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Abstract— Facility location problem with considering competi-
tiveness to other facilities has been studied in many literatures. In
this study, we consider the model that a firm locates new facilities
on a plane which has been already located several facilities. We
propose an algorithm to solve the problem in cases that both
new and existing facilities are plural. First we show that one of
optimal solutions is found by a combination problem, and then
we find approximate solution by applying taboo search to the
problem. In order to illustrate the efficiency of our algorithm,
results for numerical experiments are shown.

I. I NTRODUCTION

Competitive facility location problem (CFLP) is an optimal
location problem for commercial facilities which have com-
petitiveness with other facilities to customers. A decision
maker in CFLP needs to locate her/his own facilities with
considering location of other competitive facilities. CFLP has
the following assumptions about users of service of facilities,
called “customers”:

• each of customers exist at one of several points, defined
as “demand points” (DP), and

• each of customers always uses only one facility whose
attractive power to her/him is the maximum, and the
locater of its facility obtains their buying power (BP).

In many studies of CFLP, an attractive power of a facility
to a customer is estimated as the distance from the facility
to her/him. Hakimi [3] assumed that there are two types
of facilities: one is the type of facilities which has already
located, and the other is that which will be located by the
decision maker in the future. He considered CFLP located on
a network connecting all DPs. Drezner [1] considered CFLP
located on the plane including all DPs with the assumption
of Hakimi.
On the other hand, Huff [4], [5] assume that an attractive
power of a facility to a customer is estimated as a combination
of quality level of facility and to the distance. Karkazis
considered CFLP in the location model of Hakimi with
estimating both quality level of facilities and distance to
customers paralelly. Uno [8], [9] considered CFLP in the
location model of Drezner with the assumption of Huff.
In this paper, we considered CFLP in the location model of
Drezner with the assumption of Huff. In the above studies
of Drezner and Uno, strictly solving method for their CFLP

are suggested in cases that both of two types of facilities
are only singular. First, we show that this CFLP can be
reformulated as a combinatorial optimization problem to a set
of a finite number of points in the plane. However, because
this combinatorial optimization problem is NP-hard from
the study of Hakimi [3], we need to construct an efficient
algorithm to find an optimal solution for the problem. Taboo
search, suggested by Glover [2], is one of valid approximate
solving methods; for details, the reader can see the book of
Reeves [7]. Secondly, we suggest applying taboo search to the
combinatorial optimization problem. Results of numerical ex-
periment for several examples of CFLP confirm the efficiency
of taboo search.
The construction of this paper is as follows: In Section II, we
formulate CFLP in the location model of Drezner with the
assumption of Huff as a maximization problem of obtaining
BP for the locater of future facilities. For the formulated
problem, we show that this problem can be reformulated
as a combinatorial optimization problem to a set of a finite
number of points in the plane in Section III. In order to solve
the combinatorial optimization problem, in Section IV, we
introduce the concept of taboo search and apply the algorithm
to the problem. Computational results are given in Section V,
and finally we summarize conclusion and future studies of
this study in Section VI.

II. FORMULATION OF CFLP

Let k demand points (DPs) be given on the planeR2, and
let I ≡ {1, · · · , k}. With each DPi ∈ I, its site denoted
by ui ≡ (xD

i , yD
i ) ∈ R2 and buying power (BP) denoted by

wi > 0 are associated. Letw ≡ (w1, · · · , wk).
Let m facilities be already located on the plane, and letJA ≡
{−m+1, · · · , 0}. With each facilityj ∈ JA, its site is denoted
by vj ≡ (xA

i , yA
i ) ∈ R2, and its qualitative value is denoted

by qj > 0.
In CFLP, we consider the location ofn facilities on the plane.
Let J ≡ {1, · · · , n}. Similarly to the facilities having already
located, with each of the new located facilitiesj ∈ J , its site
is denoted byvj ≡ (xF

i , yF
i ) ∈ R2. Let v ≡ (v1, · · · ,vn),

this is a decision vector of CFLP. In this paper, we assume
that qualitative values of the new located facilities are fixed
and denoted byq1, · · · , qn, where they hold thatq1 ≥ · · · ≥



qn > 1. In order to deal with both of these two types of
facilities together, we denotēJ ≡ JA ∪ J .
We assume that customers on demand points use only one
facility according to the following criterion. For DPi ∈
{1, · · · , k} and facility j ∈ J̄ , distance fromvi to uj is
represented as Euclid norm, denoted by||vi − uj ||. We
represent the attractive power of facilityj to customers on
DP i as the following definition suggested by Huff [4], [5]:

ci(vj) ≡




G
qj

||v̄j − ui||2 , if ||v̄j − ui|| > ε,

G
qj

ε2
, if ||v̄j − ui|| ≤ ε.

