
Go Irie
School of Science for OPEN and

Environmental Systems
Keio University

3-14-1 Hiyoshi, Kohokuku
Yokohama 223-8522, Japan

email:irie@yoshida.sd.keio.ac.jp

Kazuo Yoshida
Department of System Design Engeneering

Keio University
3-14-1 Hiyoshi, Kohokuku
Yokohama 223-8522, Japan
email:yoshida@sd.keio.ac.jp

 Abstract−In this paper, an approach using feed-for-
ward neural networks for solving decision problems with
time constraints is proposed. Especially, the approach fo-
cuses attention on easy construction and increase of effi-
ciency of search by using two different decision mecha-
nisms and a control mechanism designed with feed-forward
neural networks which is able to construct nonlinear and
multi-output function. To verify the validity of the technique,
it is applied to a game playing program for Tetris which is a
kind of puzzle game with strict time constraint. The tech-
nique copes with time constrained decision problem by con-
siderably automatic construction.

I. INTRODUCTION

Recently, many researches have been made about algo-
rithms for intelligent systems performing autonomous prob-
lem-solving and decision-making. In order to apply them to
real problems, it is necessary to consider some constraints
in the task environment where the system is placed, such as
observation impossibility, uncertainty and time constraints.
Especially about time constraints, there may be nothing that
does not contain it in real problems, and it is recognized as
the important one which should be taken into consideration.

Many techniques for solving time-constrained problems
have been proposed. Dean and Boddy advocated the frame-
work of anytime algorithm [1] which is able to interrupt pro-
cessing in arbitrary time such as Dynamic Programming (DP).
They also proposed deliberation scheduling [2]: schedul-
ing technique using anytime algorithm. Then, Zilberstein et
al. have progressed contract algorithm as one kind of any-
time algorithm which determinates computation time in ad-
vance in accordance with predicted deadline [3], [4]. Although
it is thought that flexibility is spoiled a little, it becomes un-
necessary to carry out continuous monitoring for determi-
nation of interrupting time, it may be interpreted as the form
of considering the practical use side. Several techniques in
its framework have also been proposed, for example in [5], a
type of contract scheduling technique which uses the dif-
ferent solution methods depending on the situation has been
proposed. As an another approach, there is metareasoning
[6] which solves it by including terms representing time costs
in a utility function.

The effectiveness of these techniques depends largely
on the skill of designers for the point that designers have to
specify the type of problems including time constraints, and
design evaluation functions or utility functions united with
it in design processes. Usually these processes become a
cause of trouble to designers. Therefore, techniques which
give efficient solutions by easy and inexpensive design pro-
cesses should be explored.

On the other hand, it has been verified that neural net-
works provide easy solutions with automated construction
for many difficult problems in the various fields such as con-
trol engineering or robotics. For time-constrained schedul-
ing problems, a technique using Hopfield neural networks
as an approximate method for optimization has been pro-
posed in [7]. Among various types of neural networks, the
feed-forward neural networks have the several distinguish-
ing abilities such as nonlinear mapping, learning, and gener-
alization; there have been especially many applications. Also
for solving the problem described above, these abilities may
provide good advantages. Therefore, it is significant to ex-
plore feed-forward neural network-based approaches for time-
constrained problems.

The purpose of this paper is a proposal of an efficient
technique which can be designed automatically for solving
time-constrained decision problems. The technique is a con-
tract type algorithm, and solves time-constrained decision
problems by simultaneous use of two types of decision-
making mechanisms and a controller designed with feed-
forward neural networks. Each component has a special role
independently, and it means a separation of roles aiming at
easy construction and high efficiency. The basic procedure
of the technique is search and run-time allocation. About
run-time allocation, it is performed by the controller which is
the unique component for considering time constraints, de-
pending on current state of task environment, to only a task
which occurs in the nearest future. The type of problem
treated in this paper is a sequential decision problem. Al-
though the typical benchmark of this type of problems is
grid world, Tetris is adopted−a larger scale decision prob-
lem which is including time constraints more explicitly.

