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Abstract—This paper discusses saliency-based scene learning II. A M ODEL OF SCENE MEMORY

and recognition in which objects in attended spots are quickly A model of saliencv-b d . h .
learned and recognized based on the competitively growing saliency-based scene memory IS shown In

neural network using temporal coding. This neural network Figure 1. In the retina of primates, early visual features
represents objects using latency-based temporal coding and growssuch as contrast, its shift and opponent colors are processed
size and recognizability through learning and self-organization. pefore further “what” and “where” visual processing. Also it
Through simulation experiments of a robot equipped with @ 5 renorted that the parietal and frontal cortices, the pulvinar
camera, it is shown that quick self-organized learning and glance . . . .
recognition of objects in scenes are well performed by our model. _nuc_lel of the th_alamus and th_e superior colliculus are involved
in visual attention [7]. In the first phase of our model, contrast
and opponent color channels of red, green, blue and yellow
are computed at each pixel of a scene image [4]. Then the
A human can learn scenes in almost one shot and alggiency map is produced to represent saliency at every pixel
recognize them at a glance. In these processes, spatigiithe image by combining its contrast and opponent color
circumscribed regions of the visual field are selected based ¢{hnnels [2]. Next, connected object regions are segmented
saliency-based attention as well as volition-controlled attentigRing a grow-and-merge method on the saliency map and their

before further processing. The former is rapid, bottom-up amgunding boxes are extracted as attended spots. Three or less
task-independent attention and the latter is slow, top-dowftended spots are extracted.

and task-dependent attention [3] [4]. These small regions are

I. INTRODUCTION

highly processed through the cortical visual hierarchy, and as acontrast Size quotients and egocentric —s{ )
result scene memory is considered to be composed of attended . S positions of attended spots ==
objects, complexes of objects and their spatial relation from I i | COGNET —
the egocentric point of view. ’ i Input window i

In this paper, we discuss saliency-based scene learning an_ > mapcy | - layer  Recurrent
recognition in which objects in attended spots are quickly |image Attended e ° -Q
learned and recognized based on the competitively growing > spots _ T -
neural network using temporal coding [5], which is named Competitively growing
the COGNET (COmpetitively Growing NEural network using ij:%‘l’gfm . e [ usinlz;e&(lt;r?l\;gz\:lllv (():EJkding ]

Temporal coding). In learning and recognition, objects in channels Dif,e,gence&

attended spots are sequentially encoded to be invariant witffedgreenblueyellow)  sequentialization

respect to position and size by this network and their positions

and sizes are encoded simultaneously [6]. In this network, Fig. 1. A model of saliency-based scene memory

objects are internally represented using latency-based temporal

coding. This network enables fast self-organized learningIn the second phase of our model, attended spots are

of objects based on recruiting neurons and similarity-basptbcessed in the order of decreasing saliency at a certain

sorting of neurons and quick glance recognition of objecisterval. This interval of time corresponds to an interval at

based on the latency-based temporal coding. which the focus of attention jumps from one attended spot
This paper is organized as follows. In section Il, a model @b the next. In this phase, an object in each attended spot is

saliency-based scene memory is outlined, and then in sect@rtoded to be invariant with respect to position and size by

lll, the COGNET is described in detail. In section IV, learninghe COGNET, and the position and the size of the attended

and recognition performance of objects and scenes, especiafpt are encoded at the same time. These correspond to visual

quick self-organized learning and glance recognition perfgorocessing in the ventral or “what” visual pathway and the

mance of objects in scenes, are evaluated through simulatdorsal or “where” visual pathway respectively.

experiments of a robot equipped with a camera. The COGNET consists of the input window layer and the
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recognition map layer. The input window layer consists dgfme ¢ and O otherwisegzt;(t) is an external excitatory input,
lw % 1, x 5 neurons that receive normalized values of contraahd ip;(¢) is an inhibitory input. The output function;(p)
and four opponent colors dt, x [,, sections in height and of the neuronn; returns latency until firing as a function of
width on an attended spot. The recognition map layer isnaembrane potentig whenp > 0 and is given by
competitively growing layer where neurons can be arranged

in a two-dimensional lattice. An object in an attended spot is 0i(p) = A x max(1 —p,0) @)

encoded by the winner neuron in the recognition map layghere ) is a constant called the validity term of latency and
The input window layer and the recognition map layer haygyes the value 255. According to these formulas, the neuron
the entire reciprocal connection by feedforward and recurreNtfiras at timet+o,(p) 50 long as there is no strong inhibition.
synapses. In this network, it is possible to recognize an objeC, neyrons in the recognition map layer, membrane potential
in an attended spot when it is given to neurons in the INp compyted based on a spatiotemporal pattern of pulse arrival,
window layer, and it is also possible to recall a mental imagRat is, a pattern of latency from pulse arrival until the

