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Abstract— It is argued that weight adaptations even 
during retrieval phase can greatly enhance the 
performance of a neurodynamic associative memory. Our 
simulations with an electronic implementation of an 
associative memory showed that extending the Hopfield 
dynamics with an appropriate adaptive law in retrieval 
phase could give rise to significant improvements in 
storage capacity and computational reliability. Weights, 
which are supposed to encode the information stored in 
the Hopfield neural network, are usually held constant 
once training /Storage is complete. In our case, weights 
also change during retrieval, hence losing information in 
the process, but resulting in much better retrieval of 
stored patterns. We describe and characterize the 
functional elements comprising the network, the learning 
system, and include the experimental results obtained 
from applying the network for character recognition in 
various noisy conditions. Stability issues emerging as a 
consequence of retrieval phase weight adaptation and 
implications of weights being used as transitory, 
intermediary variables are briefly discussed.  

 
I  INTRODUCTION 

      Recurrent neural networks exhibiting emergent 
computation have given a new impetus to neural network 
research. In a seminal paper, Hopfield [3] demonstrated that a 
system of fully connected two state McCullough Pitt’s 
neurons can exhibit emergent computational characteristics.  
As a generalization over the two state model, a network of 
neurons whose outputs can take a continuous range of values 
has been proposed later by the same author [5]. Such 
recurrent networks usually burrow a trajectory in the state 
space which begins with the computational problem and ends 
with the computational solution (where the system reaches 
equilibrium), user specifying the initial conditions which 
define where the trajectory begins. Several interesting 
generalizations of the Hopfield model like allowing higher 
order interactions among neurons [9], probabilistic updates to 
neuron states [10] , neurons having complex valued outputs 
[1]  have been made by various authors. Globally stable 
dynamic networks that learn and adapt at the same time have 
been proposed by Cohen and Grossberg [4] and Kosko [7] 
among others. To our knowledge, an electronic neural 
associative memory running weight adaptations even during 
retrieval phase does not exist in the current literature.  

A great number of past studies have shown that adaptive 
analog VLSI serves as an excellent medium to implement 
systems taking poorly conditioned inputs and performing 
specific perceptive tasks with an approximate level of 
accuracy [11-14]. Study and technical reports of ANN 
products indicate that development of analog hardware for 
neural networks is both practicable and promising. VLSI 
implementations of low-level biological sensory-processing 
systems characterized by homogeneous as well as 
heterogeneous connection strengths have already been 
developed [11,14]. In the present work the learning paradigm 
is an intrinsic part of the network; the weight dynamics and 
the forward dynamics are integral and are inseparable. 
Weight updates are calculated in a similar manner as the feed 
forward mapping, updates being parallel in nature. In such 
networks, the ability to process information with relatively 
slow and inaccurate elements in a massively parallel fashion 
is broadened to encompass the learning paradigm as well. 
Weights are normally adaptive as a part of training; on 
completion of training the weights are frozen and the network 
is used for regular pattern retrieval. In this paper we 
demonstrate that adapting weights in this fashion 
dramatically enhances the network capacity as an associative 
memory.  Unlike a connectionist network where knowledge is 
encoded in the form of weights, in our network the weights 
also change during retrieval, hence losing information in the 
process but resulting in much better recognition and 
computational reliability. 

The paper is outlined as follows. A brief description 
of the network dynamics is given in section II. Section III 
describes the architecture, weight dynamics and circuit 
implementation of the functional elements. Experimental 
results obtained by applying the network for character 
recognition tasks and simulation results comparing relative 
retrieval performance of the adaptive network with the 
Hopfield neural network is explained in section IV.Results 
are discussed in the final section. 