Decision Making Based on Feed-Forward Neural Networks for
Time-Constrained Sequential Decision Problems: Application to Tetris

II. PROPOSAL TECHNIQUE

A.Outline
 The technique is constructed on the assumption that a

deadline of a nearest future task is predictable before start-
ing processing. In view of this, it lies in the framework of
contract algorithm. The basic architecture of the algorithm
proposed in this paper is based on [8]. It consists of three
main components including feed-forward neural networks:
two decision-making mechanisms which have mutually dif-
ferent performances, and a controller which takes a balance.
The difference of performances between two decision-mak-
ing mechanisms is in quality of results and computation time.
One of the two performs processing emphasizing quality of
results than computation time, and the other does computa-
tion time than quality of results. As a matter of convenience,
the former is called Deliberative Decider and the latter is
called Intuitive Decider. Each decision-making mechanism
can make its decision independently. However, that is diffi-
cult to solve time-constrained problems. Therefore, these
are used together through a controller called Adjuster which
performs run-time allocation.

Simple overview of the processing flow is shown in Fig.
1. First, Intuitive Decider gives provisional value for all so-
lutions. Second, Adjuster receives some features which con-
trol the level of time constraints as inputs, and predicts dead-
line implicitly. The concrete method of the prediction is to
determine the number of candidates which is the number of
solutions going to be reevaluated by Deliberative Decider
whose computation time increases in proportion to the num-
ber of solutions to evaluate. Third, only the number deter-
mined by Adjuster is selected from in high quality order from
all the solutions given provisional value by Intuitive De-
cider. Finally, Deliberative Decider reevaluates the candi-
dates which are selected, and outputs the final solution which
obtained the highest value as the decision.

In design process, what designers have to do for con-
structing the system are to determine models of feed-for-
ward neural networks of each component, and training meth-
ods of them.

B.Deliberative Decider
The most important purpose of Deliberative Decider is

to select a solution with highest quality of results precisely
from given candidates. For its achievement, Deliberative
Decider evaluates each candidate individually, and then se-
lects the final solution. The processing flow of Deliberative
Decider can be summarized as follows.

Step 1. Observe current state of task environment.
Step 2. Set the number of candidates to n.
Step 3. Set i=1.
Step 4. About the ith candidate, compute features used

as inputs.
Step 5. Evaluate the ith candidate using the computed

features with an evaluation function constructed
as a feed-forward neural network.

Step 6. If i=n, go to Step 7. Otherwise do if i+1, then
return to Step 4.

Step 7. Select the solution which has the highest evalu-
ation among n candidates, and output it as a final
solution.

The difficulty of designing an evaluation function is to se-
lect the model and to adjust the parameters. The reason for
using a feed-forward neural network as an evaluation func-
tion is that the process is automated by using feed-forward
neural networks which have advantage of high performance
of learning and nonlinear characteristics. In the learning pro-
cess, to avoid the difficulty of collecting training data sets
and to acquire high automaticity, it is necessary to use meth-
ods which do not require training data sets, such as Evolu-
tionary Computation (EC).

C.Intuitive Decider
 The most important purpose of Intuitive Decider is

quick processing, in other words, evaluating all solutions as
fast as possible without losing the required minimum perfor-
mance for estimating quality of solutions. Unlike Delibera-
tive Decider, each of solutions is not evaluated individually,
but all of them are evaluated at a time by using multi-output
feed-forward neural networks. For this reason, different from
Deliberative Decider, Intuitive Decider cannot use the fea-
tures which correspond to variations of state. Intuitive De-
cider performs pattern recognition for selecting a solution
from the features representing current state. The processing
flow can be summarized as follows.

Step 1. Observe current state of task environment.

final solution

Deliberative Decider

candidates of
solutions

Intuitive Decider

Adjuster

number of
candidates

solutions given
provisional value

filter

final solution

Deliberative DeciderDeliberative Decider

candidates of
solutions

Intuitive DeciderIntuitive Decider

AdjusterAdjuster

number of
candidates

solutions given
provisional value

filterfilter

Fig. 1. Simple overview of processing flow
Fig. 2. Deliberative Decider

current state of
environment

・・
・

・
・・

feature vector evaluation value of
ith solution

a final solution

no

yes
i i+1 i=n

current state of
environment

current state of
environment

・・
・

・
・・

・・
・

・
・・

feature vectorfeature vector evaluation value of
ith solution

evaluation value of
ith solution

a final solutiona final solution

no

yes
i i+1i i+1 i=ni=n

Step 2. Compute features used as inputs from the ob-
served state.

