclei of the thalamus and the superior colliculus are involved
in visual attention [7]. In the first phase of our model, contrast
and opponent color channels of red, green, blue and yellow
are computed at each pixel of a scene image [4]. Then the
saliency map is produced to represent saliency at every pixel
of the image by combining its contrast and opponent color
channels [2]. Next, connected object regions are segmented
using a grow-and-merge method on the saliency map and their
bounding boxes are extracted as attended spots. Three or less
attended spots are extracted.
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Fig. 1. A model of saliency-based scene memory

In the second phase of our model, attended spots are
processed in the order of decreasing saliency at a certain
interval. This interval of time corresponds to an interval at
which the focus of attention jumps from one attended spot
to the next. In this phase, an object in each attended spot is
encoded to be invariant with respect to position and size by
the COGNET, and the position and the size of the attended
spot are encoded at the same time. These correspond to visual
processing in the ventral or “what” visual pathway and the
dorsal or “where” visual pathway respectively.

The COGNET consists of the input window layer and the



recognition map layer. The input window layer consists of
lw× lw×5 neurons that receive normalized values of contrast
and four opponent colors atlw × lw sections in height and
width on an attended spot. The recognition map layer is a
competitively growing layer where neurons can be arranged
in a two-dimensional lattice. An object in an attended spot is
encoded by the winner neuron in the recognition map layer.
The input window layer and the recognition map layer have
the entire reciprocal connection by feedforward and recurrent
synapses. In this network, it is possible to recognize an object
in an attended spot when it is given to neurons in the input
window layer, and it is also possible to recall a mental image
of an object when a neuron in the recognition map layer is
stimulated. Meanwhile, the position of an object is expressed
by the center coordinate of its bounding attended spot in the
egocentric coordinate system whose origin is the center of a
scene image. The size of an object is expressed by the size
quotientq = ls

lw
wherels is the larger of height and width of

the attended spot. The size quotient represents relative distance
of the same object in different views or relative size of different
objects in a view.

Finally, consecutive processing results of attended spots in
a scene are bound together and a scene memory is given by
a set of triplets each of which consists of the winner neuron,
the center coordinate and the size quotient obtained for each
attended spot in the scene. We call this triplet an attended spot
code and a set of triplets a scene code.

III. C OMPETITIVELY GROWING NEURAL NETWORK

USING TEMPORAL CODING

A. Latency-based Temporal Coding

In neural network models, information is internally rep-
resented in the form of a rate code or a temporal code.
In Kohonen’s self-organizing map [10] as a representative
competitive neural network, rate coding is in general used
though self-organizing maps of spiking neurons using temporal
coding is also proposed [1]. Several temporal coding schemes
have been proposed [9] [11]. In the COGNET, latency from
trigger such as pulse transmission or stimulation to a neuron
until firing is used as a temporal code to encode information.

Each neuron in the input window layer converts an input
value into a latent period so that the larger the input value is,
the shorter the latent period is. As a result, a spatial pattern
of input strength that codes an object is converted into a
spatiotemporal pattern of pulse transmission, and the object
is internally represented by this pattern. A neuron in the input
window layer is formulated as follows. When an external
excitatory input or recurrent pulse transmission is given to
a neuronni at time t, membrane potentialpi(t) of ni is
computed by

pi(t) =
∑

j

(wR
ij × δij(t)) + exti(t)− ipi(t) (1)

wherewR
ij is recurrent synaptic efficacy from a neuronnj in

the recognition map layer,δij(t) is a function which takes
the value 1 if a pulse is transmitted from a neuronnj at

time t and 0 otherwise,exti(t) is an external excitatory input,
and ipi(t) is an inhibitory input. The output functionoi(p)
of the neuronni returns latency until firing as a function of
membrane potentialp whenp ≥ 0 and is given by

oi(p) = λ×max(1− p, 0) (2)

whereλ is a constant called the validity term of latency and
takes the value 255. According to these formulas, the neuron
ni fires at timet+oi(p) so long as there is no strong inhibition.