Of, an object when a neuron in. Fhe recogniti.on map layer Edmpetition time. For a neuran in the recognition map layer,
stimulated. Meanwhile, the position of an object is expressgthmprane potential; (1) at time+ is computed by
by the center coordinate of its bounding attended spot in the '

egocentric coordinate system whose origin is the center of a pi(t) = Zepij(t) + ext;(t) — ipi(t) 3)
scene image. The size of an object is expressed by the size J

quotientq = ll: wherel; is the larger of height and width of

the attended spot. The size quotient represents relative distance epij(t) = wh kpi; (t) (4)
of the same object in different views or relative size of different 7NE(t)

objects in a view. where ext;(t) is an external excitatory inputip;(t) is an

Finally, consecutive processing results of attended SpOtSiHPlibitory input, w”, is feedforward synaptic efficacy from

. . ij
a scene are bound together and a scene memory is g|venabp{eur0nnj in the input window layerkp;;(t) is a kernel

a set of triplets each of which consists of the winner neurop,,tion andNF () is a normalization function. These two
the center coordinate and the size quotient obtained for eqﬁﬁction,s are g?ven by

attended spot in the scene. We call this triplet an attended spot
code and a set of triplets a scene code. ki (1) = { t—tf o 0<t—t <A )
1] -

0 .-+ otherwise
IIl. COMPETITIVELY GROWING NEURAL NETWORK

USING TEMPORAL CODING NP(t) B Zk‘ (1) ©)
A. Latency-based Temporal Coding ERRRY - Pij

In neural network models, information is internally rep- W ] )
resented in the form of a rate code or a temporal cod¥N€ret; is a recent time of pulse arrival from a neuron

In Kohonen’s self-organizing map [10] as a representatie " the input window layer and\ is the validity term of
competitive neural network, rate coding is in general usd@€ncy. Thekp;;(t) encodes latency from pulse arrival. Firing
though self-organizing maps of spiking neurons using tempofﬁlthe recognition map layer is determlned. t_hrou.gh competition
coding is also proposed [1]. Several temporal coding schenf¥80Ng neurons usingp; (¢.)} at a competition time...
have been proposed [9] [11]. In the COGNET, latency frorlg
trigger such as pulse transmission or stimulation to a neuron
until firing is used as a temporal code to encode information. Neural dynamics in learning and recognition of objects is
Each neuron in the input window layer converts an inp@pntrolled by a discrete-time clock as illustrated in Figure 2
value into a latent period so that the larger the input value &pd outlined as follow:
the shorter the latent period is. As a result, a spatial patternl) firings of neurons in the input window layer caused by
of input strength that codes an object is converted into a an external input of,, x [, x 5 values sampled from an
spatiotemporal pattern of pulse transmission, and the object attended spot,
is internally represented by this pattern. A neuron in the input2) transmission of pulses to the recognition map layer and
window layer is formulated as follows. When an external control of the competition time by the pre-competition
excitatory input or recurrent pulse transmission is given to  inhibition imposed on neurons in the recognition map

Outline of Neural Dynamics with Growth

a neuronn; at time t, membrane potentiab;(t) of n; is layer,
computed by 3) competitive firing of neurons in the recognition map
) layer at the competition time, which involves recruitment
pi(t) = Z(wg‘ x 055 (1)) + ext(t) —ipi(t) @) of a new neuron, modulation of feedforward synaptic
J efficiency and self-organization of neurons at learning,
Wherewf} is recurrent synaptic efficacy from a neuran in 4) transmission of pulses to the input window layer and
the recognition map layew;;(t) is a function which takes control of firing by the post-competition inhibition im-

the value 1 if a pulse is transmitted from a neuren at posed on neurons in the input window layer,



5) a repetitive exter.nal iqput, which invollves modulation of NP(t) = Z kpi; (t)? (10)
recurrent synaptic efficiency at learning, J

