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Abstract- In this paper, we consider a multiobjective integer
programming problem involving fuzzy random variable coef-
ficients. Introducing a fuzzy goal for each objective function,
we focus on a degree of possibility that each objective function
satisfies the corresponding fuzzy goal. Since the degree of possi-
bility varies randomly, we formulate the multiobjective integer
programming problem to minimize the variances of degrees of
possibility with constraints with respect to the expectation of
the objective function values. In order to find a satisficing solu-
tion for a decision maker, we propose an interactive satisficing
method based on the reference point method and solve the
formulated problem using the branch-and-bound method or a
tabu search method.

1. Introduction

In classical mathematical programming, the coefficients
of objectives or constraints in problems are assumed to
be completely known. However, in real systems, they are
rather uncertain than constant. In order to deal with such
uncertainty, stochastic programming [1] and fuzzy pro-
gramming [2,3] were considered. They are useful tools for
the decision making under a stochastic environment or a
fuzzy environment, respectively.

Most researches in respect to mathematical program-
ming take account of either fuzziness or randomness. How-
ever, in practice, decision makers face with the situations
where both fuzziness and randomness exist. For instance,
in the case where some expert estimates coefficients of ob-
jective functions or constraints with uncertainty, they are
not always given as random variables or fuzzy sets but
as the values including both fuzziness and randomness.
Fuzzy random variables [4,5] are one of the mathemat-
ical concepts dealing with fuzziness and randomness si-
multaneously. Recently, several authors considered linear
programming problems involving fuzzy random variables
[6–9]. In this research, we consider multiobjective inte-
ger programming problem using the concept of possibility
measures [11] and the V-model in stochastic programming
[12]. In Section 2, we consider a multiobjective integer pro-
gramming problem with fuzzy random variable coefficients

and formulate it as a multiobjective integer programming
problem where each objective function is the variance of a
degree of possibility with respect to a fuzzy goal. Section
3 proposes an interactive satisficing method for the prob-
lem to obtain the satisficing solution for a decision maker.
Next, to solve the integer programming problems, tabu
search method [13,14] is summarized in Section 4. Finally,
in Section 5, we conclude this paper and discuss further
research.

2. Formulation

In this paper, we consider the following multiobjective in-
teger programming problem:

min ˜̄Cix, i = 1, . . . , k
s. t. Ax ≤ b

xj ∈ {0, 1, . . . , vj}, j = 1, . . . , n

⎫⎬
⎭ (1)

where x = (x1, . . . , xn)t is a decision vector and ˜̄Ci =
( ˜̄Ci1, . . . ,

˜̄Cin) is a coefficient vector. Let A be an m × n

matrix and b an m×1 vector. Each ˜̄Cij is a fuzzy random
variable with the following membership function:

µ ˜̄Cij
(t) = max

{
0, 1− |t− c̄ij |

αij

}
, i = 1, . . . , k,

j = 1, . . . , n
(2)

where c̄ij denotes a random variable (or a scenario vari-
able) whose realization under the scenario si is cijsi , and
the number of scenarios si corresponding to the ith objec-
tive function is Si. Let pisi be the probability that each
scenario si occurs. We assume that

∑Si

si=1 pisi = 1 holds.
Each αij denotes the spread of a fuzzy number. This type
of fuzzy random variable is equivalent to a hybrid number,
which was introduced by Kaufman and Gupta [15].

Since the coefficients of objective functions are the sym-
metric triangular fuzzy random variables, each objective



function also becomes the same type of fuzzy random vari-
able ¯̃Y i with the following membership function:

µ ˜̄Y i
(y) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , 1−

∣∣∣∣∣y −
n∑

j=1

c̄ijxj

∣∣∣∣∣
n∑

j=1

αijxj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, i = 1, . . . , k.

(3)
Considering the imprecision or fuzziness of the decision
maker’s judgment, for each objective function of problem
(1), we introduce the fuzzy goal G̃i with the membership
function expressed as

µG̃i
(y) =

⎧⎪⎪⎨
⎪⎪⎩

0, y > g0
i

y − g0
i

g1
i − g0

i

, g1
i ≤ y ≤ g0

i

1, y < g1
i , i = 1, . . . , k.

