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   Abstract - The Kyutech COE program "World of brain 
computing interwoven out of animals and robots" launched 
in 2003. The main objective of the program is to establish new 
information technology by imitating the processing system in 
brain and nervous system, and learning the formation mechanism 
of behaviors. The robotics research group at the Kyutech 
COE takes charge of the application of biomimetic intelligence 
into robotics. In this paper, we introduce  three biomimetic 
intelligence topics, which are (i)Central Pattern Generator 
(CPG) for bipedal walking, (ii)Self-Organizing Map (SOM) for 
environment recognition and navigation of mobile robots, and 
(iii)Task Optimization in the Presence of Signal-dependent noise 
(TOPS(a)) model for trajectory planning.

I. CENTRAL PATTERN GENERATOR FOR BIPEDAL WALKING

A. Bipedal walking
The intelligence of robot is widely recognized as the 

product of the interaction between the artificial intelligence 
and physical capabilities. Based on the idea, the various 
humanoid and bipedal walking robots have been developed 
and the possibilities of humanoid robots are examined with 
simulations and experiments. In order to realize the bipedal 
walking, there are many problems to overcome, such as motion 
control, torque control, development of new actuators, and so 
on. Locomotion control is one of the most important problems 
to be solved, and well-known control method “ZMP [1]” has 
been proposed to compensate rolling and pitching moments. 
Though human beings do not care about such compensation, 
the smooth bipedal walk is realized. The rhythm generator 
mechanism called Central Pattern Generator (CPG) [2][3] 
has been proven to be involved in rhythmic activities, such 
as locomotion, respiration, heartbeat, etc. The locomotion 
employing Central Pattern Generator (CPG) attracts attention, 
because both a nervous system and a musculo-skeletal system 
have interaction with each other, and the oscillatory dynamics 
is achieved with CPG networks.

CPG is a model to represent mutual inhibition among 
neurons, such that a neuron's excitation suppresses others 
neurons' excitations. Matsuoka[4] proposed a mathematical 
model, and gave some mathematical conditions for mutual 
inhabition networks represented by a continuous-variable 
neuron model to generate oscillation. Taga et. al. [2][3] 
proposed a principle of adaptive control of locomotion system, 
where nervous, musculo-skeletal, and sensory systems behave 
cooperatively to adapt to unpredictable environments. The 
results of bipedal walk in 2-D simulation show robustness 
against the change of slopes. Miyakoshi et. al. [5] expanded 
the 2-D simulation to 3-D motion, and the stable stepping 
simulation was realized in the simulations. Hase et. al. [6] 

proposed a parameter optimization method using Genetic 
Algorithm (GA), and analyzed the 3-D motion with a precise 
musculo-skeletal system and a hierarchical nervous system. 
Also, the motion control method using nonlinear oscillators 
have been proposed and verified by quadruped robots [7][8][9] 
and hexapod robot [10][11].

This paper describes a CPG parameter searching method 
with GA to obtain the CPG parameters efficiently [12], which 
has five steps corresponding to the target joints. The outputs 
of the CPG network represent the target joint angles, and the 
bipedal walking simulation is discussed and examined using 
the CPG network and feedback signals from a touch sensor 
at foot. The simulation model is constructed using a motion 
analysis software, DADS [13], and the control system of 
bipedal walk is constructed with MATLAB/Simulink.

B. Parameter optimization with genetic algorithm

CPG is a model of biological rhythmic system, and consists 
of some neural oscillators where mutual inhibition among 
neurons is modeled such that a neuronʼs excitation suppresses 
other neurons  ̓excitations. In this paper, the mathematical 
model of CPG proposed by Matsuoka [4] is introduced 
into the locomotion of a bipedal robot. The model among n 
neurons with adaptation is expressed as shown in (1).

            (1)

    
Here, ui is a membrane potential of the i-th neuron, vi is 

the variable that represents the degree of the adaptation, Tu, 
Tv and β are the parameters that specify the time constant for 
the adaptation, the wij indicates the strength of the inhibitory 
connection between the neurons. u0  is an external input with 
a constant rate, and feedi is a feed back signal and discussed 
e.g., in [14][15]. The mathematical conditions to generate 
oscillations are analyzed precisely in [4]. An attractive 
feature is that the CPG can adapt to external signals from the 
sensory system, the nervous system and the unpredictable 
environment. The outputs of CPG return to the rhythmical 
oscillation with the same frequency if the external signals are 
removed. The CPG network for bipedal walk is designed to 
have an oscillator with two neurons, which are an extensor 
neuron and a flexor neuron, on each joint. The output signals 
of the neural oscillators are used as target angles of the 
corresponding joints. The parameters in (1), Tu, Tv, β and wij 
are optimized using Genetic Algorithm (GA). 

