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Abstract-- The previous researches have shown that artificial neural 
network (ANN) can be used for on-load tap changer control of 
parallel transformers in power distribution system [1],[2],[3]. In 
those research reports the proposed ANN for application in this 
control were developed using various algorithms for obtaining good 
performance. However, further improvement of ANN based 
transformer tap changer operation is always desirable. A thumb rule 
for obtaining good generalization is to use the smallest network that 
solves the problem [4]. In this paper we show that a small size of 
ANN is obtainable for improved transformer tap changer operation 
by modifying the Cascade-Correlation (CC) algorithm. 
Experimental results demonstrate that significant improvement in 
performance is achieved using modified cascade-correlation 
algorithm instead of the standard cascade-correlation. The 
comparison of the ANN performances of the algorithms in this 
application is analyzed and the results are presented. 

Index Terms—Neural Network Application, Cascade 
correlation, Bayesian regularization, 
Transformers tap changers, Voltage control. 

I.  INTRODUCTION 

The existing tap changer control such as the master/follower, 
the power factor, the negative reactance, and the circulating 
current, can operate the tape changer only in closed primary 
bus system. The newly proposed artificial neural network 
control of tap changer operation allows the parallel 
transformers to operate both in closed primary bus system [2] 
and also when the primary busbar is connected across the 
power network [3]. The ANN takes voltage level, bus coupler 
circuit breaker status, circulation current, real and reactive 
power of transformer, real and reactive power of total load as 
the inputs and can map operational decision at the output 
which in turn relays to the operating mechanism of the tap 
changer control. The input variables to the ANN are 
continuous except the circulating current and bus coupler 
status which are basically used as supervisory controls. Since 
some of the variables are continuous, it is necessary to 
calculate a set of input data that would represent all the 
possible variations of the power system and tap positions of 
the parallel transformers. We have used sampling values of 
the continuously changing variables in preparation of the data 
sets. 

 
For effective implementation of ANN in tap changer 

operation, it must possess high generalization ability. The 

generalization characteristic of ANN depends on the 
architecture, learning algorithm and quality of the training 
data. The training data should cover the problem domain and 
carry the features that are effective in solving the problem. 
Learning algorithm plays a vital role in achieving 
generalization ability of ANN. A single learning algorithm 
can not assure the best result for all types of problems. 
Choice of learning algorithm to achieve the best performance 
is somewhat problem specific and the choice can be made 
from a variety of existing algorithms or needs to be modified 
to suit the particular application. Alternately, it has to be 
newly developed.  
 

Although the backpropagation has many reports of 
successful implementation on various complex problems, the 
standard backpropagation with the steepest gradient descent 
learning algorithm is found too slow in the training phase 
[5],[6]. It has undergone many modifications to improve the 
learning speed e.g. Bayesian regularization [7], and scaled 
conjugate gradient [8]. Previous experiments on tap changer 
operation problem show that Backpropagation with Bayesian 
regularization (BR) provides better performance than the 
scaled conjugate gradient and standard backpropagation [3]. 
These learning algorithms use fixed architecture which has 
several limitations (discussed in section II). 
 

The aim of this work is to further improve the performance 
of tap changer operation using ANN presented in previous 
studies [1],[2],[3]. Constructive learning algorithms that 
automatically build network architecture of required size have 
been reported to perform better than that of fixed architecture 
[9]. We modified the cascade correlation algorithm proposed 
by Fahlman et al. [10] to construct a network for tap changer 
operation which showed improvement over fixed architecture 
studied previously. 

II.  FIXED VS CONSTRUCTIVE ANN ARCHITECURE  

Good generalizing capacity of the ANN demands the 
optimal architecture. If the network is very small it can not 
learn well and in the case of a large architecture it memorizes 
the training data and exhibits the poor generalization [11]. 
The standard back propagation, Bayesian regularization and 
scaled conjugate algorithm train the ANN on a pre-selected 
fixed architecture. In order to find the correct size of the 



 

architecture a large number of networks are to be trained and 
the one which provides the best results is selected. This trial 
and error process is practically cumbersome. 
 

In constructive approach, e.g. cascade-correlation 
algorithm [10], training and architecture of an ANN are 
developed simultaneously where the architecture grows from 
the small size to its required size. Since the architecture 
development and training of an ANN are simultaneously 
carried out in cascade-correlation algorithm, it has become 
highly desirable to avoid the exhaustive approaches of 
finding correct structure in trial error method.  
 