Step 3. Evaluate all solutions with an evaluation func-
tion constructed as a multi-output feed-forward
neural network.

Step 4. Select the solution which has the highest value
among them, and output it as a final solution.

Feed-forward neural network is used by the same reason as
Deliberative Decider, in addition, it is also a reason that
multi-output functions can be obtained easily. Learning is
carried out by Back-Propagation (BP) algorithm. In this pro-
cess, the current decision of Deliberative Decider is treated
as the desired output. Because Deliberative Decider con-
structed in advance provides desired outputs, learning with
BP is performed automatically as if it is an unsupervised
learning.

D.Method of simultaneous use
 Using two decision-making mechanisms independently

does not lead to a good trade-off. Therefore, they are used
together in the technique. The method of simultaneous use
is that Intuitive Decider evaluates all solutions previously,
and only some prospective solutions which obtain good
evaluation are reevaluated by Deliberative Decider. Intui-
tive Decider does not draw final conclusions, but gives pro-
visional value to narrow solutions, and final decision is made
by Deliberative Decider. This method enables the algorithm
to increase efficiency of search, since it becomes unneces-
sary to apply Deliberative Decider which requires much
time for evaluating all solutions including hopeless ones.
When the number of solutions which Deliberative Decider
reevaluates increases, the more priority is indeed given to
the quality of results and when it decreases, the more prior-
ity is given to processing time. In this method, the only fac-
tor that controls trade-off is the number of candidates nar-
rowed down, and in order to control it automatically depend-
ing on the degrees of time constraints, we adopt Adjuster.

E.Adjuster
Adjuster performs run-time allocation according to the

level of time constraints by setting the number of candi-
dates, and plays a role which determines the balance com-
peting characters for quality of results and computation time.
It enables the proposal technique to respond time constraints.

Adjuster receives some features which dominate the
degrees of time constraints as inputs, and outputs the num-

ber of solutions reevaluated by Deliberative Decider. It is
assumed that the features used as inputs are observable.
The function is obtained by a feed-forward neural network,
and in learning, for the same reason in Deliberative Decider,
it is necessary to use methods which are not required train-
ing data sets, such as EC.

III. TETRIS

Tetris is a kind of the puzzle game developed by Alexey
Pajitnov et al. in 1985, and has been studied from various
perspectives. For example, in [9], it was treated as a large-
scale Markov decision problem, and was played by DP us-
ing some features. In this paper, although the general rule is
used in most part, some specific points are shown below.

a)The game field consists of grid of height 20 and width
10.

b)In order to adjust velocity of falling blocks to com-
puter spec (733-MHz Pentium III), it is set quite quicker
than when man plays as a game, specifically in the
range of 1.0 - 40.0 grid/msec.

c)When 16th row from the bottom of the field is crossed
with the height of the wall, a game ends.

d)Next falling blocks are unobservable.
e)Result is not any score, but total deleted lines.

In the simulation, the deadline is approximately calculated
with the following equation:

Free y Field y Height= - (1)
/lTime Free y Fall Velocity= (2)

where, Field_y is the maximum range of grids for controlling
falling blocks. In the simulation, Field_y=16. The reason is
that the height of the field and the appearing domain of fall-
ing blocks are 20 and 4 respectively, so, it is calculated as 20
- 4 = 16 (showed in Fig. 4). Height is the average height of
columns in field. Free_y is the range of grids which are able
to control falling blocks. Fall_velocity is the velocity of cur-
rent falling blocks. Timel is time to deadline, in other words,
time from appearance of current falling block to placement
on the wall. Success and failure of a decision branches off in
two results by comparing calculated time to deadline Timel

with real processing time Timep.

