
Ab s t rac t - Thi s paper di s cus s es faul t to l erance i n
percept i o n-bas ed ro bo t i cs fro m the v i ewpo i nt o f
eco l o g i cal ps y cho l o g y . A predi ct i o n-bas ed s ens o ry
netwo rk us i ng neural netwo rks i s pro po s ed fo r
detect i ng a faul t i n s ens i ng s y s tems . A
trans fo rmat i o n matri x ex tracts perceptual
i nfo rmat i o n fro m the s ens o ry i nputs that mi g ht
i nc l ude faul t i nputs o wi ng to breakdo wn.
Furthermo re , ev o l ut i o nary co mputat i o n i s appl i ed fo r
the l earni ng o f s ens o ry netwo rk. We appl y the
pro po s ed metho d to a mo bi l e ro bo t . Co mputer
s i mul at i o ns s ho w the pro po s ed metho d can detect the
faul t o f s ens o rs and can ex tract perceptual

i nfo rmat i o n us ed fo r dec i s i o n maki ng .

I. INTRODUCTION
Robotic intelligence has been discussed with the development
of artificial intelligence (AI) and cognitive science from the
point of historical view [1-3]. In classical AI, world modeling,
problem solving, task planning, and others have been
discussed, but representational and inferential frame problems
were pointed out [1]. To avoid the frame problems, R.Brooks
proposed subsumption architecture directly using couplings of
sensory inputs and action outputs without generating a
complete world model [4]. Afterward, behavior-based robotics
and evolutionary robotics have been discussed by using
intelligent techniques such as fuzzy, neural, and evolutionary
computing, as well as reinforcement learning [4-6]. The
behavior-based robotics realizes a real-time control based on

reactive motions, but it is pointed out that a robot cannot
perform sequential or complicated tasks. Therefore, hierarchical
methodology has been proposed to solve this problem. The
behavior coordination explicitly selects or combines some of
reactive motions according to the facing situation. Because this
kind of methods requires inference about all behaviors, high
computational cost is required. However, we don't consider all
possible behaviors, but we consider a few of specific behaviors
concerning the facing situation. This indicates a decision
making system or an action system is restricted by the
perceptual system. Especially, this kind of concept is very
important to avoid frame problems of the classical AI.
Accordingly, intelligent robotics should be discussed from this
kind of viewpoint.

It is very difficult to design robotic intelligence
beforehand, because an environment of a robot is unknown.
Therefore, the adaptation capability is required for a robot. For
example, perception can be performed by interpreting sensory
inputs, but we assume sensory inputs are correct and complete.
A robot would not work well if some sensors break down or if
the sensory inputs are incomplete or inaccurate. On the other
hand, the human perceptual system extracts information from
incomplete sensory inputs. This kind of discussion has been
done in the field of ecological psychology. In ecological
psychology, the smallest unit of analysis must be the
perceiving-acting cycle situated in an intentional context [2,3].
This indicates the human extracts information not from the only
current sensory inputs, but from the time-series of sensory
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inputs and action outputs according to spatiotemporal context.
In this paper, we apply the concept of sensory

network (SN) for realizing fault tolerance for the sensing
systems of a mobile robot. The sensory inputs are changeable,
but inputs from normal sensors can have a specific pattern
because robotic motion to its environment also has a specific
pattern. We assume a sensor is normal if the sensory inputs
can have a specific pattern. Otherwise, we assume a sensor is
faulty. Fault detection has been studied so far because of the
demands on reliability and safety of technical plants [7]. In
general, fault detection is done by using fault-sensitive filters
which monitor measurable signals of mathematical models of
process based on theoretical techniques. Fault detection is done
where the sensory inputs for monitoring are not faulty. In this
paper, we propose a fault detection method from sensory inputs
and decision making method using perceptual information
including incorrect sensory inputs. Furthermore, we apply
evolutionary computation for the learning of the perceptual
system. Section 2 explains the concept of perception-based
robotics, and proposes a prediction-based sensory network, an
error recovery method, and learning method of perceptual
system. Section 3 shows simulation results of a mobile robot
and discusses the effectiveness of the proposed method.

II.PERCEPTION-BASED ROBOTICS

A. A Sensory Network for A Mobile Robot
Behavior-based robotics directly uses the couplings of sensory
inputs and action outputs. However, a specific perception of an
object depends on the situation in its facing environment. The
perceptual system doesn't extract all features of the object, but
picks up the specific information of the object according to the
spatiotemporal context of the situation. Consequently, the
perceptual system does not construct a complete world model,
but makes ready beforehand for a next specific perception
according to the situation. In addition, the outputs of the action
system construct the spatiotemporal context for a specific
perception with the dynamics of the environment.
Consequently, the perceptual system and action system restrict
each other through the interaction with the facing environment.
In ecological psychology, this is called perceiving-acting cycle
[2,3]. We have proposed the concept of perception-based
robotics [8,9]. The perception-based robotics emphasizes the
importance of a perceptual system for the perceiving-acting
cycle. The perception-based robotics is discussed from the
viewpoint of information flow (Fig.1).