6) and repetition of these processes frojmo 4) with no ) o .
learning, in which if winner neurons in two repetitions2Nd A is the validity term of latency. According to these

are the same, it is judged to be a neuron that encod@§mulas and (3) (4) (5) (6), membrane potential of the recruit
the external input. neuron is 1. Since the maximum membrane potential is 1 when

there is no external input, it is clear that the recruit neuron
becomes the winner neuron.
The winner neuron fires at the competition time Let n,

[ Recruitment, synaptic modulation, self -organization |

1T
| Com_lgition | | Com_ngtion | be the winner neuron. Then every neurgnwhose membrane
Pre-competition Competitiontime  Competifion time potential is above a thresholg is selected as a neighbor
inhibition l Winner Neighbor l Winnér Neighbor neuron ofng and f|_res with a lag proportional to dlffe_rence of
Recognition membrane potential betweer, andn,. That is,n; fires at
map layer G P [T time t. + lag(ns, nk, t.) which is given by

i [
Latent | Laenti ! gen | Latent

PRI ;
input | peioe f PO, ) peiod i pertod lag(ne,ni.te) =7 % (pate) = pe(te)) (1)
window Yy =
| : : . .
layer ;E(dtatory input hn excitetory input time wheren is called '_[he threshold of nel_g_hborhood ant$ called
of an attended spot of an attended spot the constant of firing lag at competition.
mT o T T T 1T ) .
|- o> PUlSSranSMison | —sgn2bie] post-competition D. Self-organized Learning
!_I - Fire | | _modulation inhibition

—————————— The winner neuron and its neighbor neurons modulate their
synaptic efficacy just after firing so that they may become
Fig. 2. An outline of neural dynamics in which an external input is inputted teasy to fire for the same pattern of pulse arrival. That is
the input window layer two times at a specified interval. Learning is performed . dulati . f d f h . ’
only in the first repetition but not in the second repetition. synaptic mo. ulation I§ per orr_ne or the winner neuron so
as to memorize an object that is encoded by the pulse pattern,
- ) ) and for neighbor neurons so as to bring their memory close
C. Competition with Recruitment to the one of the winner neuron. Synaptic efficac§ of the
For the first external input, neurons in the input windowinner neurom, is modulated according to the following rule
layer fire with latent periods irf0, A\] which are computed at the competition time,:

by the formulas (1) (2) whose inhibitory input is set to O. wfj +Awfj

This firing is transmitted to the recognition map layer. In the wa — = (12)
recognition map layer, the pre-competition inhibition continues N;

in default for a period ofA and controls firing timing of where

neurons, that is, the competition time. Membrane potentials AwF = a x (kpsj(tc) —wk) (13)
of all neurons at the competition time are computed using > NPt ¥

a spatiotemporal pattern of pulse arrival according to the

formulas (3) (4) (5) (6). If the maximum membrane potential Ny = \/Z(wf; +Awl)?. (14)
of them is above a threshold, that is called the threshold of J

discrimination, a neuron that takes the maximum membramathese formulasy is a modulation ratep,; () and NP (t.)
potential is selected as the winner neuron. Otherwise, a NEW, \51ues given by (5) and (6) respé]cti\jely aNEW cis

neyron !S .re'grglted as the'wmner neuron,' whose synapgcnormalization factor. On the other hand, synaptic efficacy
efficacy is initialized so that it takes the maximum membraqg

: ) ) . of each neighbor neurom; whose firing lagu;, =
otential to the spatiotemporal pattern of pulse arrival ki : : :
P p poral paftern or p  lag(ns,ng,t.) is modulated according to the following rule:
Supposety; to be a pulse arrival time from a neurory

in the input window layer to a recruit neuron andt. be a F w;fj + Aw;@ (u)

competition time. Then, feedforward synaptic efficierw% Whj NY (15)
from n; to n, and recurrent synaptic efficienayﬁ from n; where
to n,; are chosen b
’ d F kp; (te) F
wF kp;j(tc) @ Awy;(u) = a x ( NP () —wy;) x G(u) (16)
YONP(te) i
r_ kpij(te) NY = D (wh + Awf (ug)). 17
Wi =T (8) >
where In these formulasg, kpy;(t.), NF (t.) and N} are the same