Fig. 4. Game screen of Tetris
10 grids

20
gr

id
s

The line of a game ends

Appearing domain of falling blocks

Field y

10 grids

20
gr

id
s

The line of a game ends

Appearing domain of falling blocks

Field y
Fig. 3. Adjuster

current state of
environment

features which control
the level of time constraints ・・・

・
・
・

number of candidates

current state of
environment

current state of
environment

features which control
the level of time constraints

features which control
the level of time constraints ・・・

・
・
・

・・・
・
・
・

number of candidates

a) p lTime Time£

The decision is success, and the action according to it
is carried out.

b)otherwise
The decision is failure, and the action which is ran-
domly shortened is carried out. For example, if the se-
ries of operations of the action according to the deci-
sion are [move right, move right, move right, rotate,
drop], then [move right, move right, move right, drop],
or [move right, move right, drop] may replace them.

Tetris has the following features as a benchmark of deci-
sion problems.

a)The current state of the field is dependent on the his-
tory of actions taken until then.

b)The task is deletion of lines, and for the execution of it,
a series of action sequences of some size is required.

c)Next falling block is determined at random, therefore it
cannot be known in advance.

d)It is NP-complete that optimizing various objectives in
the offline version of Tetris such as maximizing the
number of deleted lines [10].

e)The velocity of current falling block and the current
state of walls control time for current decision.

e) is the feature which is closely related to the problem set on
this paper, and should be explained in detail. In Tetris we
play, the velocity of falling blocks is not always constant,
but increasing with the gradual growth of total deleted lines.
It is greatly related to the deadline of time for decision, and
as the velocity of fall blocks becomes quicker, the time for
decision becomes shorter. In addition, the more there are
many blocks piled on field, the domain which can handle
falling blocks freely is reduced, and it also causes reduction
of time until deadline. That is, the deadline is changed de-
pending on both current state of the wall and the velocity of
falling blocks. If a processing is not in time, even if it selects
an excellent decision which can get 4 deleted lines, the ac-
tion must become impossible to execute and the value of the
decision decreases remarkably. It is exactly the problem of
the trade-off between quality of results and computation
time in time-constrained problems, therefore Tetris is a good
benchmark of that problems.

IV. CONSTRUCTION OF GAME PLAYING PROGRAM

In the technique, it is three main components that have
to be constructed, but most parts of construction processes
are performed by the automated learning. What we have to
do is to determine the models of feed-forward neural net-
works of them, and the methods of training. The process is
described in further detail below.

A.Deliberative Decider
The feed-forward neural network in Deliberative De-

cider comprise 14 input nodes, 23 hidden nodes, and an
output node (including a bias node in each of input layer

and hidden layer). Input nodes use a linear activation func-
tion, and hidden and output nodes use a sigmoid activation
function given by the following equation

1()
1 exp()

f x
x

=
+ - . (3)

The bias nodes use a linear activation function. The features
chosen for inputs are prepared in Table 1 (some variations of
states are treated as features). In fact, these features are
inputted after carrying out scaling adjustment suitably.

In the learning, it is used that EC with the offline version
of Tetris. The average of deleted lines of five games is given
as fitness, and process of learning is iterated for 1000 gen-
erations. In this regard, since all the features shown above
are not necessary, coincidentally they are selected in the
process of learning. In coding, the weights are encoded with
real number, and with regard to feature selection, the coding
is performed by binary coding, 1 corresponds to the case
where the feature is used, and 0 corresponds to the case
where it is not used. As the operators, by considering that it
is the mixed problem of real number and binary number, what
maintain diversity well and have high performance to search
solution are selected (Table 2). The sampling for update of
probability vector in IUMDA is performed by roulette wheel
selection with the following equation:

i i ifitness fitness c¢ = (4)
pop

i i i
i

E fitness fitness¢ ¢= Â (5)
(it is simplified version of equation for calculation of expec-
tation value used in immune algorithm (IA) [14]) where, Ei is
the parameter of probability for survival of ith individual,
fitnessi is the fitness value of ith individual, pop is the num-
ber of individuals, ci is the parameter about similarity of ith
individual (about ci, it is described in [14] in detail). Conse-
quently, the selected features were seven: 2), 6), 7), 8), 9), 10),
and 11) in Table1.