              

          II NETWORK DYNAMICS 

(For reasons of space we refer the reader to [3, 5] for 
details of the Hopfield Neural Network (HNN)) 
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A. Mathematical model 

Extending the dynamics of HNN as follows can 
accommodate weight adaptations in retrieval phase:   
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Equations 2.1 and 2.2 describe the dynamics of HNN, while 
equation 2.3 describes the dynamics at the interconnections 
between the neurons. Vi is the output state of the i’th neuron; 
wij represents the strength of the connection between the i’th 
and the j’th neuron; ui is an internal variable of i’th neuron; 
g(.) is known as a sigmoid function, usually chosen to be the 
tanh(.) function; λ is the steepness of the sigmoid function; τ  
and ρ are time constants of relaxation for the forward 
dynamics and  weight dynamics respectively. Weight matrix 
is hermitian and Wii =0. Equation 2.1 defines the time-
evolution of the state ui at neuron unit i; the value of ui  is fed 
through the sigmoid g(ui) to generate the node's output signal. 
Weight dynamics (eqn. 2.3) take place at a slower time scale 
than activation dynamics (ρ << τ) [6] and is consistent with 
the locality requirement i.e. the connection between ith and jth 
neuron depend only outputs of  ith and jth neurons only. 
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                                B. Stability Concern 
Dynamics of the system described by (Eqns 2.1, 2.2 

and 2.3) is dissipative since there is a Lyapunov energy 
function, E, associated with it .The energy function can be 
obtained by adding an extra term to the Lyapunov function of 
HNN dynamics and is as follows:  
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Proof: See Appendix 

Since the network dynamics has a Lyapunov 
function, it has fixed points, which are interpreted as stored 
memories of the network. This implies that the final output V 
settles in a fixed point.  

            C. The complete scenario 
       The retrieval process in case of adaptive weights 
progresses as follows: Initially, the weight matrix has all the 
stored patterns encoded in itself. That is, the initial weight 
matrix is calculated using Hebbian rule [2, 5].        
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Where Sp (p = 1 to P) are the set of patterns to be stored. 
During retrieval, the network is triggered by some initial 
condition within the neighborhood of a stored pattern, say, 
Sp. In tandem with the network state dynamics (2.1,2.2), 
weights also change according to equation 2.3. Finally, once 
the network state settles on the nearest stored pattern, Sp, the 
weight matrix sheds all the components other than those that 
correspond to Sp. When the weights converge we have, 
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which is nothing but the Hebb’s rule.  In such a state, the 
network has only one stored pattern; information regarding 
all other stored patterns is destroyed in the process of 
retrieving one particular pattern. Therefore, to retrieve a 
different pattern in a later session, the weight matrix must be 
reloaded again so that all the stored patterns are encoded.      
       To sum up, activation dynamics (Eqn 2.1, 2.2) compute a 
nonlinear mapping from input space to output space. The 
second unit modeled by (Eqn 2.3) coexists with the forward 
layer and estimates the updates for each weight in a collective 
and parallel fashion. Each processing element that computes 
the weight wij receives as input, vi , vj  which are the output of 
ith  and jth neurons respectively. This layer is referred to as the 
adaptive layer. Initial storage of patterns is one-shot and 
adaptations are carried out online, in retrieval phase only. 
Forward dynamics and Weight dynamics process 
simultaneously and form the entire network i.e. the nonlinear 
mapping and adaptivity are imbedded in the same network. 

 