We consider collision avoiding and target tracing
behaviors of a mobile robot shown in Fig.2. The robot has
eight range sensors to measure the distance to obstacles (xi).

Action outputs of the robot are its steering angle (y1) and its

velocity (y2). A SN is applied to perceive its environment [6].

The robot receives quantitative information of the environment
by sensors. Next, the robot extracts qualitative information
through interpretation by suppressing or stimulating among
sensors (Fig.3). Here the perceptual system reduces distance
information into four-dimensional inputs (p=(p1, p2, ..., p4)T)

from eight-dimensional inputs (x=(x1, x2, ..., x8)T) by using a

following equation;
p Wx= , (1)
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where wm,n is a weight parameter corresponding to the nth

sensor of mth network (Fig.4). Figure 5 shows the structure of
a SN based on the relationship between sensory information
and perceptual information. The extraction of perceptual
information depends on the reliability of sensory inputs. In
general, the effective information has a specific pattern of
change and persistence, i.e., the change exists in the
persistence, while the persistence exists in the change. The
sensory information is useful for perceiving its environment if
a specific changing pattern exists in the sensory inputs.
Therefore, the weight parameter should be large, if the change
traces a specific pattern or if the change is large for a specific
perception. Accordingly, the flexible perception can be done by
updating the above weight parameters according to changing
patterns. The extraction of perceptual information depends on
the time series of sensory inputs recursively, i.e., the above
weight parameters for the perception are self-scaled. In the
following, we focus mainly on the reliability of sensory inputs
and degree of the change of sensory inputs.

B. Prediction-Based Sensory Network
The predicted values of other sensory inputs can be used for
monitoring or detecting the changing patterns of a sensory
input, because sensory inputs corresponding to a sensory
position can have a specific pattern according to robotic
motions and it is difficult to detect the fault of a sensor by
itself. We assume a SN composed of three sensory inputs (xi,

xj, and xk shown in Fig.6). The predicted distance values from

the ith sensory input are defined as x'i,j and x'i,k. They are

calculated by a following prediction function;

f x x xi i i j i k( ) → ′ ′, ,, . (3)

The error of each prediction is calculated as follows;

e x xi j i j j, ,= ′ − , (4)

e x xi k i k k, ,= ′ − . (5)

If the ith sensor works well without any problem, the above
prediction errors will be small or zero. Otherwise, they will be
large. Furthermore, the prediction error of ith sensor from xj

and xk are also defined as follows;

e x xj i j i i, ,= ′ − , (6)

e x xk i k i i, ,= ′ − . (7)

If the ith sensor breaks down, both of the above prediction
errors will be large. This indicates the fault of a sensor can be
detected by using the prediction errors. To summarize, if the
value of ei,j in eq.(4) is high, we must consider two reasons of

the prediction error of x'i,j owing to the fault of the ith sensor

and the measurement error of the sensory input of xj owing to

the fault of the jth sensor. Therefore, the weight parameter
corresponding to the sensor with relatively high prediction
errors should be reduced. If the value of ei,j in eq.(4) is higher

than ei,k in eq.(5), the weight parameters are updated as follows;
∆w em i i j i j, ( ) ,→ = − ×α (8)

∆w em j i i j, ( ) ,= − ×β (9)
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where ∆wm,i(i→j) and ∆wm,j(i) are the updating amounts owing

to the prediction error of x'i,j and owing to the measurement

error of the jth sensor, respectively. For example, if ei,j > ei,k,

ej,i > ej,k, and ek,i > ek,j when the ith sensor breaks down, then

their corresponding updating amounts are ∆wm,i(i→j), ∆wm,j(i),

∆wm,j(j→i), ∆wm,i(j), ∆wm,k(k→i), and ∆wm,i(k), respectively.

Therefore, the updating equation with respect to the weight
parameter of wm,i is as follows;
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Here the number of terms for updating is equal to the number
of the arrows with respect to xi in Fig.6. And then, the weight

parameters of the mth SN are normalized as follows;
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In this way, if the ith sensor breaks down, the weight
parameter is much reduced comparing with other parameters.

Furthermore, the weight parameter is reduced if the
change of sensory input is small. The temporally discounted
sum of change is calculated as follows;

C x t x ti i i= − − − −
=
∑γ τ ττ

τ

τ

( ) ( )
max

1
0 (12)

where γ is a discount rate; t is a current time step, τmax is the

maximal time steps to go back. If this value is smaller than a
given threshold, the weight parameter is reduced.