In neurons in the recognition map layer, membrane potential
is computed based on a spatiotemporal pattern of pulse arrival,
that is, a pattern of latency from pulse arrival until the
competition time. For a neuronni in the recognition map layer,
membrane potentialpi(t) at time t is computed by

pi(t) =
∑

j

epij(t) + exti(t)− ipi(t) (3)

epij(t) = wF
ij ×

kpij(t)
NP

i (t)
(4)

where exti(t) is an external excitatory input,ipi(t) is an
inhibitory input, wF

ij is feedforward synaptic efficacy from
a neuronnj in the input window layer,kpij(t) is a kernel
function, andNP

i (t) is a normalization function. These two
functions are given by

kpij(t) =
{

t− taij · · · 0 ≤ t− taij ≤ λ
0 · · · otherwise

(5)

NP
i (t) =

√∑

j

kpij(t)2 (6)

where taij is a recent time of pulse arrival from a neuron
nj in the input window layer andλ is the validity term of
latency. Thekpij(t) encodes latency from pulse arrival. Firing
in the recognition map layer is determined through competition
among neurons using{pi(tc)} at a competition timetc.

B. Outline of Neural Dynamics with Growth

Neural dynamics in learning and recognition of objects is
controlled by a discrete-time clock as illustrated in Figure 2
and outlined as follow:

1) firings of neurons in the input window layer caused by
an external input oflw× lw×5 values sampled from an
attended spot,

2) transmission of pulses to the recognition map layer and
control of the competition time by the pre-competition
inhibition imposed on neurons in the recognition map
layer,

3) competitive firing of neurons in the recognition map
layer at the competition time, which involves recruitment
of a new neuron, modulation of feedforward synaptic
efficiency and self-organization of neurons at learning,

4) transmission of pulses to the input window layer and
control of firing by the post-competition inhibition im-
posed on neurons in the input window layer,



5) a repetitive external input, which involves modulation of
recurrent synaptic efficiency at learning,

6) and repetition of these processes from1) to 4) with no
learning, in which if winner neurons in two repetitions
are the same, it is judged to be a neuron that encodes
the external input.
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Fig. 2. An outline of neural dynamics in which an external input is inputted to
the input window layer two times at a specified interval. Learning is performed
only in the first repetition but not in the second repetition.

C. Competition with Recruitment

For the first external input, neurons in the input window
layer fire with latent periods in[0, λ] which are computed
by the formulas (1) (2) whose inhibitory input is set to 0.
This firing is transmitted to the recognition map layer. In the
recognition map layer, the pre-competition inhibition continues
in default for a period ofλ and controls firing timing of
neurons, that is, the competition time. Membrane potentials
of all neurons at the competition time are computed using
a spatiotemporal pattern of pulse arrival according to the
formulas (3) (4) (5) (6). If the maximum membrane potential
of them is above a threshold, that is called the threshold of
discrimination, a neuron that takes the maximum membrane
potential is selected as the winner neuron. Otherwise, a new
neuron is recruited as the winner neuron, whose synaptic
efficacy is initialized so that it takes the maximum membrane
potential to the spatiotemporal pattern of pulse arrival.

Supposetaij to be a pulse arrival time from a neuronnj

in the input window layer to a recruit neuronni and tc be a
competition time. Then, feedforward synaptic efficiencywF

ij

from nj to ni and recurrent synaptic efficiencywR
ji from ni

to nj are chosen by

wF
ij =

kpij(tc)
NP

i (tc)
(7)

wR
ji =

kpij(tc)
λ

(8)

where

kpij(t) =
{

t− taij · · · 0 ≤ t− taij ≤ λ
0 · · · otherwise

(9)

NP
i (t) =

√∑

j

kpij(t)2 (10)

and λ is the validity term of latency. According to these
formulas and (3) (4) (5) (6), membrane potential of the recruit
neuron is 1. Since the maximum membrane potential is 1 when
there is no external input, it is clear that the recruit neuron
becomes the winner neuron.

The winner neuron fires at the competition timetc. Let ns

be the winner neuron. Then every neuronnk whose membrane
potential is above a thresholdη is selected as a neighbor
neuron ofns and fires with a lag proportional to difference of
membrane potential betweennk and ns. That is,nk fires at
tc + lag(ns, nk, tc) which is given by

lag(ns, nk, tc) = γ × (ps(tc)− pk(tc)) (11)

whereη is called the threshold of neighborhood andγ is called
the constant of firing lag at competition.