() = { t—tf o 0<t—t <A as above, and7(u) is the Gaussian function which gives a

1) —
0 -+ otherwise ©) decrease rate of modulation due to the firing lag. &die a



specified standard deviation of firing lags. Th&(w) is given E. Reciprocal Learning

by 9 Firing of the winner neuron and its neighbor neurons is
G(u) = eXp(_%). (18) transmitted to the input window layer. As shown in Figure 2,
20 excitation of neurons in the input window layer caused by
In Kohonen’s self-organizing map [10], learning is perthis transmission is counterbalanced by the post-competition
formed for the winner neuron and its topological neighbqpnibition according to the formula (1). For the second external
neurons on the arrangement lattice. Though this achieyggut to neurons in the input window layer after the post-
topology-preserving mapping, it takes a lot of time to form thgompetition inhibition, the neurons fire with the same latent
mapping because they are only near in topological distanggyriod as for the first input according to the formulas (1)(2).
In the COGNET, neighborhood learning is performed fojyst after firing, synaptic efficacy of neurons in the input
neurons near to the winner neuron in their patterns of synapiifhdow layer is modulated dependent on firing latency and the
efficacy. Since this achieves fast learning but does not achigygtribution of recurrent pulse arrival time. Ligtbe the second
the topology preservation, the following sorting of neurongyternal input time. For a neuron; in the input window
in the recognition map layer is performed in descendingyer, let¢; be the firing time,t}, be the pulse arrival time
order of membrane potential of neighbor neurons to achieygm the winner neurom., andt, be the pulse arrival time
the topology preservation (Figure 3). Let be the winner from a neighbor neuron;, in the recognition map layer. Then
neuron, ny, be its neighbor neuron, ant.y,ns.xz) and  synaptic efficacyw’? from a neurom;, which isn, or n, to
(nk.y,ni.x) be their positions on a two-dimensional Iatticenj is modulated as follows:
Firstly, a quadrant in which the positiqm.y, ni.x) belongs " R R
is obtained in the two dimensional lattice space whose origin wj; — wj; + Awg; (19)
is the position(n,.y, ns.z). Then, for the Manhattan distancs,
dy from (ns.y,ns.x) to (ng.y, ng.x), a setl of lattice points
in the quadrant whose Manhattan distance f(emy, ns.x) is Awﬁ —ax (M
shorter thanly, is obtained as a set of candidate target points to A
which the neighbor neuron;, may moves. Secondly, a targetln this rule, o is a modulation rate) is the validity term
point is selected inL according to the following conditions of latency, andG/(u) is the Gaussian function which gives a
that the point has the minimum Manhattan distance froffecrease rate of modulation due to the lag of pulse arrival
(ns.y,ns.x), and in addition it has the minimum Manhattarfrom n; against pulse arrival from. Let o be a specified
distance from(ny.y, n.z), and moreover it does not occupiedstandard deviation of firing lags. The#(u) is given by
as a target point of a neighbor neuron whose membrane u? S
potential is larger than the one af,. If such a target point G(u) = { SXP(_W) U —8 . (21)
is found and it is not occupied by any neuron, the neighbor rous
neuronn, is moved to the point. Otherwise, after the neighbor According to this rule, each recurrent synaptic efficax;‘il
neuronny, is moved to the selected target point, each neuron @ modulated to be similar with corresponding feedforward
the way from the target point towafeh,.y, n;.x) is permuted synaptic efficacwa;, that is, wﬁ: is modulated to be a
with each next neuron one by one until a non-occupied poigénstant timesv’;. As a result, symmetrical synaptic efficacy
appears. is acquired in reciprocal connection, which enables recall of
Learning with recruitment and topology-preserving sort &n object’s mental image when an external excitatory input is
neurons enables fast learning of objects, fast self-organizatigigen to a neuron in the recognition map layer [6].
of memory structure of objects, and growth of the recognition

here

R a a
— W) x G(t%, —19).  (20)

map layer caused by increase of objects to be stored. F. Glance Recognition
It is possible for a human to recognize visual scenes and
@:Awinner neuron objects at a glance. This glance recognition is considered to
@:Aneighbor neuron be achieved based on quickly capturing partial information
_— that represents distinctive features of objects. In the COGNET,
®:Aneur°nWhosepOS'“°n's this ability can be realized by shortening the length of the
selected as atarget

pre-competition inhibition period at recognition, which is

‘ in default set toA. Then the winner neuron is selected at

{__1tAposition that is occupied by the competition time brought forward by using only early
the topol ogy-preserving sort pulse arrivals. In this case, late pulse transmissions after
the competition time are suppressed by the post-competition