Tudui / dt = −ui − βvi − wij yjj=1

n∑ +u0 + feedi
Tvdvi /dt = − vi + yi
yi = max(0, ui )



C. Parameter optimization with Genetic Algorithm
In order to obtain a target time series of the joint angles, 

the angles of ankle, knee, hip and waist joints are measured 
using a real-time motion capture system. Genetic algorithms 
are introduced to search the parameters of CPG network in 
Fig. 1. Genetic algorithm is an optimizing algorithm based on 
the mechanics of natural selection and natural genetics and 
applied to various kinds of optimization problems [8]. 

In the CPG network in Fig. 1, there are 271 parameters to 
search. It is difficult to find all parameters at once, therefore, 
the optimization process is divided five steps as shown in Fig. 
1; (i) parameters of two hip joints, (ii) two hips, a knee and an 
ankle joint of the left leg, (iii) the lower body network, (iv) the 
upper body network, and (v) the total network.

The strategy of GA is as follows. 
Selection: The outputs of CPG network will change widely by 
the subtle change of parameters. Therefore, an elite strategy is 
applied in order to preserve the individuals with high scores in 
the successive generations. Comparing the highest evaluation 
values changing the rate of elite 0% to 50% at (1), the rate 
of elite 10% is selected. The rest of individuals (90%) are 
selected by a roulette strategy based on the evaluation value at 
random. 
Crossover: The two-point-crossover is used, and a right point 
is in the right half region and a left point in the left region. 
The central part between the two points is exchanged with the 
probability of 80 %. 
Mutation: The probability of mutation is 0.5%. 
Coding: Each parameter is expressed in 12 bits, and one bit 
corresponds to 0.003. The parameters are within [-6.141, 
6.141]. And the number of individuals in one generation is 
500. 
Evaluation: The evaluation value is given as the difference 
between the target joint angles and the output of CPG network. 

At the first step (i), the parameters of the hip joints are 
calculated, and the comparison of structures with and without 
a self- recurrent connection is performed, and we decided 
not to use the self-regressions in neurons from the results. 

Consequently, the self-regressions of each neuron are not used 
in the following four steps. (ii) Secondly, the parameters of 
hip joints, a knee joint and an ankle joint of the right leg are 
calculated based on the hip parameters obtained from the step 
(i). The two structures, the bidirectional connections among 
the hips, a knee and an ankle neurons, and unidirectional 
connections are compared. The parameters for the hip joints 
are inherited from those of step (i). And small random values 
within the range of [-0.045, 0.045] [rad] are added. The 
other parameters take random values within [-6.141, 6.141]. 
The result shows that the CPG network with unidirectional 
connections can express the target joint angles as same as 
with bidirectional connections. (iii) Next, the parameters of 
the lower body are calculated using the result of (ii). The 
structure is designed to have a symmetric structure. (iv) The 
parameters of the upper body and the connections between the 
waist joints and the hip joints are obtained. The connections 
between left and right hip joint take the same values as those 
in (iii). (v) Finally, the total parameter optimization is carried 
out using the those of (iii) and (iv). The parameters which can 
output the similar oscillations close to the target joints angles 
are obtained by dividing the optimizing process into five steps. 
The obtained parameters, and the trajectories of each joint 
and the output of CPG are described in [12]. The parameters 
are introduced to the bipedal walk simulations, and feedback 
signals from touch sensors on foot are fed to the variables feedi  
The results show the effectiveness of the present approach.

II. SELF-ORGANIZING MAP FOR ENVIRONMENT 
RECOGNITION AND NAVIGATION OF MOBILE 

ROBOTS
A. Self-Organizing Map (SOM)
  Self-Organizing Map (SOM) is one of the topologically 
correct feature maps proposed by Kohonen[16] and known as 
one of attractive method to extract the characteristics in data 
and to classify data into clusters through its self-organizing 
process. Brains of many higher animals appear to achieve 
topological relationship through a stream of sensory inputs, 
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Fig. 1. The  CPG network for bipedal walk. Each circle means a neural oscillator, giving a target joint angle. The optimization process is divided into five steps.