D. Self-organized Learning

The winner neuron and its neighbor neurons modulate their
synaptic efficacy just after firing so that they may become
easy to fire for the same pattern of pulse arrival. That is,
synaptic modulation is performed for the winner neuron so
as to memorize an object that is encoded by the pulse pattern,
and for neighbor neurons so as to bring their memory close
to the one of the winner neuron. Synaptic efficacywF

sj of the
winner neuronns is modulated according to the following rule
at the competition timetc:

wF
sj ←

wF
sj + ∆wF

sj

NW
s

(12)

where

∆wF
sj = α× (

kpsj(tc)
NP

s (tc)
− wF

sj) (13)

NW
s =

√∑

j

(wF
sj + ∆wF

sj)2. (14)

In these formulas,α is a modulation rate,kpsj(tc) andNP
s (tc)

are values given by (5) and (6) respectively, andNW
s is

a normalization factor. On the other hand, synaptic efficacy
wF

kj of each neighbor neuronnk whose firing laguk =
lag(ns, nk, tc) is modulated according to the following rule:

wF
kj ←

wF
kj + ∆wF

kj(uk)
NW

k

(15)

where

∆wF
kj(u) = α× (

kpkj(tc)
NP

k (tc)
− wF

kj)×G(u) (16)

NW
k =

√∑

j

(wF
kj + ∆wF

kj(uk))2. (17)

In these formulas,α, kpkj(tc), NP
k (tc) andNW

k are the same
as above, andG(u) is the Gaussian function which gives a
decrease rate of modulation due to the firing lag. Letσ be a



specified standard deviation of firing lags. ThenG(u) is given
by

G(u) = exp(− u2

2σ2
). (18)

In Kohonen’s self-organizing map [10], learning is per-
formed for the winner neuron and its topological neighbor
neurons on the arrangement lattice. Though this achieves
topology-preserving mapping, it takes a lot of time to form the
mapping because they are only near in topological distance.
In the COGNET, neighborhood learning is performed for
neurons near to the winner neuron in their patterns of synaptic
efficacy. Since this achieves fast learning but does not achieve
the topology preservation, the following sorting of neurons
in the recognition map layer is performed in descending
order of membrane potential of neighbor neurons to achieve
the topology preservation (Figure 3). Letns be the winner
neuron, nk be its neighbor neuron, and(ns.y, ns.x) and
(nk.y, nk.x) be their positions on a two-dimensional lattice.
Firstly, a quadrant in which the position(nk.y, nk.x) belongs
is obtained in the two dimensional lattice space whose origin
is the position(ns.y, ns.x). Then, for the Manhattan distance
dk from (ns.y, ns.x) to (nk.y, nk.x), a setL of lattice points
in the quadrant whose Manhattan distance from(ns.y, ns.x) is
shorter thandk is obtained as a set of candidate target points to
which the neighbor neuronnk may moves. Secondly, a target
point is selected inL according to the following conditions
that the point has the minimum Manhattan distance from
(ns.y, ns.x), and in addition it has the minimum Manhattan
distance from(nk.y, nk.x), and moreover it does not occupied
as a target point of a neighbor neuron whose membrane
potential is larger than the one ofnk. If such a target point
is found and it is not occupied by any neuron, the neighbor
neuronnk is moved to the point. Otherwise, after the neighbor
neuronnk is moved to the selected target point, each neuron on
the way from the target point toward(nk.y, nk.x) is permuted
with each next neuron one by one until a non-occupied point
appears.

Learning with recruitment and topology-preserving sort of
neurons enables fast learning of objects, fast self-organization
of memory structure of objects, and growth of the recognition
map layer caused by increase of objects to be stored.
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Fig. 3. An illustration of the topology-preserving sort. A halftone area
contains candidate target points to one of which a neighbor neuron moves. A
dark halftone area takes higher priority as target points than a light halftone
area. A thick arrow shows movement of a neighbor neuron. Thin arrows show
permutation of neurons for the topology preservation.