Table 2. Operators

Table 1. Features chosen as inputs of the feed-forward neural
network of Deliberative Decider

maxHeight

Space

sumHeight

sumHole

DeleteLine

maxHeightD

maximum height among columns
the number of spaces on the wall

summation of height

summation of depth of holes on the wall

deleted lines which obtained when a decision is carried out

difference of maximum height when a decision is carried out

1)

2)

3)

4)

5)

6)

SpaceD

sumHeightD

sumHoleD

JointSurface

dropHeight

1P 2P

difference of the number of spaces when a decision is carried out
difference of summation of height when a decision is carried out

difference of summation of depth of holes
when a decision is carried out

the number of surfaces where a falling block touches the wall
when a decision is carried out

height where a falling block dropped when a decision is carried out
difference of summation of height in a special domain

when a decision is carried out

7)

8)

9)

10)

11)

12) 13)

maxHeight

Space

sumHeight

sumHole

DeleteLine

maxHeightD

maximum height among columns
the number of spaces on the wall

summation of height

summation of depth of holes on the wall

deleted lines which obtained when a decision is carried out

difference of maximum height when a decision is carried out

1)

2)

3)

4)

5)

6)

SpaceD

sumHeightD

sumHoleD

JointSurface

dropHeight

1P 2P

difference of the number of spaces when a decision is carried out
difference of summation of height when a decision is carried out

difference of summation of depth of holes
when a decision is carried out

the number of surfaces where a falling block touches the wall
when a decision is carried out

height where a falling block dropped when a decision is carried out
difference of summation of height in a special domain

when a decision is carried out

7)

8)

9)

10)

11)

12) 13)

selection

crossover/
production

MGG [11]

operators

for feature
selection

for weights
LUNDX-m(m=15)+EDX [12] and

mutation (perturbation according to normal distribution)

IUMDA [13]

selection

crossover/
production

MGG [11]

operators

for feature
selection

for weights
LUNDX-m(m=15)+EDX [12] and

mutation (perturbation according to normal distribution)

IUMDA [13]

B.Intuitive Decider
In Intuitive Decider, the feed-forward neural networks

are separately prepared to 19 kinds of each falling block. The
reasons are to reduce burden of each feed-forward neural
network, and to solve the problem that the number of avail-
able solutions changes from 9 to 34 according to the kind of
falling blocks. Each of networks comprises 41 input nodes,
35 hidden nodes, and from 9 to 34 output nodes (including a
bias node in each of input nodes and hidden nodes). Input
nodes use a linear activation function, hidden and output
nodes use a sigmoid activation function given by Eq. (3).
Input vector is formed by the information on grids of 4 10¥
which is in upwards from the row of the minimum height at
the range of four lines. The components in the input vector
are elements from {1, 0}, where 1 corresponds to a filled grid,
0 is an empty grid. The learning is executed by BP with the
offline version of Tetris. The desired output vector com-
prises only an element corresponding to the decision of De-
liberative Decider as 1.0, and the other element as 0.0.

C.Adjuster
The model of feed-forward neural network is shown in

Fig. 5. The feature of this model is to implement pruning
partially between input layer and hidden layer for two pur-
poses. One is reduction of the processing time, the other is
to guarantee nonlinearity and monotonically decreasing by
constraining the weights of input-hidden layers at 1.0, hid-
den-output layers at negative value and the biases at posi-
tive value. The input layer consisted of 2 linear nodes (and a
bias node), the number of the grids currently filed all over
the field and the velocity of current falling block are inputted
as the factor which governs time constraint (these are input-
ted after carrying out linear scaling adjustment suitably in
fact). In the activation function of hidden layer, to attain
sharp change of the output value easily, it was adopted that
represented by the following equation

1()
1 exp(100)

f x
x

=
+ - ◊ . (6)

The number of nodes in hidden layer was 15 (except a bias
node): 10 of them are connected to “The number of filled
grid” input node, and the other 5 are connected to “Velocity
of current falling block” input node. Output node use a sig-
moid activation function given as (3), to output the number
of candidates which is reevaluated in Deliberative Decider,
the conversion is performed by the following equation:

(34.0)CandidateDecisionNum ceil y= ¥ (7)
where, y is the output of the feed-forward neural network,

CandidateDecisionNum is the number of candidates, ()ceil x
is the function which returns more than x minimum integer
values. Learning is performed using EC with regarding aver-
age deleted lines of 5 games play as fitness, in the environ-
ment that velocity of falling block started from 1.0 grid/msec.
and it increases by 1.0 grid/msec. whenever 5 deleted lines
are obtained. The process of learning is iterated for 300 gen-
erations. MGG as the selection operator, LUNDX-
m(m=20)+EDX as the crossover operator, and as the muta-
tion operator, the completely same thing as the case of De-
liberative Decider is used in this process.