(4)

Since the membership function µ ˜̄Y i
is regarded as a possi-

bility distribution, the degree of possibility Π ˜̄Y i
(G̃i) that

the objective function value satisfies the fuzzy goal G̃i is

Π ˜̄Y i
(G̃i) = sup

y
min

{
µ ˜̄Y i

(y), µG̃i
(y)
}

, i = 1, . . . , k.(5)

Accordingly, we consider the following multiobjective prob-
lem:

max Π ˜̄Y i
(G̃i), i = 1, . . . , k

s. t. Ax ≤ b
xj ∈ {0, 1, . . . , vj}, j = 1, . . . , n

⎫⎬
⎭ (6)

In this research, we calculate gmax
i and gmin

i defined by

gmax
i = max

si

max
x ∈ X

n∑
j=1

cijsixj , i = 1, . . . , k,

gmin
i = min

si

min
x ∈ X

n∑
j=1

cijsixj , i = 1, . . . , k,

where X
�
= {x|Ax ≤ b, 0 ≤ xj ≤ vj j = 1, . . . , n}.

Assume that g1
i and g0

i are determined by a decision maker
so as to satisfy the condition that gmin

i ≥ g1
i and gmax

i ≤ g0
i .

Then, by using (3) and (4), the degree of possibility is
represented as follows:

Π ˜̄Y i
(G̃i) =

n∑
j=1

{αij − c̄ij}xj + g0
i

n∑
j=1

αijxj − g1
i + g0

i

, i = 1, . . . , k.

Since the degree of possibility in problem (6) varies ran-
domly, the problem is regarded as a stochastic program-
ming problem. Katagiri et al.[10] proposed a fuzzy ran-
dom multiobjective linear programming model, which is
to maximize the expected degree of possibility that objec-
tive function values satisfy the respective fuzzy goals. This
model is useful for decision making under fuzzy stochastic

environments; however, in the obtained solution based on
this model, there is a case where the degree of possibility
corresponding to a certain scenario is fairly small because
the variance of the degree of possibility is unconsidered.
Therefore, in this research, we propose the model to mini-
mize the variances of degrees of possibility subject to sat-
isfying constraints with respect to the expectations. Then
the problem to be considered is formulated as follows:

min V ar[Π ˜̄Y i
(G̃i)], i = 1, . . . , k

s. t. Ax ≤ b, xj ∈ {0, 1, . . . , vj}, j = 1, . . . , n

E
[
Π ˜̄Y i

(G̃i)
]
≥ δi, i = 1, . . . , k

⎫⎪⎬
⎪⎭ (7)

where E[·] and V ar[·] denote expectation and variance,
respectively. The expectations and the variances of degrees
of possibility are calculated as follows:

E[Π ˜̄Y i
(G̃i)] =

Si∑
si=1

psi

⎡
⎣ n∑

j=1

{αij − cijsi}xj + g0
i

⎤
⎦

n∑
j=1

αijxj − g1
i + g0

i

,

V [Π ˜̄Y i
(G̃i)] =

1(
n∑

j=1

αijxj − g1
i + g0

i

)2 V

⎡
⎣ n∑

j=1

c̄ijxj

⎤
⎦ .

Let Vi denote the variance-covariance matrix of c̄i. Then
the problem to minimize the variances of degrees of possi-
bility is formulated as

min
1(

n∑
j=1

αijxj − g1
i + g0

i

)2 xT Vix, i = 1, . . . , k

s. t. Ax ≤ b, xj ∈ {0, 1, . . . , vj}, j = 1, . . . , n
n∑

j=1

{
Si∑

si=1

pisicijsi + (δi − 1)αij

}
xj

≤ (1− δi)g0
i + δig

1
i , i = 1, . . . , k.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

The variance-covariance matrix is expressed by

Vi =

⎡
⎢⎢⎢⎣

vi
11 vi

12 · · · vi
1n

vi
21 vi

22 · · · vi
2n

...
...

. . .
...

vi
n1 vi

n2 · · · vi
nn

⎤
⎥⎥⎥⎦ , i = 1, . . . , k,

where

vi
jj = V [c̄ij ] =

Si∑
si=1

pisi{cijsi}2 −
{

Si∑
si=1

pisicijsi

}2

,

j = 1, . . . , n,

vi
jl = Cov[c̄ij , c̄il] = E[c̄ij , c̄il]− E[c̄ij ]E[c̄il],

j �= l, l = 1, . . . , n



and

E[c̄ij , c̄il] =
Si∑

si=1

pisicijsicilsi

In (8), since
n∑

j=1

αijxj − g1
i + g0

i > 0

and xT Vix ≥ 0, an Pareto optimal solution set of the
following problem is equivalent to that of (7).

min zi(x)
�
=
√

V [Π ˜̄Y i
(G̃i)], i = 1, . . . , k

s. t. Ax ≤ b, xj ∈ {0, 1, . . . , vj}, j = 1, . . . , n

E
[
Π ˜̄Y i

(G̃i)
]
≥ δi, i = 1, . . . , k

⎫⎪⎪⎬
⎪⎪⎭ (9)

In the next section, we consider a method for solving prob-
lem (9).