Another proposed method that minimizes the architecture 
to some extend is known as pruning algorithm [12] which is 
related with the active participation of weight connections. 
When the weight connections do not contribute to error 
minimization, it is removed to reduce the architecture. In the 
pruning process, initially the training is started with a 
network larger than necessary and gradually reduces the 
network size. This requires extremely larger training time. In 
the contrary, cascade-correlation network starts with a 
minimal architecture and gradually grows the required size 
accruing to less computational time. Recent studies on many 
problems show that cascade-correlation learning network is 
more suitable for classification problem instead of regression 
tasks [13], [14]. In this study we considered cascade-
correlation algorithm with a view of achieving better 
performance because of its ability to grow network 
architecture automatically to the required size and its 
reportedly good generalization capacity in some studies. 

III.  CASCADE-CORRELATION LEARNING ALGORITHM 

Cascade-correlation network initially starts by training a 
single output layer using the original input data set. If there 
exists a weight space ŵ  that can classify the input data using 
a single layer of weights the problem is easily solved. But it is 
impossible to achieve such solution if the problem is not 
linearly separable. In that case hidden units are added one at a 
time unless a weight space is found that can classify the 
training data. The hidden units are generated by training a 
candidate unit as follows. For the first hidden unit the 
candidate unit is connected to the input units and trained to 
maximize the correlation between its output and the residual 
error of the output layer over the training data set. Once 
trained the weights connecting the input to candidate unit is 
frozen and the candidate unit is then connected to the output 
layer as a hidden unit and output layer (i.e., all weights 
connecting to the output units from the inputs as well as 
newly installed hidden unit) is trained again to minimize the 
residual error. From the second hidden unit the candidate unit 
is connected to the input units and all the previously 
generated hidden units and is trained in the same way using 
the recent residual error. In this process the hidden layers 
form a cascade-structure of the network as shown in Fig. 1. A 
detail description is found in [10]. 

The output layer in the standard cascade correlation is 

trained to minimize the sum of the squared error over the 
training data sets as follows. 
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where t kp,  and kpy ,  are the target and actual outputs of 
output neuron ‘k’ for pattern ‘p’. 

Fig. 1. The cascade-correlation architecture with two hidden units added. The 
vertical lines represent all incoming activations. Connections 
represented by boxes are frozen and those represented by ‘x’ are 
repeatedly training. 

The weight update to minimize sum of squared error is 
carried out using gradient descent technique as in (2) 
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where E is the residual error for connection weights w(t) in 
the output layer, ∆w (t) is the weight change in t-th iteration, 
η and α are the learning rate and a momentum factor 
respectively. 
 

In order to generate a hidden unit, each candidate unit is 
trained by maximizing the correlation ‘C’ between its output 
and the latest residual error at the output layer. The 
correlation ‘C’ is defined as 
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where ‘k’ is the network output at which the error is measured 
and ‘p’ is the training data. The quantities y  and kE  are the 
values of y  and kE  averaged over all training data. The 
maximization of correlation ‘C’ is carried out by gradient 
ascent governed by (4) and (5). 

p
k

kkpkp fEE ′−= ∑ )( ,σδ  (4) 

∑=
∂
∂

p
pip

i
I

w
C

,δ  (5) 

Hidden Unit 1

Hidden Unit 2

Outputs Units 

Inputs 

Bias, +1

Outputs  



 

where kσ is the sign of the correlation between the candidate 
unit value and the residual error at output ‘k’, pf ′  is the 
derivative of the activation function of the candidate unit with 
respect to the sum of its inputs for pattern ‘p’, Ii,p is the input 
the candidate unit receives from unit ‘i’ for pattern ‘p’, and wi 
is the weight connection. The weight of the candidate unit is 
updated using (6) and (7). 
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where λ is a constant.  