         III CIRCUIT IMPLEMENTAION 

     A simple circuit model of (Eqns. 2.1, 2.2) is shown in 
figure 1. However, preliminary simulations showed that the 
model shown in Fig. 1 is not suited for simulating large 
networks due to the inadequate current pumping capacity of 
the opamp [2]. To solve this problem we used class AB 
current amplifiers after the main and the inverter opamps 
(Fig. 2). Without the current amplifiers, for large networks 
(with N > 10 neurons), the opamp outputs did not settle at 
+Vcc, but dropped to 0 with time. This modified circuit was 
used in all the simulations for comparison of performance 
with the adaptive model.  The current equation at the positive 
terminal of the noninverting opamp is,  
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   Where )1(±ijγ  represents the sign of connection between 
i’th and j’th neurons. Note that in Fig. 1, the output Vi of the 
first opamp is passed through an inverter. In the Hopfield 
model, if the connection from i’th neuron to j’th neuron is 
negative, the output of the inverter (-Vi) is connected to the 
j’th neuron through a resistor (Rij); if it is positive Vi is 
directly given as input to the j’th neuron. The last equation 
can also be written as: 
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Comparing (2.1) and (3.2) we have 
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Rearranging (3.3), we have, 
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     Therefore, once Rt and C are chosen, and the weight 
matrix calculated using (2.6), all the circuit parameters can be 
calculated using 3.4. To sum up, in the HNN model 
OPAMPS model nonlinear neurons and resistors model the 
fixed connections.   
      In the circuit implementation of the network with 
adaptive weights (AHNN), the fixed coupling resistances, 
Rij’s, of Fig.2 are replaced by voltage-controlled resistances 
as shown in Fig. 3. The capacitor voltage Vc controls the 
weight Wij between the ith and jth neuron. Applying KCL at 
node Vc,  
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       It is apparent that eqn. 3.6 is identical to eqn 2.3. Also, 

cij vW ∝ and RwCw is the time constant of relaxation for this 
layer. A four quadrant transconductance multiplier is used to 
implement the multiplication of local variables Vi and Vj in 
eqn 3.6, output of which charges the weight control 
capacitance. So far,using the multiplier, resistor and capacitor 
we have implemented the learning rule and obtained a 
voltage across the capacitance which establishes the value of 
the synaptic connection between the Ith and j th neurons 
respectively. Synaptic weight Wij is a conductance between 
output of jth neuron and input of i th   neuron which varies 
depending on the learning rule (the Capacitance voltage) .It 
can be modeled by using a complimentary pair of 
enhancement mosfets. Let us consider how the capacitor 
voltage Vc controls the weight wij of the (i, j) synapse. If §Vj 
is applied as the drain voltage of the MOS transistor, where § 
is a small constant, then for TGSDS VVV −≤  the device 
operates in the linier region of its characteristics. Under this 

condition for Vc › Vth , the drain current is given by the 
equation, 
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        Where K is the transconductance, W and L are channel 
width and length, respectively, TV  is transistor threshold 
voltage.  
          As Vc can take both positive and negative values, 
depending on output of four quadrant multiplier, a 
complimentary pair of P and N channel transistors have to be 
used in order to model both positive and negative weights. 
Voltage controlled conductance can also be implemented in 
several other ways using switched capacitor, switched ladder 
and CMOS switches. But after trying several possibilities we 
preferred this scheme as, the value of Rds can be scaled by the 
channel length to width ratio, L/W as apparent from 3.8. The 
switch normally remains off if Vgs ‹ Vth , but then with 
increasing Vgs greater than Vth the value of Rds drops quickly. 
When applying this configuration as a tunable resistance we 
should however keep in mind that, ideally, linear resistances 
of values as in equation 3.8 are only obtainable at the origin 
i.e.  Vds = Ids = 0. Otherwise slight nonlinearity due to the 
quadratic term in equation 3.7 is always present, and the 
weights can only be approximately considered as linier 
resistances. This should not be a serious problem, however, 
since no great precision of weight values is usually required 
for a neural network operating in a recall mode [10]. 
                         
