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Abstract— In this paper the capabilities and 

powerfulness of neural network models to classify the 
seismic liquefaction potential of many field cases were 
presented. Two neural network models, the probabilistic 
neural network (PNN) model, which developed based 
upon the Bayesian strategy for pattern classification, and 
the well-known multilayer perceptron (MLP) model were 
used to implement the analysis to identify the liquefied and 
non-liquefied cases during earthquakes. Field case records 
derived from in-situ test measurement, CPT-qc, were 
collected and compiled. Both the PNN and the MLP mdoel 
were created and trained by the same 75% of cases, which 
randomly selected from all the ones we gathered and then 
tested by the other 25% of cases. The major features and 
differences between using these two models in the 
liquefaction potential identification were also presented 
and discussed. Analysis results show that both models give 
nearly perfect performance on the classification of 
liquefaction potential, but the MLP model performs 
slightly higher rate of recognition.  However, more 
searching time was required in MLP model to overcome 
the local minima problem that could interrupt the 
back-propagation error correction approach to find the 
optimal result. 

I. INTRODUCTION 

Soil liquefaction is known as one of the most severe 
seismic hazards that can damage structures founded on both 
shallow and deep foundations and disrupt buried lifelines in 
the ground. It has been widely seen in loose sand deposits. 
Recently, the widespread soil liquefaction and the related 
damages occurred in Yaulin, Wufeng, and in the parts of 
Taichung Harbor and caused a lot of loss of property in the 
center of Taiwan during the Chi-Chi earthquake, 1999 [1,13]. 

In earthquake engineering practice, it is of substantial 
importance to identify the areas vulnerable to liquefaction and 
then to mitigate possible damages on them by taking 
appropriate measures in advance. Evaluation of liquefaction 
potential is a complicated multivariable problem and needs to 

find out key parameters, which control liquefaction 
occurrence, including earthquake parameters, in-situ soil 
properties, and stress conditions.  Several methods have been 
proposed to evaluate liquefaction potential. These methods 
range from purely empirical to highly analytical and require 
various degrees of laboratory and/or in-situ testing.  It is 
more common practice to employ in situ tests such as the 
Standard Penetration Test (SPT), the Cone Penetration Test 
(CPT), or the Shear Wave Velocity Test (Vs) to determine 
liquefaction resistance of saturated sandy soils. These 
simplified methods were generally presented in a chart that 
defines the boundary of liquefaction and non-liquefaction in a 
plot of cyclic resistance ratio (CRR) versus the corrected 
SPT-N values (N1)60, the corrected CPT tip resistance (qc1), 
and the corrected Vs, respectively [2, 3, 4, 5]. 

In recent years, a useful and powerful computation tool, 
Artificial Neural Networks (ANN), was introduced for solving 
the complicated multifactor problem. It is a model-free 
approach and does not require any prior knowledge to setup 
the probable model-type of the relationship indicated by 
original data. Many researchers have reported that 
liquefaction potential can be estimated more accurately than 
by the conventional simplified procedures calibrated by many 
seismic liquefaction case histories [6, 7, 8, 9].  Recently most 
of researchers used the Multi-Layer Perceptron (MLP) as the 
ANN model to analysis the liquefaction problem, while Goh 
used the Probabilistic Neural Network (PNN), originally 
proposed by Dr. Specht [10], to evaluate the liquefaction 
potential [11].  Although some studies have been done to 
recognize liquefaction potential by using the PNN model and 
MLP model trained with CPT-qc cases, little effort was made 
on discussing the major difference of the performance 
between the two models. 

In this study, a total of 315 CPT-based in-situ seismic cases 
of liquefied and non-liquefied site investigation, including the 
cases of Chi-Chi earthquake in Taiwan, were collected, 
complied, and used to train and test the PNN model and MLP 
model, respectively. The major features and differences 
between using these two models in the liquefaction potential 
evaluation were also presented and discussed in detail. 