and several algorithms have been suggested to account for 
the neural processing. The SOM has the algorithm which is 
capable to establish the feature map from learning a random 
sequence of input samples. The Kohonenʼs algorithm can be 
represented in a simple iterative form, therefore, the algorithm 
demonstrates its capability with computational power.
 In the field of robotics, the SOM attracts attention as an 
efficient tool to realize robot intelligence, e.g, Ritter and 
his group have been investigating the research on the direct 
experimental approaches to elucidate the architecture of 
higher brains associated with the possibilities and limits  of 
artificial control architectures for robot systems [17]. And the 
techniques of SOM are applied into problems such as posture 
analysis[18], self-location[19], collision avoidance, path 
planning and so on [20], and the results show the robustness 
and adaptability.
 We have been investigating the application of neural network 
technology into the Autonomous Underwater Vehicles 
(AUVs) focusing on the capability of neural networks 
such as learning, nonlinear mapping. Underwater vehicles 
are expected as the attractive tools for the operation in the 
extreme environment such as the deep ocean survey. In order 
to realize the useful and practical robots which can work in 
the ocean, underwater vehicles should take their action by 
judging the changing condition from their own sensors and 
actuators, and are desirable to make its'  behaviors with limited 
efforts of the operators, because of features caused by the 
working environment. Therefore, the mobile robot should be 
autonomous and adaptive to their environment. Considering 
the above features, we proposed an adaptive control system 
and a collision avoidance system[21].
 Development of the navigation system which can navigate 
the vehicle without the collision to the obstacles is one of the 
most important problems in order to realize the AUVs. In this 
paper, Self-Organizing Map (SOM) proposed by Kohonen are 
applied to the navigation system which takes the distances to 
the surroundings as inputs, and outputs the direction for the 
robot to proceed. The efficiency of the system and the
adaptive learning method for navigation are investigated 
through the simulation and experiments with an underwater 
vehicle Twin-Burger [22].
 Here gives a brief account of Kohonen’s algorithm.The 
algorithm describes a map from an input space V into an 
output space A. The output space consists of nodesj, which are 
usually arranged in vertices of a two-dimensional lattice. For 
each node j in A, a reference (weight) vector mi is assigned, 
and the same input vector x in V is broadcasted to all of the 
nodes in A. The best-matching node, the “winner” node is 
defined according to (2).

       (2)

       (3)

The winner node m
c
 are selected by referring to an arbitrary 

norm, here, the Euclidean norm in the input space V. Updating 
of m

i
 is restricted to a topological neighborhood Nc of the 

winner node m
c
, and the weights are updated with (3).

B. Environment recognition

 An enviornment recognition based on SOM is described here. 
The target underwater robot is equipped with 6 ultrasonic 
range sensors in the horizontal plane, to measure the distance  
to the obstacles, and the sensors are set in backward, 
rightward, right-forward, leftward, left-forward  and forward. 
The enviornment recognision system estimtes robot's situation 
based on obtained learning results, "map" in Fig.2, based on 
typical locations. The teaching data x consists of distances ri 
(i=1~6), and tx, ty the target direction expressed in the vector 
form of x-y coordinate.
 The teaching data x include the inputs from the sensors and 
outputs to the control system (the target direction). Therefore, 
the mapping function, the relationship between the situation 
of robot and the action, can be acquired through the learning 
process. This kind of network is proposed by Yamakawa, 
et. al, and called as SOR (Self-Organizing Relationship) 
network [23]. The learning process in the conventional SOM 
is regarded as the unsupervised learning. In the SOR, as the 
network learns the function between inputs and outputs, it can 
be easily extended to the supervised learning. 

C. Results of learning and behavior of a robot

 The obtained map consists of 40 x 40 nodes. The boundaries 
are clearly observed and some clusters are constructed in the 
map. The robot takes an action by finding the best-matching 
node in the map. It is shown that if the location of robot is in 
the upper side of the map, the robot tends to go forward, and if 
in the lower side, go back. And the robot will turn right if the 
location of robot is in upper-right of the map, and turn left if 
the robot is in the lower-right and left part of the map. 

x − mc = mini { x −mi }

mi(t + 1) =mi(t) +α x(t) − mi(t)[ ] ∀i ∈Nc(t)
mi(t +1) = mi(t) ∀i ∉Nc(t)

Fig.2 Results of learning from the basic rules, “Map”. The 
target direction in the left figure is colored using the color 
arrangement in the right figure.

Fig.3 The output data tx and ty are obtained as the last the two 
values of the winner node which is selected based on input ri.



 The winner node is selected by computing the Euclidean 
norm between the measured distances and ri and then, the 
target direction, the heading of the robot, is defined with the 
parameters tx, ty  in the winner node (Fig.3).