                           IV SIMULATION RESULTS 
      The objective of our simulations is to investigate the 
consequence of weight adaptations in retrieval phase on the 
network performance as an associative memory. The 
immediate goal is not to maximize the performance but to 
achieve a good understanding of the network dynamics. 
       Experiment #1 (P/N Ratio): One of the most important 
performance characteristics of an associative memory is its 
storage capacity. 100 Neuron electronic models (N=100) of 
HNN and the AHNN were put on various storage/ retrieval 
tasks. It is well-known from the theory of HNN that 
increasing the number of stored patterns (P) beyond a critical 
value rapidly impairs network performance [2]. The number 
of stored patterns, P, is varied from 1 to 40 and the retrieval 
error is calculated by taking an average of 40 trials. 
     Firstly we define network’s performance. In all the 
simulations, the network’s initial state, V(0), is a noisy 
version of a stored pattern; Sp. Noise is added by flipping a 
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fixed fraction (14%) of bits in Sp.  Ideally, for V(0) close to 
Sp, the final state, Vfinal, of the network must equal Sp. Since 
this does not always happen, we define the error in network 
performance as the root mean square value of ||Vfinal - Sp|| 
over many trials. In the HNN the weight matrix encoding the 
stored patterns is calculated using (2.6) and is converted into 
resistances using (3.4). In the case of AHNN the weight 
matrix is loaded as initial conditions on the capacitance of the 
weight dynamics and is allowed to evolve in time 
simultaneously with the activation dynamics during retrieval 
phase. Typically the circuit is simulated for 130 µsec, by 
which time it is found that the opamp (Neuron) outputs 
saturate near + Vcc. Fig 6  shows the variation of the  error in 
retrieval for HNN and AHNN as a function of number of 
patterns (P) stored simultaneously. Note that increasing the 
number of stored patterns beyond approx. 14% of N rapidly 
impairs network performance of HNN.This is a known result 
from HNN theory. It is also evident from the graph that the 
adaptive model guarantees a significantly higher P/N ratio 
(approx. 0.26 as compared to 0.14 of HNN). Note that the 
deterioration in fruitful retrieval of the stored patterns is also 
much slower in AHNN as compared to the HNN. 
       Experiment #2 (Character Recognition): We consider a 
simple numerical character recognition task. The memory 
patterns 0 to 9 are stored in the form of 10 X 10 two 
dimensional images. In the adaptive network, the weight 
matrix initially has all the stored character patterns encoded 
in itself. That is, the initial weight matrix is calculated using 
Hebbian rule [5] and is fed as initial conditions on the 
capacitances of the learning block, unlike the Hopfield 
network in which the weights converted into fixed resistances 
using eqn 3.4.  The network is initialized from the 
neighborhood of any of the stored patterns, say Sp. The 
output image retrieved is reconstructed once the network 
stabilizes. Figure 7 shows comparative retrieval performance 
the HNN and AHNN, with all the ten numeric characters 
stored and noise kept  constant at 14 percent ( by flipping bits 
at  random positions). It is readily apparent from the figure 
that adapting weights during retrieval can indeed result in 
better recognition of the stored characters. Also, weights in 
the adaptive model finally settle approximately at the weight 
values separately calculated for the stored pattern Sp only.       
In some cases we also observe that output patterns appear to 
be combinations of several patterns (character 4) for the 
HNN but are correctly identified by AHNN. Sometimes even 
patterns that are completely inverted were obtained. (This is 
acceptable as the Lyapunov energy function has identical 
values for complimentary states).When the initial conditions 
are given as a mixture of numbers, for example, an initial 
condition containing, say, 15% of character 1, 15% of 
character 3 and 70%of character 5 along with 25% bit 
flipping, the retrieval performance of the adaptive model was 
found to be much better. Experiments on character 
recognition using the AHNN along with Kohonen’s self 
organizing maps are also being carried out and for reasons of 

space those experimental results could not be included in this 
work.               
                 
                  V. Automatic SPICE Netlist Generation 
     To test the performance in SPICE, even 50 neuron models 
had more than forty thousand nodes and it was impossible to 
use a schematic editor. So a new scheme was devised, in 
which there is a Visual C++ program which automatically 
generates the SPICE netlist. The user specifies the number of 
neurons N, No of patterns to be stored and the amount of 
corruption i.e. noise level. Provision for random generation 
of patterns to be stored as well as random generation of noise 
is also made. The weight matrix is calculated and 
corresponding values of weights are assigned as initial 
conditions on capacitors. Output of the program is a text file 
and can be simulated in SPICE as a foreign Netlist.  