E. Reciprocal Learning

Firing of the winner neuron and its neighbor neurons is
transmitted to the input window layer. As shown in Figure 2,
excitation of neurons in the input window layer caused by
this transmission is counterbalanced by the post-competition
inhibition according to the formula (1). For the second external
input to neurons in the input window layer after the post-
competition inhibition, the neurons fire with the same latent
period as for the first input according to the formulas (1)(2).
Just after firing, synaptic efficacy of neurons in the input
window layer is modulated dependent on firing latency and the
distribution of recurrent pulse arrival time. Lett0 be the second
external input time. For a neuronnj in the input window
layer, let tj be the firing time,tajs be the pulse arrival time
from the winner neuronns, andtajk be the pulse arrival time
from a neighbor neuronnk in the recognition map layer. Then
synaptic efficacywR

ji from a neuronni, which isns or nk, to
nj is modulated as follows:

wR
ji ← wR

ji + ∆wR
ji (19)

where

∆wR
ji = α× (

λ− (tj − t0)
λ

− wR
ji)×G(taji − tajs). (20)

In this rule, α is a modulation rate,λ is the validity term
of latency, andG(u) is the Gaussian function which gives a
decrease rate of modulation due to the lag of pulse arrival
from ni against pulse arrival fromns. Let σ be a specified
standard deviation of firing lags. ThenG(u) is given by

G(u) =
{

exp(− u2

2σ2 ) · · · u ≥ 0
0 · · · u < 0

. (21)

According to this rule, each recurrent synaptic efficacywR
ji

is modulated to be similar with corresponding feedforward
synaptic efficacywF

ij , that is, wR
ji is modulated to be a

constant timeswF
ij . As a result, symmetrical synaptic efficacy

is acquired in reciprocal connection, which enables recall of
an object’s mental image when an external excitatory input is
given to a neuron in the recognition map layer [6].

F. Glance Recognition

It is possible for a human to recognize visual scenes and
objects at a glance. This glance recognition is considered to
be achieved based on quickly capturing partial information
that represents distinctive features of objects. In the COGNET,
this ability can be realized by shortening the length of the
pre-competition inhibition period at recognition, which is
in default set toλ. Then the winner neuron is selected at
the competition time brought forward by using only early
pulse arrivals. In this case, late pulse transmissions after
the competition time are suppressed by the post-competition
inhibition in the input window layer. In many cases correct
object recognition can be achieved based on only early pulse
arrivals because they encode large contrast or opponent color
values that capture distinctive features of objects. Moreover,
even in case only partial information of an object is carried



by early pulse arrivals under severe time constraint, the
whole information of the object can be restored from partial
information through reciprocal connection because the object
is encoded in both feedforward and recurrent synapses of a
winner neuron.

IV. EXPERIMENTAL RESULTS

A. A Testbed

To evaluate the self-organized learnability and the glance
recognizability of objects in scenes, simulation experiments of
a robot equipped with a color camera were conducted using the
simulation tool Webots [8]. Figure 4(a) shows an experimental
T-maze world. A robot slowly moves right-handed in the maze
not to bump against a wall based on the Braitenberg algorithm
using six infrared sensors, where two in the front and two
each on both sides. A robot captures scene images of64× 64
pixels in height and width and processes them about once a
second. Figure 4 shows an example of a saliency map in (b)
and attended spots in (c) computed on a scene image.
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Fig. 4. (a)An experimental world. A total of20 objects, where three each of
red, blue, green and yellow cylinders, two each of magenta and cyan cylinders,
and one each of red, blue, green and yellow cones, are arranged as landmarks.
(b)A saliency map. (c)Attended spots.

Main parameter values used in experiments are as follows.
The lw of the input window layer is12. In the recognition map
layer, no neuron is arranged initially but neurons are recruited
at learning. The threshold of discrimination is0.75 and the
threshold of neighborhood is0.5. The constant of firing lag at
competition is16. The modulation rate of synaptic efficacy is
0.1. The standard deviationσ of the Gaussian function is4.

B. Self-organized Learnability

As for self-organized learning, performance of one-shot ob-
ject learning and fast self-organization in the recognition map
layer were evaluated, and also invariant and discriminative
object learning performance and scene learning performance
were evaluated. In experiments, a robot moves one lap around
the maze while learning scenes, then moves another lap
while recognizing scenes and recording scene codes without
learning. After that, he/she repeatedly searches for a target
scene that is picked out every 25 codes from the recorded
scene code sequence.

Fig. 5(a) shows a series of concordance between attended
object images and winner neurons for them and a series
of the number of neurons as the number of attended spots
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Fig. 5. (a)One-shot learning performance. (b)Fast self-organization perfor-
mance.

increases at learning. The concordance is given by
∑

j(w
F
sj ×

extj)/
√∑

j(extj)2, where wF
sj is a feedforward synaptic

efficacy between the winner neurons and a neuronj in the
input window layer andextj is an input image element to the
neuronj. Since the concordance always takes high values that
are larger than the threshold of discrimination, which is due to
recruiting new neurons, we can conclude that attended objects
were learned quickly.