Fig. 3.  An illustration of the topology-preserving sort. A halftone areanhibition in the input window layer. In many cases correct

contains candidate target points to one of which a neighbor neuron move ; it ;
dark halftone area takes higher priority as target points than a light halftcs)ggj.e(:t recognition can be achieved based on only early pUIse

area. A thick arrow shows movement of a neighbor neuron. Thin arrows shefivals because theY_er_‘COC_je large contrast or opponent color
permutation of neurons for the topology preservation. values that capture distinctive features of objects. Moreover,

even in case only partial information of an object is carried

O : A non-neighbor neuron




Concordance The number of neurons

by early pulse arrivals under severe time constraint, th  yesns e % [—o—: corralation
whole information of the object can be restored from parti¢®” 2 |+ thenumber of
. . . . . .5 i
information through reciprocal connection because the obje,,, ®
. . S
is encoded in both feedforward and recurrent synapses o o} oo Iy
winner neuron. @
Correlation The number of neurons
IV. EXPERIMENTAL RESULTS ors [T % [—e: correlation
i ey, e —— oty 30| _: critical value
A. A Testbed 0.22 """ e 2 —+—: the number of
-0 neurons
To evaluate the self-organized learnability and the glance o 7 e————— el
recognizability of objects in scenes, simulation experiments of * Scene NO. e

. ) . ®
a robot equipped with a color camera were conducted using the

simulation tool Webots [8]. Figure 4(a.) shows an e.Xpe“mentlgllg. 5. (a)One-shot learning performance. (b)Fast self-organization perfor-
T-maze world. A robot slowly moves right-handed in the mazgnce.

not to bump against a wall based on the Braitenberg algorithm

using six infrared sensors, where two in the front and two

each on both sides. A robot Captures scene Imagés af64 increases at |earning_ The concordance is g|ve®jwf‘] X
pixels in height and width and processes them about once Y 2 wh Fo feedf d i
second. Figure 4 shows an example of a saliency map in fb i)/ 2 (ext;)?, where wg; is a feedforward synaptic

and attended spots in (c) computed on a scene image.  © icacy between the winner neurgnand a neurory in the
input window layer andzxt; is an input image element to the

neuronj. Since the concordance always takes high values that
are larger than the threshold of discrimination, which is due to
recruiting new neurons, we can conclude that attended objects
were learned quickly.

Fig. 5(b) shows series of the degree of self-organization
in the recognition map layer, the number of neighbors and
the number of neurons as the number of scenes increases at
learning. The degree of self-organization is obtained as the
Kendall's rank correlation coefficient between the similarity
distance and the Manhattan distance for all neuron pairs on a
Fig. 4. (a)An experimental world. A total &0 objects, where three each of WO-dimensional lattice. The similarity distance of each neuron
red, blue, green and yellow cylinders, two each of magenta and cyan cylindgyair is calculated as the cosine of the angle between synaptic
and one each of red, blue, green and yellow cones, are arranged as Iandm@rﬁﬁ:acy vectors, which is defined bE (wF < wF ) where
(b)A saliency map. (c)Attended spots. P = ~k\ ik Jk .

w;, andwj, are feedforward synaptic efficacy for a pair of

Main parameter values used in experiments are as follo®§urons: and;. A dotted line in the figure shows the critical
Thel,, of the input window layer id2. In the recognition map value of a positive correlation at the significance level (right-

layer, no neuron is arranged initially but neurons are recruit§ified probability) of0.5%. We can observe that the degree
at learning. The threshold of discrimination (75 and the of self-organization is quickly recovered though it sometimes