 
VI. DISCUSSION 

      An interesting feature of our work is the idea of adapting 
weights during retrieval, which goes against the basic tenets 
of connectionism. The central dictum of connectionism is 
that the knowledge contained in a neural or connectionist 
network is encoded in the network weights [1]. But in our 
case, the weights change, losing information in the process, 
but ultimately resulting in better performance. In this 
procedure the weights are used as transitory, intermediary 
variables. Stability of such systems can be proved by 
associating a Lyapunov energy function with the network 
dynamics. 

Simulations with the implemented electronic analog 
demonstrate that by using an appropriate adaptive law for the 
weights during retrieval, the storage capacity can be 
enhanced significantly. Analog VLSI implementations of 
learning neural networks offer improvements over both 
software simulations and digital circuits emulating analog 
operation, opening up scope for many interesting 
experiments. In an earlier work we showed that there exists 
close, graded relationship between energy consumption 
(dissipation) and informational work in an electronic 
implementation of the Hopfield neural network. Contrarily, 
efforts to minimize energy dissipation led to performance 
deterioration [1, 2]. Most of the neurodynamical systems turn 
out to be dissipative [6] and one may wonder whether there 
are fundamental physical reasons why neural memories need 
to be dissipative. The possibility of linking computation with 
energy expenditure also becomes extremely relevant in the 
light of certain neuroscience data. In the brain there is a tight 
coupling between 4 quantities – 1) neural activity, 2) local 
cerebral blood flow, 3) local glucose metabolism, and 4) 
temperature changes [15]. Studies also show that external 
sensory stimuli evoke transient, local temperature changes in 
the brain [16]. Hence it would also be a worthwhile exercise 
to explore the energetic costs of increase in computational 
reliability of the adaptive model (AHNN) presented in this 
article. 
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                              VII.MATHEMATICAL APPENDIX 

The energy function E in (2.5) is a Lyapunov function of the 
system (2.1,2.2,2.3).  
             Proof: Using Chain rule and the property, 

ii

V

i

uGdVVgGi
dV
d i

=∫ − ))((
0

1  

and taking the time derivative of E, we have, 









−−


















−−= ∑∑ ∑∑∑ ∑

i j i j

ij
IJ

ij
ji

i j
iijij

i

dt
dW

W
dt

dW
VVuGVW

dt
dV

dt
dE

 ( ) 







+−−








−= ∑∑∑

i j

ij
jiij

i

ii

dt
dW

VVW
dt

dUC
dt

dV  






















−








−= ∑ ∑∑

2

i j

ij

i

ii

dt
dW

dt
dU

C
dt

dV  

0≤   

as 
dt

dVi and
dt

dui have identical signs. 

Therefore the function E in (2.5) is a global Lyapunov 
function for the system (2.1,2.2,2.3). 

                    
                              VIII. FIGURES 

 
 

 

 

 

Figure 1. Basic electrical model of Hopfield neuron. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Modified electrical model of the Hopfield neuron in 
order to simulate large networks. 

 

        Figure 3: Equivalent circuit of weight adaptation dynamics 

 Figure 4:  Weights changing and stabilizing slowly during 
retrieval  

         

 

 

 

 

Figure 5: Four Neuron Adaptive model. (50 and 100 neuron 
models were simulated by generating foreign SPICE netlists 
using VC++). 

 

 

 

 

 

 

 

Figure 6: Shows the variation of the relative error in retrieval 
for 100 neuron HNN and AHNN electronic models as a 
function of number of patterns (P) stored simultaneously. 
Note the increase in P/N ratio and graceful degradation of 
performance in AHNN.   
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Figure 7. Comparative retrieval performance of the HNN and 
AHNN, with eight numeric characters stored simultaneously. 
Output images were reconstructed once the network 
stabilizes. Average of 40 trials was taken in order to 
thoroughly verify the recognition ability. 
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