(1)

Here,G is a constant value according to the type of service
provided by facilities, and in this CFLP, the value ofG is
common to all facilities, andε is a positive number meaning
the upper of distance that all customers think as no troubles
about movement to facilities.
With equation (1), the maximum attracting power in all
facilities having already located and in all new facilities are
represented as follows, respectively:

c̄A
i ≡ max

j∈JA

ci(vj) (2)

c̄i(v) ≡ max
j∈J

ci(vj) (3)

It is assumed that customers on DPi use one of new facilities
if c̄i(v) > c̄A

i and then the locater of new facilities obtains
BP wi. Then, we denote the following 0-1 variable in order
to represent which of type of facilities are used by customers
on each DP:

θi(v) =
{

1, if c̄i(v) > c̄A
i ,

0, otherwise
(4)

Let θ(v) ≡ (θ1(v), · · · , θk(v)). Then, if the location of new
facilities are given asv, sum of BP that the locater of new
facilities obtains is represented as follows:

f(v1, · · · ,vn) ≡ θ(v) ·wT . (5)

Therefore, CFLP is formulated as the following maximizing
problem for obtaining BP:

maximize f(v1, · · · ,vn) (6)

subject to vj ∈ R2, j = 1, · · · , n (7)

Next, we introduce difficulty to solve the above CFLP with
using some figures. We consider an example of CFLP for
one new facility, where(k, m, n) = (6, 2, 1) and sites of DPs
and facilities having already located are given in Fig.1. In this
example, we give the situations that all DPs have the same BP,
denoted byw̄, and that all facilities, including the new facility,
have the same quality level. Then, from the latter situation,
all customers at DPs use the nearest facility. In Fig.1, before
locating new facility, facility−1 obtains2w̄ from DP1, 4 and
facility 0 obtains4w̄ from DP 2, 3, 5, 6.
One of optimal solutions of CFLP in this example is shown
in Fig.2. In Fig.2, facility1 obtains4w̄ from DP 2, 3, 4, 6.
To solve CFLP analytically is generally difficult because
CFLP has the following characters:

Fig. 1. Example of Competitive facility location problem

Fig. 2. Optimal location of new facility

• Objective value of CFLP increases or decreases discon-
tinuously. In the above example, objective values can
become0, w̄, · · · , 4w̄.

• In general CFLP, region of optimal solution is very
narrow because optimal locations are sites which are
well-balanced near to many DPs . In Fig.2, if facility1
is shifted with a few distance, facility1 can only obtains
no more than3w̄.

These characters mean that it is difficult to apply general
solving methods for non-linear programming problem, e.g.
Steepest descent method, to use Kuhn-Tucker conditions, etc
to CFLP. In the next section, we reformulate CFLP to a
combinatorial optimization problem in order to solve CFLP
more easily.

III. R EFORMULATION OF CFLP TO A COMBINATORIAL

OPTIMIZATION PROBLEM

For simplification of notations in the following part, letηi ≡√
G/c̄A

i . From equation (1), a total set of DPs with customers
who never use facilityj ∈ J for any facility location is
represented as follows:

I4j ≡ {i | i = 1, · · · , k,
√

qjηi ≤ ε}. (8)

Let Ij = {1, · · · , k}\I4j . For facility j ∈ J and subset̄I ⊆
Ij , we consider the following maximization problem(Pj(Ī)):

maximize rj (9)

subject to ||vj − ui|| ≤ √
qjηirj ,

for i ∈ Ī , (10)

vj ∈ R2, rj ≥ 0 (11)

Here,rj is a variable introduced by the following theorem:



Theorem 1:Let (vĪ
j , rĪ

j ) denote an optimal solution of
(Pj(Ī)). Then, if rĪ

j < 1, the locater can obtain BP from
all DPs in Ī by locating facilityj on vĪ

j .
Proof: Constraint inequality (10) is transformed as follows:

c̄A
i ≤ G

qj

||vj − ui||2 · r̂j , for i ∈ Ī . (12)

From equation (1) and (4), the above relation means that the
locater can obtain BP from DPi if vj holds thatrj < 1.
Therefore, the locater can obtain BP from all DPs inĪ by
locating facility j on vĪ

j .