II. NEURAL NETWORK MODELS 

A. Multilayer Perceptron (MLP) Model 

The multilayer perceptron (MLP) model is one of the most 
fundamental and popular multilayer feedforward networks 
and has been successfully employed in many diverse 
applications. Figure 1 shows a typical architecture of MLP 
consisting of three layers of interconnected neurons. Each 
neuron in the layer is connected to all neurons in the next 
higher layer, and each connection has a weight (a scalar) 
associated with it.  These weights determine the nature and 
strength of the influence between the interconnected neurons.  
The neurons in the hidden layer play the roles of nonlinear 
transformation that enable the MLP to simulate a more 
complex and nonlinear system.  Sometimes the number of 
hidden layer may be more than one, however, one hidden 
layer is good enough to simulate a nonlinear problem in 
practice. 
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Fig. 1 Typical architecture of MLP model 

The well-known back-propagation algorithm is used as a 
learning mechanism to correct the connection weights 
iteratively and to minimize the system error produced by each 
forward processing of input signal in the MLP.  The system 
error in the nth training pattern, )n(E , is defined as 
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where )n(d j  and )n(y j  are the jth component of desired 
output and computed output, respectively; p is the number of 
neuron in the output layer.  The incremental correction of 
each interconnection weight then can be computed by 
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where )n(w ji∆  is the incremental correction of the 
interconnection weight between neuron- i and neuron- j ; 

)n(w ji 1−∆  is the incremental correction in the last iteration; 

η is the learning rate and its range is 10 <<η ;α is the 
momentum factor and its range is 10 <≤ α  . 

The MLP has the generalized curve-fitting capability by 
using the incremental adaptation approach. However, this 
approach is time-consuming and is susceptible to falling in 
false local minima in practice.  To improve those drawbacks, 
Specht [10] introduced the PNN model, a feedforward neural 
network that can classify patterns using the Bayesian strategy. 

B. Probabilistic Neural Network (PNN) Model 

The PNN is the Bayesian classifier technique that has been 
widely used in many classical pattern-recognition problems. It 
can quickly form nonlinear decision boundaries from the 
existing input examples and then use the boundaries to 
classify patterns into any number of classifications.  Since 
the PNN is developed based upon the Bayesian strategy, it has 
been proved that the decision boundary implemented by the 
PNN can asymptotically approach the Bayesian optimal 
decision surface under the limit conditions.  By using this 
optimal decision surface to perform a pattern classification, 
the “expected risk” resulted from the misclassification can be 
minimized. 

Consider a two-category problem in which any pattern 
vector x with m  dimensions that belongs to one of two 
classes (Class A or B) and the states of nature can be labeled 
as Aθ or Bθ .  According to the Bayesian strategy for pattern 
classification, the classification rules can be expressed as 
follows: 
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where )x(f A and )x(f B are the probability density 
functions for Class A and B, respectively; AI is the loss 
function associated with the decision B)x(d θ=  while 
x belongs to Class A; BI is the loss function associated with 
the decision A)x(d θ=  while x belongs to Class B; Ah  is 
the priori probability of occurrence of patterns from Class A; 
and Bh  is the priori probability of occurrence of patterns 
from Class B ( 1=+ BA hh ).  

Note that in equation (3) the priori probabilities Ah  and Bh  
are known and can be estimated accurately. Determination of 
the loss functions AI  and BI  requires the subjective 
evaluation but the loss functions usually are set to be equal  
(i.e. BA II = ). Thus the key to using equation (3) is the ability 
to estimate the probability density functions )x(f A and 

)x(f B  based on those discrete patterns from Class A and B.  
There are so many well-developed probability density 
function estimators (PDF estimators) that can be used.  In 
this study, the simple summation of the multivariate Gaussian 
distributions centered at each training sample is used as a PDF 
estimator and it can be expressed as: 
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where m is dimensionality of input patterns; AN  is the 
total numbers of training patterns from Class A; AiX  is the 
ith training pattern from Class A; σ is a smoothing parameter. 