IV.  MODIFIED CASCADE-CORRELATION LEARNING 
ALGORITHM 

Many previous research for recognition of handwritten 
ZIP code, numeral, alphanumeric characters, show that 
weight smoothing is useful to improve ANN generalization 
capability [15],[16],[17]. Weight smoothing is a 
regularization technique. As stated in Section I, previous 
study on ANN based tap changer showed that Bayesian 
regularization demonstrated better generalization 
performance than other algorithms. This is due to the 
“smoothness” of weights achieved by this algorithm. In order 
to utilize connection weight constraints along with 
architectural advantage, we modified the error function in the 
output layer of cascade-correlation algorithm by 
incorporating Bayesian regularization. Therefore, for the 
output layer, the minimization function E  is changed into an 
objective function F defined as 

EE WDF )1( γγ −+=  (8) 

where ED is the sum of squared errors, Ew= 2/2w is the sum 

of squares of the network parameters, and γ (<1.0) is the 
performance ratio parameter, the magnitude of which dictates 
the emphasis of the training. In the Bayesian framework 
weight space is initially assigned to provide the prior 
distribution. If D={xm, tm} is the data set of the input-target 
pair, the posterior probability of distribution of the weight 
p(w|D,γ) can be expressed as 

)|(D
)()|(D)D,(

γ
γγγ

p
ppp |ww,|w =  (9) 

where p(w|γ) is the prior distribution, p(D|w,γ) is the 
likelihood function and p(D|γ) is a normalization factor, 
which guarantees that the total probability is 1. The optimal 
weight, in Bayesian framework, maximizes the posterior 
probability p(w|D,γ) that is equivalent to minimizing the 
function in (8). The performance ratio on parameter γ  is 
optimized by applying the Bayes’ rule 
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If we assume a uniform prior density p(γ) for the 
regularization parameter γ, then maximizing the posterior 
probability is achieved by maximizing the likelihood function 
p(D|γ). Since all probabilities have a Gaussian form it can be 
expressed as 

)()|( )]1/([)/( 2/2/ γγ γπγπ Z F
LNDp − −−=  (11) 

where L is the total number of parameters in the ANN. 
Supposing that F has a single minimum as a function of w at 
w* and has the shape of a quadratic function in a small area 
surrounding that point, ZF is approximated as 

))*(exp(*det 2/1)2( 2/ wFHLZ F −−≈ π  (12) 

where H=γ∇2ED + (1- γ)∇2EW  is the Hessian matrix of the 
objective function. Using (12) into (11), the optimum value 
of γ at the minimum point can be determined. 

 
Foresee and Hagan [7] propose to apply Gauss-Newton 

approximation to Hessian matrix, which can be conveniently 
implemented if the Lebenberg-Marquart optimization 
algorithm is used to locate the minimum point. This 
minimizes the additional computation required for 
regularization. 

V.  DATA COLLECTION 

In ANN control the nature of tap-changer operation is 
treated as the solution of a classification problem [1]. A 
comprehensive data set that can be straightaway applied to 
train ANN and test its performance is not possible to obtain 
from the electric supply company. The main reason is that the 
existing tap changer control methods has restriction to the 
way the ANN control will allow the transformer parallel 
operation since they do not comply with that operation. So, 
the company can not have the data at the critical situations 
(e.g. transformers when connected across the network and tap 
positions are not appropriate) of the transformers parallel 
operation in the substations. However, the data those are 
available to electric supply company is useful to calculate the 
necessary data to train ANN and test it for performance 
evaluation. The detail system analysis, mathematical formulae 
and procedure for calculation of the data set are presented in 
[2],[3]. Transformer details and load data variations in the 
year 2002 of a 220 kV substation in Victoria, Australia have 
been used to calculate the required data set.  

A.  Consideration in Pre-processing the Data 

The transformers in the above mentioned substation were 
found carrying lower load in comparison to their capacity. 
Since the substation has to meet the growing demand of the 
power network in future we have considered the maximum 
permissible load of the two transformers equal to their normal 
capacity ratings for this data generation. 

This experiment is carried out using seven variables in the 
input vector components. These are voltage level, bus coupler 



 

circuit breaker status, circulation current, real and reactive 
power of transformer, real and reactive power of total load. 
Two of the seven input variables in the data set are used as 
supervisory information to the ANN. They are coupling 
circuit breakers and circulating current between the 
transformers. The radial operation of the transformers occurs 
if any of the coupling circuit breakers is off and is 
represented by ‘0’. On the contrary the transformers parallel 
operation occurs if all the coupling circuit breakers are closed 
and is represented by ‘1’. The circulating current can be 
expressed as follows: 

⎩
⎨
⎧

=
 value threshold theexceedscurrent  gcirculatin    1  
 value thresholde within thiscurrent  gcirculatin   0  

circI  

The threshold value is always less than the circulating 
current that flows when any of the transformers tap positions 
is different by only one tap apart from its appropriate tap 
position that provides equal voltage at the secondary bus.  