For two DPsi1, i2 ∈ I, LS(i1, i2) is denoted by the line
segment whose edges areui1 and ui2 . Then, the following
definition is useful to find an optimal solution for problem
(Pj(Ī)) andCFLP :

Definition 1: It is assumed that pointp ∈ R2 satisfies one of
the following conditions:

(C1) p = ui1 for facility j ∈ J and DPi1 ∈ Ij ,
(C2) For facility j ∈ J and two DPsi1, i2 ∈ Ij , p is an

interior division point ofLS(i1, i2) whose ratio is that
ηi1 : ηi2 .

(C3) For facility j ∈ J and three DPsi1, i2, i3 ∈ Ij , p is in
the convex closure ofui1 , ui2 , andui3 which holds the
following relation:

||p− ui1 ||
ηi1

=
||p− ui2 ||

ηi2

=
||p− ui3 ||

ηi3

. (13)

Then, p is called “a candidate point” (CP). Moreover, if
candidate pointp made by one of the above conditions holds
that ηi1qj < ||p − ui1 ||2 for i1 and j in this condition,p is
“effective” for facility j.

The following lemma is obviously satisfied by the order of
qualitative estimations of new facilities:

Lemma 1: If a CP is effective for facilityj > 1, then the CP
is also effective for facilityj − 1.

The following theorem illustrates a relation between CPs and
problem(Pj(Ī)):

Theorem 2:Let (vĪ
j , rĪ

j ) be an optimal solution of(Pj(Ī)).
Then, for any facilityj ∈ J and subset̄I ⊆ Ij , vĪ

j is the
same point as one of CPs.
Proof: Clearly, problemPj(Ī) has at least one active con-
straint for an optimal solution of the problem. Now we divide
the proof into the following three cases about the number of
active constraints.

1) The case is that there is one active constraint.This
only occurs in cases that̄I is singleton. Leti1 be the
sole element inĪ. Then, it is obviously satisfied that
v̂Ī

j = ui1 . This means that̂vĪ
j is the same point as one

of CPs (C1).

2) The case of two active constraints.Let i1, i2 ∈ Ī be two
DPs whose constraints in (10) are active for(vĪ

j , rĪ
j ).

Then, problemPj(Ī) can be reduced to the following
problem:

maximize rj (14)

subject to
||vj − ui1 ||

ηi1

=
||vj − ui2 ||

ηi2

(15)

vj ∈ R2, rj ≥ 0 (16)

Clearly, an optimal location for the above problem is
represented as follows:

vĪ
j =

ηi2ui1 + ηi1ui2

ηi1 + ηi2

(17)

This means thatvĪ
j is the same point as one of CPs

(C2).
3) The case of more than three active constraints.Let

i1, i2, i3 ∈ Ī be three DPs whose constraints in (10)
are active for(vĪ

j , rĪ
j ). Then vĪ

j holds the following
equation:

||vĪ
j − ui1 ||
ηi1

=
||vĪ

j − ui2 ||
ηi2

=
||vĪ

j − ui3 ||
ηi3

(18)

From equation (18), we consider the following three
cases aboutηi1 , ηi2 , andηi3 . (iiia) In cases thatηi1 =
ηi2 = ηi3 , vĪ

j can be found as a circumcenter of
4ui1ui2ui3 . (iiib) In cases thatηi1 , ηi2 , and ηi3 are
the same except one of them, we can discuss the case
by regarding asηi1 6= ηi2 = ηi3 without generality.
Then,vĪ

j holds the following equation:
(
vĪ

j −
ηi2ui1 + ηi1ui2

ηi1 + ηi2

)

·
(
vĪ

j −
ηi2ui1 − ηi1ui2

ηi1 − ηi2

)
= 0 (19)

From equation (19),vĪ
j is on a circumference of circle.

Hence,vĪ
j can be found as the intersection point of the

circle and a perpendicular bisector aboutui2 andui3 .
(iiic) In cases that all ofηi1 , ηi2 , andηi3 are different,
similarly to equation (19), a circle abouti2 and i3 is
found. Then we can findvĪ

j as an intersection point of
these two circles. Therefore, we can findvĪ

j in the three
cases (iiia), (iiib), and (iiic).
Next we show thatvĪ

j is in a point of convex full ofui1 ,
ui2 , andui3 . On the assumption thatvĪ

j is not included
on the convex full,vĪ

j is in the opposite side to one of
the three DPs for the line connecting the other two DPs.
Without generality, the latter two DPs can be regarded
as i1, i2. Let v′j be a interior division point on line
segmentLS(i1, i2) whose rate is thatηi1 : ηi2 . Then,v′j
can be decrease the value of left side in constraint (10)
about all ofi1, i2, i3. This contradicts either thatvĪ

j is
an optimal solution of problemPj(Ī) or that constraints
in (10) abouti1, i2, i3 are active. Therefore, it is shown
thatvĪ

j is in a point of convex full ofui1 , ui2 , andui3 .