Fig. 5(b) shows series of the degree of self-organization
in the recognition map layer, the number of neighbors and
the number of neurons as the number of scenes increases at
learning. The degree of self-organization is obtained as the
Kendall’s rank correlation coefficient between the similarity
distance and the Manhattan distance for all neuron pairs on a
two-dimensional lattice. The similarity distance of each neuron
pair is calculated as the cosine of the angle between synaptic
efficacy vectors, which is defined by

∑
k(wF

ik × wF
jk) where

wF
ik and wF

jk are feedforward synaptic efficacy for a pair of
neuronsi andj. A dotted line in the figure shows the critical
value of a positive correlation at the significance level (right-
sided probability) of0.5%. We can observe that the degree
of self-organization is quickly recovered though it sometimes
falls when a neuron is recruited especially in the first stage. It
is also observed that significant and steady self-organization
is achieved as the number of neurons increases in response to
increase of the object variety.

Fig. 6 shows an example of object encoding in the recogni-
tion map layer and discriminative and invariant rates of object
recognition. The invariant rate indicates whether the same
object at different positions and sizes in scenes is encoded
to a neuron invariantly and the discriminative rate indicates
whether different objects are encoded to different neurons. In
addition to simple cylinders and cones, some complexes of
cylinders that have certain patterns of arrangement were also
extracted as attended objects. Almost every simple object and
complex of objects was encoded to a unique different neuron in
the recognition map layer. As for target scene search, all of five
searches succeeded in this example. By repeating experiments,
it was confirmed that invariant object recognition with respect
to position and size was achieved with a high probability as a



result of learning. Since target scene search succeeded almost
perfectly, it was also confirmed that positions and sizes of
objects were encoded suitably enough for scene recognition.
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Fig. 6. An example of discriminative and invariant object learning per-
formance. For each neuron, a class of objects is the one that occupies
the maximum number of objects encoded to it. The rate of discriminative
recognition means the ratio of the number of objects in the class to the number
of all objects encoded to the neuron. The rate of invariant recognition means
the ratio of the number of objects in the class encoded to the neuron to the
number of objects in the class encoded to all neurons. The lower right figures
show neuron arrangement in the recognition map layer and complex objects
encoded by R9, R10 and R12 respectively.

C. Glance Recognizability

In order to evaluate the glance recognizability using only
early pulse arrivals, it is tested whether recognition succeeds
for 147 object images that the robot paid attention on the maze
when the length of the pre-competition inhibition period is
shortened.

Figure 7(a) shows the mean, standard deviation and distri-
bution of the lower limit for success of the glance recognition
when the length of the pre-competition inhibition period is
gradually shortened. Figure 7(b) shows the mean, standard
deviation and distribution of the lower limit for success of
the glance recognition against the number of effective pulse
transmissions, that is pulse arrivals before the competition
time, which is decreased by shortening the length of the pre-
competition inhibition period. The mean of the lower limit
length of the pre-competition inhibition period for success
is 136.1, which is about half of the default length255 at
learning. Also the mean of the lower limit number of effective
pulse transmissions for success is69.0, which is9.6% of 720
that is the number of pulse transmissions in case the length
of the pre-competition inhibition period is255. Figure 8
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Fig. 7. The lower limit for success of the glance recognition. Data are
summed up every 8 interval.
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Fig. 8. The success rate of the glance recognition. Data are summed up
every 8 interval.

shows the success rate of the glance recognition for the length
of the pre-competition inhibition period and the number of
effective pulse transmissions. We can observe that a high
recognition success rate is achieved using only a small number
of early pulse arrivals by shortening the length of the pre-
competition inhibition period. These results conclude that the
glance recognition is achieved using only early pulse arrivals
by bringing the competition time forward.

V. CONCLUSIONS

We have discussed saliency-based scene learning and recog-
nition, especially the self-organized learnability and the glance
recognizability of objects in scenes by the COGNET. As
for learnability, it was confirmed that quick one-shot object
learning and fast self-organization of object memory structure
were performed, invariant object recognition with respect to
position and size was achieved and also positions and sizes of
objects were encoded suitably enough for scene recognition.
As for recognizability, it was confirmed that glance object
recognition was achieved using only early pulse arrivals which
encoded distinctive feature of objects.
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