B.  Determining the Data Sets 

The actual circulating current values and other variables 
such as real and reactive power sharing of parallel 
transformers, when transformers taps are connected in 
appropriate as well as inappropriate positions, are determined 
by preparing a number of tables considering voltage 
differences in magnitude and phase angles of 00, 20, 50, 80, 
and 100 when primary side of the parallel transformers are 
connected across power network. For the voltage magnitude 
and phase angle variation at the primary side of the two 
parallel transformers, the appropriate tap positions that give 
the equal voltage at the secondary bus were selected. In this 
appropriate tap position the circulating current reduces to 
almost zero for identical transformers. Reactive power and 
real power components are proportional between the 
transformers and also between the individual transformers to 
the total substation power components.  

The sharing of real and reactive power components by the 
individual transformer for inappropriate tap position is 
calculated as follows: one of the transformers tap position 
was fixed to appropriate tap position and the other 
transformer tap-position is moved from the appropriate 
position to create the differences from 1 tap to maximum 9 
taps (the transformer has 10 tap positions). For each of the 
cases of 1 to 9 tap differences, the power components and 
circulating currents are determined using the voltages and 
impedances from the tables. The calculation was repeated for 
different loads from the range of the power variation of the 
substation. We use the equations and related equivalent 
circuits presented in [3] to determine the effective 
impedances to prepare the tables and calculate the numerical 
values of variables to generate the data set.  

Numerical values of the variables calculated at every 
stage are grouped to form the input vector. The input vectors 
are divided into three classes and associated with target 
values in ANN according to the tap changer operation as ‘-1’ 
for tap lower; ‘0’ for tap hold; and ‘1’ for tap rise. 

Training data set is formed by taking 50% of each data set 

representing 00, 50 and 100 voltage phase angle differences. 
The test data is formed by 50% of the remaining data from 
each set representing 00, 50, 100 and also by full data sets 
from 20 and 80 voltage phase angle differences. 

VI.  EXPERIMENTAL RESULTS AND DISCUSSION 

A.  Training the Cascade-Correlation Architecture 

The training data set is used to train and develop the 
architecture by adding hidden units of the ANN as shown in 
Fig. 1. The learning and architecture construction is 
terminated by a set of criterion such as achievement of 
minimum error, maximum hidden units, number of epochs 
etc. We used a pool of candidate units each with a different 
set of random initial weights instead of a single candidate 
unit. All units in the pool receive individually the same input 
signals and maximize correlation with the same residual error 
for each training data. After the training is terminated, the 
candidate unit that has the best correlation is installed. 

 
We carried out 90 trials with each of the training 

algorithms with similar learning parameters and using 
different initial weights. The predicted values of ANN 
outputs in all the algorithms are interpreted using the 
threshold values as follows: 

 
hold p        taotherwise  
lower    tap          0.5   
rise       tap          0.5   

output    ANN
⎪
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Our primary interest is to obtain an ANN which provides 
generalization as higher as possible. In classification 
problems the principle selection criterion for assessment of 
the good performance is the misclassification rate [5]. 
However, it is desirable to achieve the best generalization 
performance with smaller number of hidden units in order to 
avoid overtraining. 

B.  Comparison of Cascade-Correlation Trained ANNs 

In this section we analyze and compare the results of the 
ANNs trained by CC and modified CC (MCC) learning 
algorithms. The comparisons are in terms of the false 
response rate (which is same as misclassification) and the size 
of the architecture. Best performance of the algorithms in the 
cascade-correlation is then compared with the 
backpropagation with Bayesian regularization which was 
found to have better performance in the previous study.  

Table 1 shows the convergence of cascade-correlation 
training algorithms to the solutions of different hidden unit 
number. It can be observed from Table 1 that CC algorithm, 
though converged into smaller number of hidden units in few 
trials, mostly converged at seven hidden units. On the other 
hand, MCC more often converged at four hidden units. This 
demonstrates that MCC is more likely to converge to smaller 
sized network.  
 



 

 
Table 2 shows the best, worst, average values and 

standard deviation (STDEV) of ANN false response rates in 
percentage for the two algorithms with different number of 
hidden units.  