3. Interactive Satisficing Method

3.1 Interactive algorithm based on the reference
point method

Since problem (7) has several objective functions, there
does not generally exist the solution optimizing all func-
tions. Therefore, in this section, we discuss the interactive
decision making based on the reference point method [16]
to obtain a Pareto optimal solution.

For each of the multiple conflicting objective functions,
assume that the decision maker can specify the so-called
reference point z̄ = (z̄1, . . . , z̄k) which reflects in some
sense the desired values of the objective functions of the
decision maker. Also assume that the decision maker can
change the reference point interactively due to learning
or improved understanding during the solution process.
When the decision maker specifies the reference point z̄ =
(z̄1, . . . , z̄k), the corresponding Pareto optimal solution,
which is, in the minimax sense, nearest to the reference
point or better than that if the reference point is attain-
able, is obtained by solving the following minimax prob-
lem:

min max
1≤i≤k

{zi(x)− z̄i}
s. t. Ax ≤ b, xj ∈ {0, 1, . . . , vj}, j = 1, . . . , n

n∑
j=1

{
Si∑

si=1

pisicijsi + (δi − 1)αij

}
xj

≤ (1− δi)g0
i + δig

1
i , i = 1, . . . , k.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(10)

Consequently, we construct an algorithm for obtaining a
satisficing solution of a decision maker through interaction
is described as follows:

[An interactive satisficing method for fuzzy ran-
dom multiobjective integer programming problems]

Step 1: Calculate gmin
i and gmax

i , i = 1, . . . , k.
Step 2: Ask a decision maker to set g0

i and g1
i based on

the values calculated in step 1,

Step 3: Set the initial reference probability point as z̄ =
0.

Step 4: For the given reference probability levels, solve
the minimax problem (10).

Step 5: If the decision maker is satisfied with the current
solution xc, then stop. Otherwise, update z̄ and return
to Step 4.

3.2 Exact solution method for the minimax
problem

This section shows an exact solution method for the min-
imax problem (10). For simplicity, we define Ni and Qi

as

zi(x)−z̄i =

√
xtVix− z̄i

(
n∑

j=1

αijxj − g1
i + g0

i

)
n∑

j=1

αijxj − g1
i + g0

i

�
=

Ni(x)
Qi(x)

.

Then, in minimax problem (10), the numerators of objec-
tive functions are all convex functions and the denomi-
nators are all affine functions. Hence, it follows that all
objective functions in (7) are quasi-convex functions. Ac-
cordingly, an strict optimal solution of the following con-
tinuous relaxation problem of (10) is obtained by using
Borde’s method [17]:

min max
1≤i≤k

{zi(x)− z̄i}
s. t. Ax ≤ b, 0 ≤ xj ≤ vj , j = 1, . . . , n

n∑
j=1

{
Si∑

si=1

pisicijsi + (δi − 1)αij

}
xj

≤ (1− δi)g0
i + δig

1
i , i = 1, . . . , k.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(11)

The algorithm for solving problem (11) is as follows:

[An algorithm for solving the continuous relaxation
problem of the minimax problem]

Step 1: Set λ ← 0 and find a feasible solution. Let the
solution be xλ.

Step 2: Calculate qλ defined by

qλ = max
1≤i≤k

{
Ni(xλ)
Qi(xλ)

}

and solve the following problem by using Borde’s method
[17]:

min Z

s.t. 1
Qi(xλ)

{
Ni(x)− qλQi(x)

} ≤ Z, i = 1, . . . , k,

x ∈ Ω

⎫⎪⎬
⎪⎭

(12)
where Ω is a set of feasible solutions in problem (8).
Let an optimal solution of (12) be xc. Go to Step 3.

Step 3: If Z = 0, then stop. Otherwise, set xλ ← xc,
λ← λ + 1 and return to Step 2.



The fact that the continuous relaxation problem of (10) is
solved means that problem (10) is solved by the branch-
and-bound method. It should be noted that an optimal
solution of (10) is at least a weak Pareto optimal solution
of (7).

3.3 Tabu Search Method

In the previous section, we have shown an exact solution
method for the minimax problem, which is useful for the
case of small number of decision variables. However, for a
large-scale problem, the proposed method is not practical
because the computational time exponentially increases
dependent on the number of decision variables. For a large-
scale problem, we shall propose a solution algorithm based
on a tabu search (TS). A tabu search was first introduced
by Glover [13,14] and has been developed as a general so-
lution method for integer (or discrete) programming prob-
lems. In order to outline some basic concepts necessary for
constructing solution method based on a tabu search, we
consider the following problem:

min f(x)
s. t. gw(x) ≤ b, w = 1, . . . , m

x ∈ X.

