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Abstract- This paper is based on the accelerated aging studies in 
electric motors and using the advanced data analyzing 
techniques such as wavelet and coherence analysis, the 
characteristic features of the motor bearings are extracted. Fault 
detector is designed and using auto associative neural network 
approach for detection of bearing damage frequencies. 

 
I. INTRODUCTION 

The demand for monitoring and fault diagnosis of process 
dynamics and sensors in industrial systems has increased the 
efforts to develop new analysis and fault detection based on 
the intelligent techniques. The main goal of this technological 
improvement is to obtain more detailed information contained 
in the measured data than had been previously possible.  
 
In literature, several studies have been conducted to identify 
the cause of failure of induction motors in industrial 
applications. More than fifty percent of the failures are 
mechanical in nature, such as bearing, balance and alignment 
related problems [1-7].  
 
The paper presents a systematic approach to extract features 
from motor vibration and currents signals of 5-HP motors 
from load tests on motors subjected to bearing fluting or 
electrical aging [8].  Test data are processed to assess the 
effect of bearing fluting in each aging cycle of the induction 
motor by using multi-resolution wavelet analysis 
methodology. As a result of this study, mechanical feature can 
be detected from the motor current and vibration signals by 
the wavelet analysis and then the relationship between these 
signals can be computed as a coherence function to teach this 
relationship to an auto-associative neural network. This study 
defines the neural network structure as a fault-detector. 
 

II. MATHEMATICAL BACKGROUND 
In this section, a short view will be given in terms of 
theoretical basis of Multiresolution-Wavelet Analysis 
(MRWA) and coherence analysis approaches. 

A.  A Brief Knowledge on MRWA 
The Discrete Wavelet Transformation (DWT) is defined as 
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Where ψ is called the mother wavelet and it has two 
characteristic parameters, namely, dilation (a) and translation 

(b), which vary continuously.  Here, the translation parameter, 
“b”, controls the position of the wavelet in time.  A “narrow” 
wavelet can access high-frequency information, while a more 
dilated wavelet can access low-frequency information. This 
means that the parameter “a” varies for different frequencies.  
The parameters “a” and “b” take discrete values. 

, where n, j ∈ Z,  ,  and . 
S. Mallat introduced an efficient algorithm to perform the 
DWT known as the Multi-Resolution Wavelet Analysis 
(MRWA). The MRWA is similar to a two-channel sub-band 
coder used in high-pass and low-pass filters, from which the 
original signal can be reconstructed. [9-11]. Figure 1 shows 
the frequency decomposition of the signal schematically.  The 
low-frequency sub-band is referred to as ‘approximation a

jj abnbaa 000 , == a0 1> b0 0>

i’ 
and the high-frequency sub-band by ‘detail di.’  Thus, at the 
second stage the signal may be reconstructed as S = a2 + 
d1+d2. 
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Fig.1.Signal decomposition at the second stage. 
 

B.  Spectral and Coherence Analysis 

A common approach for extracting the information about the 
frequency features of a random signal is to transform the 
signal to the frequency domain by computing the discrete 
Fourier transform.  For a block of data of length N samples the 
transform at frequency m∆f is given by 
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Where ∆f is the frequency resolution and ∆t is the data-
sampling interval.  The auto-power spectral density (APSD) 
of x(t) is estimated as 
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The cross power spectral density (CPSD) between x(t) and y(t) 
is similarly estimated.  The statistical accuracy of the estimate 
in Equation (3) increases as the number of data points or the 
number of blocks of data increases. 

The cause and effect relationship between two 
signals or the commonality between them is generally 
estimated using the coherence function. The coherence 
function is given by 
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Where Sxx and Syy are the APSD’s of x(t) and y(t), respectively, 
and Sxy is the CPSD between x(t) and y(t).  A value of 
coherence close to unity indicates highly linear and close 
relationship between the two signals [12].  
 