A four-layer feedforward architecture is used to construct 
the data processing of pattern classification with the Bayesian 
strategy.  Figure 2 shows a neural network organization for 
the classification of input patterns x  into two categories.  
In fig. 2, the input units, just like the neurons in the input layer 
of MLP, merely receive data from the input patterns and 
supply the same input data to all of the pattern units.  Each 
pattern unit then performs the nonlinear calculation with input 
pattern vector x and interconnection weights AiX (or BiX ). 
That is: 
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And then the summation units simply sum the inputs up 
from the pattern units corresponding to the same categories, 
respectively.  Finally, the output unit makes a comparison of 
the values of probability density functions determined by the 
summation units and produces a binary output depending on 
the highest probability density. 
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Fig. 2 Probabilistic neutral network architecture 

Instead of the application of the back-propagation algorithm 
and two distinct passes of computation in the MLP, there is 
only one pass of computation, referred to as the forward pass, 
in the PNN and no error correction is required.  Training in 
the PNN is simply setting the interconnection weights in one 
of the pattern units equal to each of the input training patterns 

AiX  (or BiX ) and then connecting the pattern unit’s output 
to the appropriate summation unit.  Training of the PNN can 
be regarded as searching the optimal value of the smoothing 
parameterσ since it is the key parameter that dominates the 
whole decision boundaries. The PNN and the MLP have the 
similar architectures but the distinct activation functions, key 
parameters and data processing skills.  The major 
characteristics and differences of the PNN and the MLP were 
summarized in Table 1. 

Table 1 Characteristics and differences of MLP and PNN 

Neural 
network 

MLP model PNN model 

Type of 
network 

Multi-layer 
feedforward network 

Multi-layer feedforward 
network 

Architecture Three-layer structure  
(Input layer, hidden 
layer and the output 
layer) 

Four-layer structure 
(Input units, pattern 
units, summation units, 
and output units) 

Learning 
algorithm 

Back-propagation 
algorithm 

none 

Control 
parameters

Learning rate, η  
Momentum factor, α  

Smoothing parameter, 
σ  

Activation 
function 

Sigmoid function Exponential function 

Optimal 
searching 
skill 

Steepest-descent 
method 

Searching in all possible 
range 

Computing 
time 

Long Very short 

Drawbacks Time consuming 
Sensitive to a local 
minima 

Large memory required

III. CASE HISTORY 

In the present study, the database of field liquefaction cases 
with the in-situ test measurements (CPT-qc) was used on the 
training and testing the neural network models.  These field 
cases were collected and complied from the worldwide field 
records of the liquefied and non-liquefied sites [11, 14, 15].  
A total of 315 CPT-based cases are contained in the database.  
The cases of the Chi-Chi earthquake in Taiwan are included.  
The total number of field cases used in the analysis is more 
than that used in the previous studies.  The complete 
database forms a basis to evaluate the feasibility and the 
performance on the evaluation of liquefaction potential by 
using both the PNN model and MLP model. 

IV. DATA PROCESSING 

Data processing can be simply divided into several 
procedures, such as selection of the input and output variables, 
data preprocessing of scaling of data range, construction of 
the neural network’s architecture, preparation of training and 
testing dataset, and so on. The detailed procedures used in the 
study are described as follows. 

A. Input Variables 

Various combinations of the input parameters have been 
tried to assess liquefaction potential in previous study [6, 8, 9]. 
Table 2 summarizes the input variables and the number of 
case records that they concerned and used. Table 2 shows that 
the empirically calibrated parameters were used as the input 
variables in the ANN analysis by many of the researchers.  In 
fact, the calibration on the input parameters was not 



necessitated because the ANN model considered the 
inner-relationships between the different input parameters 
inherently. Any calibration or empirical correction of input 
variables would be automatically taken into account in the 
ANN model.  Hence, in this study the original measurements 
without any prior-calibration that significantly influenced 
liquefaction potential were selected as input variables. They 
are earthquake magnitude ( M ), peak ground acceleration ( a ), 
the total and effective overburden pressures ( oo ,σσ ′ ), and the 
cone resistance (CPT-qc). 