V. SIMULATION RESULTS

Before the simulation result with Tetris, the input-out-
put relation of Adjuster, in other words, the relation between
the number of candidates which are reevaluated and the
number of grids or velocity of a falling block is shown in Fig.
6. Since time-constraints become severe along with the num-
ber of the grids filled in the field and velocity of a falling
block increase, the number of solutions reevaluated is de-
creased, and vice versa.

Next, the simulation result using Tetris is shown. First, it
is shown in Fig. 7 that the difference of the results of plays
when the number of solutions reevaluated was changed.
This figure has the meaning of the performance profile of
anytime algorithm [1], [2]. The curve is monotonically in-
creasing in most part, although there seems to be slight ir-
regular part because of randomness included in Tetris, and it

0
50

100
150

1 4 7 10 13 16 19 22 25 28

0

5

10

15

20

25

30

35

N
um

be
r o

f c
an

di
da

te
s

Number o
f fil

led gridsVelocity of a falling block

0
50

100
150

1 4 7 10 13 16 19 22 25 28

0

5

10

15

20

25

30

35

N
um

be
r o

f c
an

di
da

te
s

Number o
f fil

led gridsVelocity of a falling block

Fig. 6. Relation between the number of candidates and the
number of filled grids or velocity of a falling block

Fig. 5. The model of feed-forward neural network of Adjuster

linear node

sigmoid node

sharply sigmoid node

linear node

sigmoid node

sharply sigmoid node

The number of
filled grids

Velocity of
current falling block

1.0

The number of
candidates

conversion

1.0

・
・・

・
・・

The number of
filled grids

Velocity of
current falling block

1.0

The number of
candidates

conversion

1.0

・
・・

・
・・

Fig. 7. Performance profile

0

10000

20000

30000

40000

50000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Number of candidates

A
ve

ra
ge

 d
el

et
ed

 li
ne

s

is the character of performance profile of anytime algorithm.
Second, the simulation result in Tetris in which time con-
straints are included is shown. In Table 3 the results of the
number of deleted lines when playing 50 games under each
falling block speed is shown (grad. represents the case where
it starts from 1.0 grid/msec., and it increases by 1.0 grid/
msec. whenever 5 deleted lines are obtained). This result
shows that the technique has found out a good trade-off which
may be associated with the level of time constraints. Third,
Figure 8 describes an example of transition of the number of
candidates during a game play is shown. The number of candi-
dates is decreased in synchronization with gradual incre-
ment of the velocity of current falling block, and is changed
accurately by fluctuation of the number of filled grids.

VI. CONCLUSION

In this paper, time constrained sequential decision prob-
lems were considered, and a technique to solve it was pro-
posed. The technique was based on feed-forward neural
networks for considering user-friendliness of construction
and efficiency of search. To verify that the technique can
solve these problems actually, it is applied to a game playing
program for Tetris.

The technique was applied to the game playing program
for Tetris including time constraints explicitly. In construc-
tion process, the abilities of feed-forward neural networks
and the structure of the model proposed were harnessed,
and most part of the process were performed automatically.
It is considered as an advantageous point for easy use be-
cause it lessens designers’ burden.

In the simulation with Tetris, the following results were
obtained. First, the proposal technique which uses them to-
gether through Adjuster showed quite good results com-
pared with the cases where two decision-making mechanisms
are used independently. Second, it turns out that the number
of candidates was greatly fluctuated through a game ac-
cording to the change of the features which govern time
constraints. From these results, it was shown that present
technique is able to find out good trade-off in time-con-
strained decision problems, and to solve these problems ef-
ficiently.