III.  BEARING DAMAGE IN ELECTRIC MOTORS 
The rotor is supported by bearings with a grease film that is 
not conductive.  At high speeds, an even distribution of the 
grease film exists, and the rotor is not in contact with the outer 
bearing race.  The rotor voltage can increase with respect to 
ground.  When this voltage builds to a level capable of 
breaking down the grease film, a spark occurs and discharge 
mode current flows through the bearing. At low speeds, the 
grease film is minimized. The balls often make contact with 
the race.  The rotor voltage does not build.  The current flows 
through the bearing in a conductive mode. The bearing current 
thus has two modes, conduction and discharge.  Conduction 
mode bearing currents exhibit continuous flow through the 
bearings.  This form of bearing current does not result in 
premature bearing failure because current flows continuously 
without arching.  Discharge mode bearing currents occur at 
random when the grease film momentarily breaks down.  
When pits caused by the electric discharge machining effect 
continue to occur in an operating bearing and begin to 
overlap, groove-like configurations called "flutes" will form.  
This "fluting" is the source of audible bearing noise and 
reduced bearing life.  As a result, rolling elements and the 
races get damaged.  This surface degradation causes extreme 
vibration levels of the bearing and its eventual failure. 
 
A. Accelerated Aging Processes and Data Acquisition System 

In order to simulate the electrical discharge from the shaft to 
the bearing, a special test setup was designed.  A schematic is 
shown in Figure 2.  The fluting run had duration of 30 minutes 
with the motor rotating at no load, with an externally applied 

shaft current of 27 Amperes at 30 Volts AC.  The fluting 
aging is followed by thermal and chemical aging in order to 
increase and accelerate the aging process.  After each cycle of 
accelerated aging, the test motor was put on a motor 
performance test platform.  From the experimental setup, high 
frequency data with a sampling frequency of 12 kHz and low 
frequency data with a sampling frequency of 666.67 Hz were 
collected experimental setup and locations of the sensors 
related to the measurements were given in Figure 3 (a), (b) 
and (c) respectively. Here (5-10) sensor numbers indicate the 
accelerators. 
 

IV.  PRE-PROCESSING OF THE SIGNALS BEFORE 
NEURAL NETWORK APPLICATION 

In this section, pre-processing of sensor data that is collected 
from the motor experimental set-up is considered. Therefore, 
two important procedures are aimed: a) Feature extraction 
procedure from the motor vibration and current signals by 
means of the Multi-Resolution Wavelet Analysis (MRWA). b) 
Coherence function between the motor current and vibration 
signals, where it provides the input-target pairs to be applied 
to Auto-Associative Neural Network (ANN) topology for 
training process. 
 
A.  Feature Extraction by Wavelet Analysis 

The analysis of the data from bearing fluting was performed 
using the MATLAB 5.1 Wavelet Toolbox [13]. Several steps 
were performed before MRWA or the sub-band analysis.  The 
frequency spectra of all the six accelerometer signals were 
computed in order to establish the vibration signal that is most 
sensitive to bearing fluting.  The vibration signal at the 
process-end 2’o clock position (sensor #9), as shown in 
Fig.3(c), was determined as the most important signal related 
to the bearing fluting.  The MRWA technique was applied to 
this measurement. Initially, the wavelet analysis requires the 
selection of an optimal wavelet to be used and it can be 
determined by its minimum energy level. For this purpose, the 
minimum entropy energy selection method, implemented in 
the MATLAB 5.1 wavelet toolbox, was executed and the 
optimal wavelet basis functions were selected for the vibration 
signals from the initial and final aging cycles.  These wavelet 
basis functions were determined to be Daubechies-20 (db-20), 
and Daubechies-15 (db-15) for initial and final motor cases 
respectively. The sub-band or the MRWA of the two signals 
was performed by dividing them into eight sub-bands in the 
frequency range 0-6 kHz. These are given in Table 1 in terms 
of details (di) and approximations (ai). 
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Fig.3. a) Cross Section (A-A') at Short End. b) Experimental Setup Configuration.  c) Cross Section (B-B') at Process End. 
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Fig. 2. Schematic of the electrical motor bearing 
fluting setup. 
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Fig.3. a) Cross Section (A-A') at Short End. b) Experimental Setup 
Configuration.  c) Cross Section (B-B') at Process End. 