threshold of neighborhood i&5. The constant of firing lag at falls when a neuron is recruited especially in the first stage. It
competition is16. The modulation rate of synaptic efficacy idS alsq observed that significant and ;teady self.—orgamzatlon
0.1. The standard deviatiom of the Gaussian function is. IS achieved as the number of neurons increases in response to
increase of the object variety.
B. Self-organized Learnability Fig. 6 shows an example of object encoding in the recogni-
As for self-organized learning, performance of one-shot obien map layer and discriminative and invariant rates of object
ject learning and fast self-organization in the recognition mapcognition. The invariant rate indicates whether the same
layer were evaluated, and also invariant and discriminatiedject at different positions and sizes in scenes is encoded
object learning performance and scene learning performarnoea neuron invariantly and the discriminative rate indicates
were evaluated. In experiments, a robot moves one lap arowntether different objects are encoded to different neurons. In
the maze while learning scenes, then moves another kgdition to simple cylinders and cones, some complexes of
while recognizing scenes and recording scene codes withoylinders that have certain patterns of arrangement were also
learning. After that, he/she repeatedly searches for a targgtracted as attended objects. Almost every simple object and
scene that is picked out every 25 codes from the recordegimplex of objects was encoded to a unique different neuron in
scene code sequence. the recognition map layer. As for target scene search, all of five
Fig. 5(a) shows a series of concordance between attendedrches succeeded in this example. By repeating experiments,
object images and winner neurons for them and a seriésvas confirmed that invariant object recognition with respect
of the number of neurons as the number of attended sptigposition and size was achieved with a high probability as a

Green. Yellow Red B'U€ Yel\low /Green




(%)

. . (%)
result of learning. Since target scene search succeeded almg:g - 10 e~
perfectly, it was also confirmed that positions and sizes 0% Y & 1“1{
objects were encoded suitably enough for scene recognitiorw b 2
0 Y 0 |
255 720 1
o} Class of Ohjects Bissmi~Tivarai T iD Class of objects PG || e The length of the pre-competition inhibition period The number of effective pulse transmissions
encoded nativerate| rate encoded nativerate | rate (@ (b)
RO Green cyl. 100% 100% | R1 Bluecyl. 93% 100%
R2 Red cyl. 100% 100% | R3 Magentacyl. 100% 100%
R4 Yellow cyl. 95% 100% | R6 Blue cone 100% 100% . »
R8 Green cone 100% | 100% |R13 Cyan cyl. 100% 100% Fig. 8. The success rate of the glance recognition. Data are summed up
R14 Red cone 100% 100% | R16 Yellow cone 100% 100% every 8 interval
R7 | Magentacyl. and 100% 100% '
yellow cyl. behind blue reﬂgreen
R9 | Arowof biue red | 100% | 100% @ N\ 7/
o o 00% | 100% R
R10| R . and green % (] .
. benind d  gen  ShOWsS the success rate of the glance recognition for the length
R11| Green cyl. and blue 63% 100% Z .. . cp e .
oyl behind RiL Rm- of the pre-competition inhibition period and the number of
R12 | Bluecyl. and green 100% 100% . . . .
N 11 I bug.  green effective pulse transmissions. We can observe that a high
Magentacyl. in front ato recognition success rate is achieved using only a small number

R18| Bluecyl., O1* and 100% 100%
Magentacyl. in front Lo
01+: Yellow cyl. or arow of yellow and green cyl. Recognition map layer

of early pulse arrivals by shortening the length of the pre-
competition inhibition period. These results conclude that the

. o o _ _ glance recognition is achieved using only early pulse arrivals
Fig. 6. An example of discriminative and invariant object learning pe

Ii= . . " .
formance. For each neuron, a class of objects is the one that occu& sbrmgmg the competition time forward.

the maximum number of objects encoded to it. The rate of discriminative
recognition means the ratio of the number of objects in the class to the number V. CONCLUSIONS

of all objects encoded to the neuron. The rate of invariant recognition means\\e have discussed saliency-based scene |eaming and recog-

the ratio of the number of objects in the class encoded to the neuron to @ : ; 3 ; i
number of objects in the class encoded to all neurons. The lower right figu ilon’ especially the self-organized learnability and the glance

show neuron arrangement in the recognition map layer and complex objé@€0gnizability of objects in scenes by the COGNET. As

encoded by R9, R10 and R12 respectively. for learnability, it was confirmed that quick one-shot object
learning and fast self-organization of object memory structure
C. Glance Recognizability were performed, invariant object recognition with respect to

N . osition and size was achieved and also positions and sizes of
In order to evaluate the glance recognizability using only,: . L
X e . ects were encoded suitably enough for scene recognition.
early pulse arrivals, it is tested whether recognition succee e : .
S for recognizability, it was confirmed that glance object

for 147 object images that the robot paid attention on the maze . : . . :

R . .recognition was achieved using only early pulse arrivals which
when the length of the pre-competition inhibition period is A .
shortened encoded distinctive feature of objects.
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