It is just conceivable that the single task run-time alloca-
tion worked well, because the type of time constraint of Tetris
was simple. To apply the technique to another type of prob-
lems which are more complex, some types of extensions may
be needed such as preparing hierarchical model for larger
scale scheduling or deepening the depth of search.

REFERENCES

[1]M.Boddy, and T.L.Dean. An Analysis of Time-Dependent
Planning, Proc. AAAI-88, pp.49-54, 1988.

[2]M.Boddy, and T.L.Dean. Deliberation Scheduling for Problem
Solving in Time-Constrained Environments, Artificial
Intelligence, 67, pp.245-285, 1994.

[3]S.Zilberstein, and S.J.Russell. Efficient Resource-Bounded
Reasoning in AT-RALPH, Proc. First International Conference
on AIPS, pp.260-266, 1992.

[4]S.Zilberstein et al. Real-Time Problem-Solving with Contract
Algorithms, Proc. IJCAI-99, pp.1008-1013, 1999.

[5]A.J.Garvey, and V.R.Lesser. Design-to-Time Real-Time
Scheduling, IEEE Transactions on Systems, Man, and
Cybernetics, 23(6), pp.1491-1502, 1993.

[6]S.Russell, and E.Wefald. Principles of Metareasoning, Artificial
Intelligence, 49, pp.361-395, 1991.

[7]F.Charpillet et al. Stochastic and Distributed Anytime Task
Scheduling, Proc. 10th International Conference on Tools with
Artificial Intelligence, pp.280-287, 1998.

[8]T.Hashieda, and K.Yoshida. Online learning system with logical
and intuitive processings using fuzzy Q-learning and neural
network, Proc. IEEE International Symposium on CIRA, 1,
pp.13-18, 2003.

[9]J.N.Tsitsiklis, and B.V.Roy. Feature-Based Methods for Large
Scale Dynamic Programming, Machine Learning, 22, pp.59-
94, 1996.

[10]E.D.Demaine et al. Tetris is Hard, Even to Approximate, Proc.
COCOON-03, pp.351-363, 2003.

[11]H.Sato et al. A New Generation Alternation Model of Genetic
Algorithms and Its Assessment, Journal of Japanese Society
for Artificial Intelligence, 12(5), pp.734-744, 1997.

[12]J.Sakuma, and S.Kobayashi. k-tablet Structures and Crossover
on Latent Variables for Real-coded GA, Proc. GECCO Late-
breaking papers, pp.404-411, 2002.

[13]H.Muhlenbein. The Equation for Response to Selection and
Its Use for Prediction, Evolutionary Computation, 5(3), pp.303-
346, 1998.

[14]K.Mori et al. Application of an Immune Algorithm to Multi-
Optimization Problems, Transactions of the Institute of
Electrical Engeneeres of Japan part C, pp.593-598, 1997.

Fig. 8. An example of transition of the number of candidates
through a game play

Table 3. Simulation Result

ave. max. ave. max. ave. max.
1.0 37950.98 218711 30.16 69 40183.38 265404
3.0 7419.50 29471 33.44 130 23507.72 91167
5.0 267.64 1120 27.78 94 10570.40 32545
7.0 1.84 5 29.30 83 2966.88 11644

10.0 0.62 3 30.00 139 1072.08 6993
15.0 0.02 1 22.34 76 204.14 1020
20.0 0.00 0 12.18 67 53.26 215
30.0 0.00 0 2.38 8 2.56 11
40.0 0.00 0 1.62 8 1.54 8
grad. 41.26 46 27.20 122 145.22 231

Intuitive Decider Proposal methodVelocity
[grid/msec.]

Deliberative Decider

0

10

20

30

40

50

60

70

80

1 21 41 61 81 101 121 141 161 181 201 221 241
0

5

10

15

20

25

30

35

40
Number of filled grids

Velocity of falling blocks

Number of candidates

N
um

be
r o

f f
ill

ed
 g

rid
s [

gr
id

]
an

d
ve

lo
ci

ty
 o

f a
 fa

lli
ng

 b
lo

ck
 [g

rid
/m

se
c.

]

N
um

be
r o

f c
an

di
da

te
s

Iteration