Table 1. 
Frequency sub-bands of the vibration signal 

Approxi- 
mations 

Sub-bands  
(Hz)  

Details Sub-bands  
(Hz) 

a1 0 – 3000 d1 3000      – 6000 
a2 0 – 1500 d2 1500      – 3000 
a3 0 – 750 d3 750        – 1500 
a4 0 – 375 d4 375        – 750 
a5 0 – 187.5 d5 187.5     – 375 
a6 0 – 93.75 d6 93.75     – 187.5 
a7 0 – 46.875 d7 46.875   – 93.75 
a8 0 – 23.4375 d8 23.4375 – 46.875 

Hence, MRWA implementation can be shown as in the 
following Figure 4 for final aged case 
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According to these results, 3-6 kHz frequency band, which is 
named as first detail (d1) in MWRA, is the most dominant 
band in terms of the above mentioned similarity. The ratio, 
which can be calculated between the RMS values of vibration 
measurement and the RMS values of (d1), increases as the 
motor bearing degrades toward failure.  Hence, a feature 
extraction from considered data could be very effectively 
realized by using the multi-resolution wavelet analysis after 
the vibration analysis, if it is used to determine the bearing 
damage effect from the motor current signals. For this aim, it 
is examined through the combination of classical spectral 
analysis like short-Time Fourier Transform and Multi-
Resolution Wavelet Analysis or Sub-band analysis. The result 
of this combination can be presented as shown in Figure 6.  
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ity was observed between the overall RMS trends of 
ion signal and overall RMS trends related to some 
 for each aging cycle as shown in Figure 5. 
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Fig. 4.  Details and approximations of vibration signal (s) after final aging cycle. 
a) Detail sub bands (d1-d8) vibration signal (s) for aged case. 
b) Approximation sub bands (a1-a8) vibration signal (s) for aged case. 
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Fig.6. Original spectrum and spectrum of sub-band 
combination for motor current signal in final aged case. 



Using the above approach, which is defined by the sub-band 
combination in frequency domain, it is easily observed the 
effect of the eccentricity frequency value at around the 30 Hz 
that detected from the spectral variation of the sub-band 
combination.  Amplified effects correlated with the rotating 
frequency can be related to bearing damage problem in the 
physical sense.  
 
Hence, the bearing damage effect can be determined by both 
of the motor vibration and current signals. After that the 
correlation function can be considered for more detailed 
identification of these type faults. 
 
B.  Coherence Analysis Results for Fault Identification 

The relationship between bearing vibration and stator current 
is influenced by the air gap eccentricity, which in turn 
generates anomalies in the air gap flux density. Hence, the 
resulting field causes frequency side bands at around the 
supply frequency of the stator current signal for each phase.  
The side-band frequencies caused by the dynamic eccentricity 
are given as  
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Where fe is the electrical supply frequency, s is the per unit 
slip, p is the number of poles, and fr is the rotor speed in Hz.  
Slip s = (fs – fr)/fs, where fs is the synchronous frequency. 
As a result of aging processes, bearing defect produces a 
radial motion between the rotor and stator of the induction 
motor and, the variations that are produced by the air gap 
eccentricity also generate stator currents that are related to the 
characteristic bearing frequencies (fv) as 

vebng mfff ±= ,  m = 1, 2, 3, … (6) 

Sample plots of stator currents and vibration signals are 
shown in Fig. 7(a), 7(b) and Fig. 8(a,b) for initial and final 
aging cycles, respectively.  According to these figures, 
comparing the Fig.8(a) and Fig.8(b), it is determined that 
there is an increase in the vibration signal amplitudes.  This 
result may be observed from the probability density functions 
in Fig.8(c). 
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Fig.9. Coherence between motor current and v
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Fig.7. A sample of stator currents for one phase: a) initial, b) final cycle
   (a)    (b) 

Fig.7. A sample of stator currents for one phase: a) initial, 
 b) final cycle 

           (a)             (b)              (c) 
Fig.8. Accelerometer signal waveforms: a) Baseline. b) Final 
aged cycle. c) Probability density functions of a) and b).