⎫⎬
⎭ (13)

In (13), the objective function f(x) may be linear or non-
linear and x is an n dimensional integer decision variable
vector. gw(x) ≤ b are the m constraints which may include
linear or nonlinear inequalities.

Basic operation principle of tabu search method de-
pends on neighborhood moves, that proceed from one solu-
tion to another at each iteration. During the solution pro-
cess, some moves are forbidden which are called as tabu.
Let xnow be the current solution at each iteration, and
xbest the best solution found so far, iter the current iter-
ation number, and tabu(iter) the set of tabu moves at the
current iteration. We denote the feasible region of (13) by
X

′
. A tabu search method for solving integer programming

problems may be expressed as follows.

Step 1: Initialize iter=0 and tabu(iter) = ∅; Select a
starting solution xnow ∈ X

′
.

Step 2: Record the current best known solution by set-
ting xbest = xnow and define MinCost = f(xbest) .

Step 3: Select a list of moves from the neighborhood of
xnow (N(xnow)) randomly where N(xnow) ⊂ X

′
and

evaluate each of them.
Step 4: From the list selected in step 3, choose an appro-

priate move which has the best evaluation and does
not belong to tabu(iter) or which qualifies to be se-
lected as a result of being admissible by aspiration. If
the choice criteria employed cannot be satisfied by any
member of N(xnow), or any other termination condi-
tion is fulfilled , stop.

Step 5: Increase iter by 1 and update tabu(iter). Reset
xnow = xnext, and if f(xnow) < MinCost, then go to
Step 2, otherwise go to step 3.

Neighborhood of x = {x1, x2, . . . , xn} consists of chang-
ing the current value of one of xj , j ∈ {1, 2, . . . , n}. Given
a solution x, the neighborhood N(x) can be defined as

N(x) = {change(x, j) | j ∈ {1, 2, . . . , n}}

where

change((x1, . . . , xn), j) = (x1, . . . , xj−1, x̄j , xj+1, . . . , xn),

xj �= x̄j ∈ {1, 2, . . . , vj} and N(x) ⊂ X
′

The new solutions are selected from the neighborhood
of the current solution, if they are not forbidden. To avoid
local minimum, a tabu list (tabu(iter)) is constructed. Ini-
tially, tabu list is empty and constructed in consecutive
iterations of search. It is updated during the search pro-
cess by adding the last move to k forbidden moves at each
iteration, while the oldest move is removed from the list.
Forbidden moves are determined depending on the short
and long term memory of the search process.

The short term memory is a recency based memory
structure, which determines some restrictions during the
generation of the next solution. Such a restrictive mech-
anism prevents the search process from revisiting a local
minimum in short term and decrease the chance of cycling
in the long term. The number of iterations of the restric-
tions being active depends on the parameter called tabu
tenure, which is the number of iterations a tabu restric-
tion remains in force. The value of tabu tenure can be
decided according to the restriction being strong or weak.
A strong restriction will have a shorter tabu tenure than
a weak one.

The long term memory is a frequency based memory
structure to attain a diversification effect on the search
process. During the process, some regions could be visited
less than the others. The solutions have been found are
recorded in this memory from where the most often used
solutions can be known. By using long term memory and
having some related restrictions, the frequently visited re-
gions could also be explored.

The next move during the process is the best move
from the neighborhood of the current solution. Although
the next solution is better than the current one, it could
not be determined from the best move, if it is in the tabu
list (tabu(iter)) at the current iteration. Tabu restrictions
can be violated under certain circumstances. For example,
when a tabu move would result in a solution better than
any visited so far, its tabu classification may be overridden.
Such conditions are called aspiration criteria. A tabu move
is taken if it satisfies the aspiration criteria.

4. Conclusion

In this paper, we have proposed the model to minimize the
variances of degrees of possibility for a multiobjective in-
teger programming problem including fuzzy random vari-
able coefficients. After transforming the formulated prob-
lem into the deterministic equivalent multiobjective quasi-



convex programming problem, we have constructed an in-
teractive satisficing method for fuzzy random multiobjec-
tive integer programming problem. Furthermore, we have
shown an exact solution algorithm and a tabu search al-
gorithm for solving the minimax problem.

Although we dealt with only a degree of possibility in
this paper, we can also consider the model to minimize
the variances of degrees of necessity in a similar manner.
In future, we will try to consider the models based on
other stochastic programming models such as the proba-
bility maximization model and the fractile criterion opti-
mization model.
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