C. Neural Networks for Prediction
Neural networks (NN) have often been used for nonlinear
function approximation. NN is applied for predictor in SN,
i.e., each NN is used for learning to identify eq.(3) through
interaction with the environment. The total number of NN is
12 because each SN includes three predictors (see Fig.5). The
output of each neuron is calculated as follows,
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where Yp
l is an output of the pth neuron in the lth layer; S is a

Sigmoid function; Wp,q
l, θp

l, and Nl are a weight parameter

between the pth neuron of the lth layer and the qth neuron of
the (l-1)th layer, threshold of the pth neuron, and the number of
neurons of the lth layer, respectively.

NN learns the structural relationship to the sensory
inputs of neighboring sensors by using the relationship
between sensory inputs and action outputs. The next state of
sensory inputs can be predicted by the current sensory inputs
and motor outputs like a forward model of a robot. The inputs

concerning the ith sensor in the nth SN to a NN are the
previous sensory inputs, xi(t-1), xi(t-2), and xi(t-3), action

outputs, y1(t-1) and y2(t-1). The outputs of the NN are the

predicted values of other sensory inputs, x'i,j(t) and x'i,k(t)

(Fig.7). The learning of each NN is done by the back-
propagation learning algorithm [10]. Here, the measured values
of the other sensors are used as training data in the learning of
each NN.

D. Evolutionary Learning of Perceptual System
Evolutionary computation (EC) is a field of simulating
evolution on a computer, and its application is so wide [11,
12]. Especially, the field which uses EC to the adaptation of the
robot is called evolutionary robotics [13]. For the learning of
the perceptual system, we apply EC.

Candidate solutions are the set of parameters of NNs,
α and β, which construct the relationship among sensors in SN
(Fig.8). These parameters are the important parameters which
determines update amount in eq.(8) and (9). If these parameters
are too large, perceptual system will become unstable. On the
other hand, if these parameters are too small, adaptation
becomes slow. We use the evaluation function to be minimized
as follows;

E = w1
.Etime + w2

.Edistance (14)

where Etime and Edistance are the time steps and the moving

distance required to reach the goal point respectively. w1 and w2

are the weight for each evaluation items. Genetic operators are
crossover and mutation. The selection and the generation model
are based on steady-state genetic algorithm (SSGA). The SSGA
simulates the continuous model of the generation, which
eliminates and generates a few individuals in a generation

NN1 NN2
... NNi NN12

αi βi

...

Fig.8 Coding method representing a candidate solution

y1(t-1)

y2(t-1)

xi(t-1)
xi,j

'(t)

xi,k
'(t)...

xi(t-2)

xi(t-3)

Fig.7 A three-layered neural network for prediction



(iteration) [14]. Since the objective of the above evaluation
function is minimization, the candidate solution with the
maximal value is eliminated in the selection.

E. Action System based on Fuzzy Controller
A behavior of the robot can be represented by using fuzzy rules
based on simplified fuzzy inference [10]. The logical structure
written by fuzzy rules is easy for humans to understand and to
design. In general, a fuzzy if-then rule is described as follows,

If p1 is Ar,1 ... and pM is Ar,M Then y1 is sr,1... and yn is

sr,O

where Ar,m and si,o are is a triangular membership function for

the mth input and a singleton for the oth output of the rth rule;
M and O are the numbers of inputs and outputs, respectively.
Fuzzy inference is generally described by,
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where ar,m and br,m are the central value and the width of the

membership function Ar,m; R is the number of rules.

III. COMPUTER SIMULATIONS
This section shows several computer simulation results of a
mobile robot based on perceiving-acting cycles. Here we use
two behaviors of target tracing and collision avoiding, and use
two linguistic values of "dangerous" and "safe" for the collision
avoiding behavior [6]. The size of the environment is 500*500,
when the radius of the robot is depicted as circle is 7. The
sensing range is 90. The steering angle is restricted between -
30° and 30°. The maximum velocity is 10. Figure 9 shows a
simulation environment including seven obstacles and four

target points. A robot randomly moves among P1, P2, P3, and

P4. One trial is defined as moves from Pi to Pj. The number of

fuzzy rules is 10. The numbers of neurons of input, hidden, and
output layers in each NN layers are 5, 10, and 2, respectively.
The sensing range is depicted as a broken line. When the mobile
robot detects obstacles in the sensing range, it is depicted as a
full line.

The breakdown of a sensor occurs at the 11th trial.
Until that, every sensor works well. The number of maximal
trials is 30. The broken sensor is the 4th one. A random
number between 1 and 45 is used as faulty sensory input in
sampling.