TABLE I 
ANN CONVERGING TO THE SOLUTIONS WITH HIDDEN UNITS (HU) 

ALGORITHMS HU 4 HU 5 HU 6 HU 7 
CC Learning 2 3 9 76 
MCC Learning 20 14 10 46 

TABLE 2  
ANN FALSE RESPONSE RATES IN DIFFERENT HIDDEN UNITS 

Algorithms Hidden  
Units Best Worst Average STDEV 

4 1.1 2.4 1.8 0.009 
5 0.5 1.8 1.3 0.007 
6 0.4 2.2 1.1 0.006 CC Learning 

7 0.3 6.8 2.1 0.013 
4 0.3 0.74 0.41 0.001 
5 0.32 0.91 0.45 0.002 
6 0.34 1.12 0.63 0.003 

MCC 
Learning 

7 0.28 2.41 1.03 0.006 

The trials those converged at seven hidden units (equal to 
input size) reached the maximum size of the architecture 
allowed in the structure development and learning process. 
Many of the previous research works used the hidden layer 
neurons less than the neurons in input layer [17],[18]. Some 
researchers used hidden layer neurons 30% less than the 
number of neurons in the input layer [19]. In general, it is 
expected that a suitable smallest architecture with hidden 
units at least less than that in the input should avoid 
overfitting and most likely to achieve better generalization. 
So, we aimed to concentrate to those ANNs that converged 
with fewer than seven hidden units. 

 
Figure 2 represents the false response (misclassification) 

rate versus the ANN trials that converged with four to six 
hidden units in two algorithms for cascade-correlation and for 
modified cascade-correlation. In CC only two out of 90 trials 
are found to converge with four hidden units but the false 
responses are higher than the trials converged with more 
hidden units. Contrarily, in MCC the numbers of trials that 
converged with four hidden units is increased to twenty and 
have lower false response rates than those converged with 
more hidden units (Fig. 2(b)). Figures 3 and 4 represent the 
average values and standard deviation of ANN false response 
rates for different hidden units as converged in CC and MCC 
training algorithms. It is observed that both the average 
values and standard deviations of ANN false responses for 
each set of the hidden units is lower in the case of MCC than 
CC and the lowest values are always in MCC when 
converges with four hidden units. 

(a)

0.0%

1.0%

2.0%

3.0%

1 2 3 4 5 6 7 8 9

No. of ANN trials

Fa
ls

e 
re

sp
. r

at
e

Hidden Units 4
Hidden Units 5
Hidden Units 6

 

(b)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1 4 7 10 13 16 19
No. of ANN  trials

Fa
ls

e 
re

sp
. r

at
e

Hidden Units 4
Hidden Units 5
Hidden Units 6

 

Fig. 2. ANN false response rate vs. trials in ascending order of false response 
(a) for cascade-correlation, (b) for modified cascade-correlation. 
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Fig. 3. Average false response rate versus hidden units for CC and MCC 
trained ANN. 
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Fig. 4. Standard deviation among the trials versus hidden units for CC and 

MCC trained ANN. 

C.  Comparison between Modified CC and Backpropagation 
with BR 

We trained a two-layer ANN architecture consisting four 
hidden units by backpropagation using BR algorithm for 
twenty trials. The false responses in MCC trials that 
converged with four hidden units are then compared with the 
false responses from BR trained ANN. Figure 5 shows the 



 

false response rates of the BR and MCC trained ANN groups 
in ascending order of their values. The comparison shows that  
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Fig.5. ANN false response rate vs. trials in ascending order of false response 

with 4 hidden units for BR and MCC.  

false response rates from the MCC trials are much better than 
those obtained using backpropagation with Bayesian 
regularization. The average false response over all the trials 
with four hidden units in MCC is 0.41% and that in 
backpropagation with BR is 2.27%. This indicates that, for 
tap changer operation, the MCC algorithm performs much 
better than backpropagation with BR.  

VII.  CONCLUSIONS 

In this paper, we studied the performances of ANN trained 
by standard cascade-correlation algorithm for tap changer 
operation and proposed a modified cascade-correlation 
(MCC) algorithm to obtain a better solution. The 
performances of the proposed MCC algorithm trained 
networks are compared with the results from the standard 
cascade-correlation and backpropagation with BR trained 
networks. Backpropagation with BR trained network was 
previously found as the best among many other algorithms of 
fixed architecture topology. In this comparison the network 
trained by the proposed algorithm shows better generalization 
than all others. This concludes that the proposed MCC 
algorithm is the effective design option in building neural 
networks for the tap changer operation. 
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