Table 2. Various combinations of input variables and number 
of cases used by previous researchers 

Authors 
(year) 

Selected input variables No. of 
cases 

No. of 
training 
cases

No. of 
testing 
cases

 
Goh 
(1996) 

50

501

501

1

501

D,a,,q,M
,,a,D,,q,M

,a,D,,q,M
,a,,q,M

D,,q,M

oC

oooC

ooC

ooC

oC

σ
σσστ

σστ
σστ

στ

′
′′
′′

′′
′

 

 
 

109 

 
 

74 

 
 

35 

Juang et 
al. 
(2000) 

SL,R,,R,q pofcN σ ′  225 163 62 

Z,,M,q,,a,D
,M,q,,a,D

M,q,,a,D

oco

oco

co

σσ
σσ

σ

′
′
′

50

50

50

 
 

170 
 

134 
 

36 
 
 
Baziar 
et al. 
(2003) FC,M,q,,a,D coσ ′50  80 70 10 

This 
study 

coo qMa ,,,, σσ ′  315 236 79 

B. Output Variables 

The observation of liquefied or non-liquefied sites is the 
only output variable in the neural network modeling. The 
output unit gives a binary value of 1 for liquefied sites and of 
0 for non-liquefied sites. During the testing phase, the output 
in the PNN model was designated as the value of 1 
corresponding to the highest probability density function for 
the liquefaction category and the value of 0 corresponding to 
the highest probability density function for the 
non-liquefaction category. However, in the MLP model, the 
input pattern was considered either liquefied if the final output 
was larger than 0.5 or non-liquefied if it was less than 0.5 
during the testing phase. 

C. Data Preprocessing 

Before entering the data to the ANN, the preprocessing on 
the input data are generally required because of the reasons of 
accuracy and numerical convergence. One of the most useful 
preprocessing is normalized the primary data into the range of 
0-1. Eq. (6) shows the linearly scaling way considered in this 
study. 
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where =ix  ith dimension of the input data;  xi = ith 
dimension of the scaled input data;  )x(MAX i = maximum 
value in the ith dimension of input data; 

  )x(MIN i = minimum value in the ith dimension of input data; 
m = dimensionality of input data. 

D. Input Data 

Input data in the training and testing phase was randomly 
selected from all the gathered cases in a specific proportion. In 
this study, 236 cases (about 75% of all the cases) were used as 
input data in the training phase while the other 79 cases (25% 
of all the cases) were implemented during the testing phase. 

E. Architecture of Network 

As described previously as section II, we knew that the 
architecture of the PNN model can be created completely 
according to the following factors, i.e., the number of the 
input variables, the number of the output variables, the 
number of the cases used in the training phase, and the 
number of category that needed to be classified.  Once the 
four factors are known, the architecture of the PNN model can 
be determined easily.  However, in the MLP model, the 
determination of its optimal network architecture would be 
depending on trial and error. The structures which of one to 
ten neurons in the hidden layers were used on data processing 
in MLP model and tried to searching out the optimal number 
of the hidden layer neurons with the highest performance on 
recognition. Table 3 shows the numbers of neurons used in the 
network architectures of PNN and MLP models. 

Table 3. The numbers of neurons used in the network 
architectures of PNN and MLP models. 
In PNN model In MLP model 

No. of 
input 
units

No. of 
pattern 
units

No. of 
summation 

units 

No. of 
output 
units 

No. of 
neurons 
in input 

layer 

No. of 
neurons 

in 
hidden 
layer

No. of 
neurons 

in 
output 
layer

5 236 2 1 5 1~10 1 

F. Analysis and Results 

Because of the sensitivity of false local minima in the MLP 
model analysis and to overcome this drawback, one thousand 
times of training processing were implemented for each MLP 
model of different number of hidden layer neurons with 
randomly initialized connection weights. And then the optimal 
result was picked up in each “one thousand processing”. Table 
4 summarizes those results of different number of hidden 
layer neurons. It shows that the MLP model with 7 
hidden-layer neurons has nearly perfect performance on 
identification of liquefaction potential of field cases. Only two 
cases were failed to be recognized in all 315 cases. And more 
than 99% of overall successful rate of recognition could be 



obtained by using this MLP model. Nevertheless, this kind of 
approach that needed perform very large number of trail and 
error processing was still very time-consuming. 