D. Simulation and experiment with map

 The simulation is that the robot goes around the maps and 
avoids the collision. The results of the simulation are shown in 
the Fig. 4. In the figure, the black area means the vacant space 
which the robot can transit freely, and the area depicted in the 
light color expresses the walls and obstacles, and the white 
square is the robot. The trajectories of the robot are drawn in 
the white lines. The robot simulator calculates the distances 
as the pixel number from the center of robot to the first light 
pixel within the range of 30 degrees for the each direction. 
The robot can move without a collision in the simulation. The 
robot tends to transit in the forward direction and turn left in 
the corner, this property  is caused by the target direction of 
the input data. 
 The proposed navigation system with the  Map is investigated 
with an underwater robot Twin-Burger. The Twin-Burger is 
an autonomous underwater vehicle designed as a versatile test 
bed for software development. The experiments are carried 
out in a circular pool with the diameter of 6 [m]. The detail 
of experimental results are in [24]. The results shows that the 
underwater robot can move without the collision, and takes the 
designed actions. This system symbolizes the local condition 
of the robot in 2-D plane and makes decision of the robot.

III. TASK OPTIMIZATION IN THE PRESENCE OF 
SIGNAL-DEPENDENT NOISE (TOPS(α)) MODEL

A. Trajectory planning models
In the conventional trajectory planning models such as 

minimum jerk model[26], minimum torque change model[27], 
minimum commanded torque change model[28], minimum 
variance model[29], the boundary condition (position, velocity 
and acceleration of the start and end points) must be specified 
to solve a constrained nonlinear optimization problem.

In the TOPS(α) model the trajectory planned so as 
to maximize task achievement TA and minimize energy 
consumption in the objective function 
.

The task achievement TA is a function of the probability that 
the hand is in the target region. It is not necessary to specify 
the boundary condition. Because of the signal-dependent 
noise, the smoothness is implicit in the minimum variance 
and the TOPS(α) model. Simulation result showed that an 
additional constraint (e.g. minimum energy) must be required. 

B. Experiment

So far, the hand trajectories were mainly measured in 
point-to-point movements. In this experiment the target is not 
a stationary point but a moving disk.
Figure 5a shows the experimental setup. The experiment was 
performed as follows; 
(1) Figure 5b: the subject set his hand at the start position. 
(2) Figure 5c: the subject moves his hand toward the right 

direction at a sign from the experimenter. 
(3) Figure 5d: After ballistic movement time tf=0.5 [sec.]), 

the target circle (diameter DT=0.05[m]) appears at the 0.3 
[m] rightward from the start position and start to move 
at constant acceleration. After the tracking movement 
time (te=1 [sec.]), the target return the initial position and 
disappear.

(4) The subject instructed to keep the cursor in the target 
circle while the target is displayed (form the time tf to te).

C. Comparison between experimental data and numerical 
prediction

  Figure 6 shows the ballistic part of the trajectories (time 0 
to tf) of the subject and models. The dotted lines are mean 
hand trajectories of eight subjects. TOPS(α=0) denotes 
the maximum task achievement without minimum energy 
consumption.  TOPS(α=5) denotes the maximum task 
achievement with minimum energy consumption. MCTC, 
MTC, and MJ denote the minimum commanded torque 
change, the minimum torque change, and the minimum jerk 
models, respectively.
  We must specify the boundary condition accurately in the 
case of the conventional models. In this experiment, for the 
boundary condition, we used the the movement of the center 
of the target at the end time of the ballistic movement (tf =0.5 
[sec.]) (initial velocity vx0,vy0)=(0,0.8), constant acceleration 
(ax, ay)=(0,-3.2)). As shown in the figure 3, the TOPS(α) 
model predicted convexed trajectories that agreed well with 
trajectories of subjects.

D. TOPS(α) model

We propose a new framework for wide variety of motor 
control: the TOPS(α) (Task Optimization in the Presence of 
Signal-dependent noise) model. The optimum criterion of 
this model is combination of the maximum task achievement Fig. 4 Results of simulation with the Map.
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and the minimum energy consumption. We showed that the 
trajectories predicted by this model agree well with that of 
human subjects in the case of the moving target. To verify the 
TOPS(α) model, quantitative examinations must be done in 
the near future.

IV. CONCLUTIONS
In this paper,  the three biomimetic intelligent technologies are introduced 
and applied to robotics. This kind of technique has the possibility to establish 

new and inovative infomation processing methods. We expect that robots 
with flexible silicon brain are realized and make our society more comfortable 
living space.
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