To identify bearing damage through the motor current signal, 
coherence function between the motor current and vibration 
signature were computed and plotted in Fig. 9(a) and (b). 
The coherence function plot in Fig. 9(b) indicates that the 
most dominant frequency values, where motor current and 
vibration signals are correlated, are located at 234 Hz and 469 
Hz. The ball defect frequency for this bearing is calculated as 
fb = 136.9 Hz using the manufacturer’s catalogue values [5]. 
Hence, from Eq. (5) the side-band frequency due to the 
dynamic eccentricity is given by 

fecc = 60 + 6(29.03) = 234 Hz. 

From Eq. (6) the gap eccentricity generated current due to the 
bearing defect is given by 

fbng = 60 + 3(136.9) = 470.7 Hz. 

The coherence function between the motor current and the 
accelerometer signals at the above frequencies has increased 
from the initial to the final cycle [1,5,7]. 

   (b) 

ibration signals: a) Initial. b) Final cycle. 



V.  NEURAL NETWORK APPLICATION AS A FAULT 
DETECTOR 

This case study consists of data from the pre-aging motor load 
tests and seven fluting aging cycles. For each aging cycle and 
one initial case, motor current and vibration relationship is 
presented in the manner of coherence function computed at 
256 amplitude points between 0-6 kHz.  After this, eight 
coherence signals are used to create the input-output pattern 
set of the auto-associative neural net (ANN) with one hidden 
layer as shown in Fig. 10. This pattern set is separated into 
two parts in terms of the training and recalling data sets.  In 
the training process, learning rate of the ANN is chosen as 
0.1. Here, the learning algorithm used in this application is 
standard back-propagation algorithm. 

 

The training data set contains the first five patterns including 
the initial case. Here, each input pattern is, at the same time, 
used as a target pattern. And the others are applied to input 
layer of the neural net for recalling process.  

 

 

 

 

Hence, for this application, a huge topological structure of the 
ARNN is created with the size of 256:100:256. According to 
this, the bearing damage or bad bearing condition is 
determined by big error amplitudes observed at neural net's 
output nodes, which are indicated with specific frequency 
values, to define the motor bearing failure modes.  

Also, Fig.11 shows the coherence and the error variations 
produced at the output layer of the ANN. In terms of the 
ANN-application results, special frequency at around 469 Hz, 
which defines the ball-defect frequency based on the air-gap 
eccentricity of the rotor, is easily detected by error deviation 
appeared at the ANN’s output layer. 

This is an alternative approach to some studies taken place in 
the related literature [14] and it is called as a fault detector 
based upon the soft computing technique.  
 

Coherence Analysis 

Motor 
Current & 
Vibration VI.  CONCLUSIONS 

In this application, bearing damage degradation for induction 
electric motor of 5HP was determined by using the neural 
network structure trained by means of the coherence signals. 
In terms of the pre-processing of the related data, physical 
feature was extracted by the wavelet analysis both of the 
motor and vibration signals and the bearing damage effect was 
identified through the coherence analysis.  Hence, special 
frequencies such as air gap eccentricity and its second 
harmonic were easily detected through the error variation 
occurred at the output nodes of the neural net. Also, coherence 
approach provides an extra advantage as the normalized data 
handling. After that, these determined frequency values were 
concluded as eccentricity frequency and ball-defect frequency 
values. Therefore, the ANN approach used in this study is 
named as an “Intelligent Fault Detector” 

Fig.10. ANN-structure used as a fault detector.
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Fig.11. Results of ANN: a) Healthy bearing case.  b) Faulty bearing case. 
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