Figure 10 shows a history of evaluation value
calculated by eq.(14). Figure 11 shows snapshots of the
trajectory of the mobile robot. The mobile robot was able to
move from P4 to P3 while avoiding collision with obstacles at

11th trial, although the 4th sensor broke down. At the 11th
trail, the mobile robot turns around P4, because the perceptual

inputs calculated by the weighted average using the
transformation matrix are incorrect owing to the breakdown at
fast. Afterward the weight value of the broken sensor fast
decreases (Fig.12), because the prediction error concerning the
broken sensor is high. In Fig.12, each weight value is plotted
every 100 time steps over all trials. Once the weight value of
the broken sensor decreases, the prediction of other sensors
becomes correct because the mobile robot takes motions before
the breakdown.
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To summarize, the SN can detect the breakdown
according to prediction errors among sensors and the changing
history of sensory inputs, and can update weight values for
extracting perceptual information.

IV. CONCLUSIONS
This paper proposed a prediction-based sensory network for
detecting fault of sensors of a mobile robot. The transformation
matrix extracts perceptual information used for decision
making. Furthermore, evolutionary computation is applied for
the learning of the sensory network. Basically, the degree of
correctness in prediction is used for detecting the fault of
sensors. Faulty sensory inputs can be detected by using specific
patterns of the input-output relationship obtained through
interaction with environment. Neural networks are used for
learning specific patterns. Computer simulations show the
proposed method can detect the fault of sensors and can extract
perceptual information used for decision making.

As a future work, we intend to discuss the detail of
fault tolerance capability of the proposed method from the
mathematical and psychological points of view. In addition, we
intend to discuss the relationship between change and
persistence of sensory inputs and action outputs in detail.
Furthermore, we apply the proposed method to a mobile robot
developed by us.

REFERENCES

[1] S.J.Russell, P.Norvig. Artificial Intelligence, Prentice-Hall,
Inc. 1995.

[2] M.T.Turvey and R.E.Shaw. Ecological Foundations of
Cognition I. Symmetry and Specificity of Animal-
Environment Systems, Journal of Consciousness Studies,
Vol. 6, No. 11-12, pp. 95-110, 1999.

[3] R.E.Shaw and M.T.Turvey. Ecological Foundations of
Cognition II. Degree of Freedom and Conserved Quantities in
Animal-Environment Systems, Journal of Consciousness
Studies, Vol. 6, No. 11-12, pp. 111-123, 1999.

[4] R.Brooks. A Robust Layered Control System for a Mobile
Robot, IEEE Journal of Robotics and Automation, Vol. 2, No.
1, pp. 14-23, 1986.

[5] J.Tani. Model-Based Learning for Mobile Robot Navigation
from the Dynamical Systems Perspective, IEEE Trans. on
Systems, Man, And Cybernetics, Part B: Cybernetics, Vol.
26, No. 3, pp. 421-436, 1996.

[6] T.Fukuda and N.Kubota. An Intelligent Robotic System Based
on A Fuzzy Approach, Proceedings of The IEEE, Vol. 87, No.
9, pp. 1448-1470, 1999.

[7] R.Isermann. Process fault detection based on modeling and
estimation methods - a survey, Automatica, Vol. 20, pp. 387-
404, 1984.

[8] S.Hashimoto, N.Kubota, F.Kojima and T.Fukuda. Genetic
Programming for Perception-Based Robotics, In Proc. of The

4th Asian Fuzzy Systems Symposium, pp. 674-679, 2000.
[9] N.Kubota, S.Hashimoto, and F.Kojima. A Sensory Network for

Perception-Based Robotics Using Neural Networks,
Proceedings of the 2003 International Joint Conference on
Neural Networks (IJCNN2003), pp.3151-3156, 2003.

[10] J.-S.R.Jang, C.-T.Sun, E.Mizutani. Neuro-Fuzzy and Soft
Computing, Prentice-Hall, Inc., 1997.

[11] D. E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison Welsey, 1989.

[12] D.B.Fogel. Evolutionary Computation. IEEE Press, 1995.
[13] S. Nolfi, D. Floreano. Evolutionary Robotics, The MIT Press,

2000.
[14] G.Syswerda. A Study on Reproduction in Generational and

Steady-State Genetic Algorithms, In: Foundations of Genetic
Algorithms, San Mateo, Morgan Kaufmann Publishers, Inc,
1991.

1.00

0.80

0.60

0.40

0.20

0.00

w
ei

gh
t v

al
ue

0 34200time steps

Breakdown
w1,2
w1,3
w1,4

Fig.12 Histories of weight values

11th trial

18th trial
Fig.11 Trajectories of the mobile robot