Table 4 No. of successfully recognized cases by using MLP 
models with different hidden layer neurons 

No. of cases recognized successfully No. of 
hidden layer 

neurons 
In training 

phase 
In testing 

phase 
Overall 

1 223 71 294 
2 231 73 304 
3 235 76 311 
4 235 76 311 
5 235 77 312 
6 235 77 312 
7 235 78 313 
8 236 77 313 
9 236 76 312 

10 236 77 313 

Meanwhile, in the data analysis of using the PNN model, 
for giving the highest performance on pattern classification it 
is very essential to find out the proper smoothing parameter, 
σ  because the value of σ can directly dominate the shape 
modes of PDF and the PDF is used to form the basis for 
determination of the decision boundary to classify input 
patterns correctly. The optimal value ofσ can make PNN 
model to form the optimal decision boundary to separate the 
liquefied and non-liquefied cases with a maximum rate of 
recognition both in the training and testing phases. Experience 
shows that the optimal value ofσ could be determined by 
searching through all the possible value in the range from 
0.0005 to 1. Very little computing time was required on 
searching for the optimal value of smoothing parameterσ .  

In this study, the optimal value of the smoothing 
parameterσ in PNN model was found to be 0.035. By using 
the PNN model with this optimal smoothing parameter, four 
cases were failed to be recognized in all 315 cases and the 
overall successful rate of recognition was 98.7%. 

For comparison, both the optimal analysis results by using 
MLP model and PNN model were listed as table 5(a) and 
table 5(b). In the training dataset, all the cases could be 
recognized successfully by using PNN model while there was 
only one case failed to be identified by MLP model.  On the 
other hand, in the testing dataset, the rate of recognition made 
by MLP model was better than that predicted by PNN model. 
There was only one case failed to be recognized by using 
MLP model in 79 testing cases, while there were four cases 
misclassified by using PNN model in the same dataset.  

The overall rate of recognition made by using MLP model 
was over 99% and was slightly higher than that performed by 
using PNN model. Nevertheless, the difference between the 
overall rate of recognition in the PNN and the MLP is 
considerably minor. But more searching effort should be made 
in data analysis of MLP model to overcome the false local 
minima problem and to find out the optimal results. 

Table 5(a). Number of successfully recognized cases by using 
PNN model and MLP model 

No. of cases No. of cases 
successfully 

recognized by PNN 

No. of cases 
successfully 

recognized by MLP
Training 
dataset

Testing 
dataset

Training 
dataset 

Testing 
dataset 

Training 
dataset

Testing 
dataset

236 79 236 75 235 78 

Table 5(b). Rate of recognition by using PNN and MLP model 

Rate of recognition by using 
PNN model (%) 

Rate of recognition by using 
MLP model (%) 

Training 
dataset

Testing 
dataset

Overall Training 
dataset 

Testing 
dataset

Overall

100 94.9 98.7 99.6 98.7 99.4 

IV. CONCLUSIONS 

The powerfulness and high-performance of using the PNN 
model and MLP model in the evaluation of the liquefaction 
potential is presented. Very high rates of recognition on 
identifying the cases of liquefied and non-liquefied sites can 
be obtained by both using the PNN model and MLP model 
after examining the cases experienced during the past 
earthquakes. Various empirical calibrations on input data are 
not necessary because the complex inner-relationships 
between the input variables could be automatically considered 
both in the PNN model and the MLP model simulation. 

Although the overall rate of recognition made by using 
MLP model was slightly higher than that performed by using 
PNN model, more searching efforts and computing time 
should be taken in the training phase of MLP model to 
overcome the interruption of false local minima and to find 
out the optimal results. 
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