This means thatvĪ
j is the same point as one of CPs

(C3).

Therefore, it is shown that for all of the above three cases,
vĪ

j is the same point as one of CPs.

From Theorem 1 and 2, the following theorem about CFLP
is shown:
Theorem 3:An optimal solution for CFLP is given by locat-
ing each facility on an effective CP for its facility.
Let Sj denote the set of effective CPs for facilityj. Then,
from Theorem 3, an optimal solution for CFLP can be found
by solving the following problem combination problem(PC):

maximize : f(v1, · · · ,vn) (20)

subject to : vj ∈ Sj , ∀j = 1, · · · , n (21)

The complexity of problemPC is estimated by the following
theorem:
Theorem 4:A complexity for problemPC is bounded to
O(n3n).

Proof: From Definition 1, upper bounds of numbers of CPs
(C1), (C2), and (C3) arenC1, nC2, nC3, respectively. Then,
sum of number of all CPs are bounded toO(n3). As the
number of locating facilities aren, a complexity for problem
PC is bounded toO(n3n).

From Theorem 4, in cases that the number of locating
facilities is large, to find strict optimal solution for problem
PC need enormous computational time and cost. In the
next section, we propose an algorithm in order to find an
approximate optimal solution for problemPC by a reasonable
time and cost.

IV. A PPLICATION OF TABOO SEARCH ALGORITHM FOR

CFLP

In this section, we introduce taboo search algorithm and apply
the algorithm to problem(PC). For details of taboo search,
the reader can reed the literature of Reeves [7].
Taboo search is regarded as one of local search methods. Let
R denote a parameter to represent neighborhood of solution
v ∈ Sn

j . We define “move” for each solution about taboo
search algorithm as the following two types:

(a) to transfer one facility located on an effective CP to
another effective CP whose distance from the CP is
less thanR,

(b) to exchange locations of two facilities such that the
distance between their locating CPs is less thanR and
both facilities are located on CPs effective for them.

Moreover, we define “neighborhood” of solutionv ∈ ⋃n
j=1 Sj

as a set of all solutions which can transfer by only one move
from v. Let N(v) ⊂ ⋃n

j=1 Sj be neighborhood ofv. At one
local search from now solution in taboo search algorithm,
neighborhood of its solution are searched and its solution
generally transfer to the best solution in the neighborhood.
The above “move” is decomposed into several attributes. In
this section, we distinguish between attributes about before

transfer of now searching solution and after that, and de-
fine these attribute as “from attribute” and “to attribute”,
respectively. For example, about two effective CPsp1, p2 ∈
Sj1 ∩Sj2 , if a move fromv is type No.1 andvj1 = p1 → p2,
from attribute of this move isvj1 = p1 and to attribute of
that isvj1 = p2. If its move is type No.2 andvj1 = p1 → p2,
vj2 = p2 → p1, from attribute of this move isvj1 =
p1,vj2 = p2 and to attribute of that isvj1 = p2,vj2 = p1.
Objective function of problemPC has many local optimal
solutions generally. In taboo search algorithm, in order to
search various local optimal solutions without concentration
of search for a local optimal solution, history of moves chosen
in a past of taboo search are recorded. Then, constraints whose
aim is not to choose backward moves for moves in this history,
called “taboo constraints”, can be used. Taboo constraints are
divided into the following two types.

(i) Taboo constraints about recencyAn aim of this type
of taboo constraint is to prevent short-term circulation of
solutions chosen at taboo search. In cases that a move is
chosen, taboo constraints for from or to attribute in the move
are activated in a given term in taboo search. If a taboo
constraint for from or to attribute is active, type No.1 of moves
including its attribute are taboo that is, not chosen in the
term even if one of such moves makes its value of objective
function of problemPC better than that for all solutions in
neighborhood. For example, movevj1 = p1 → p2 was chosen
in a past of taboo search, in the term such moves whose from
attribute isvj1 = p2 and whose to attribute isvj1 = p1 are not
chosen. About type No.2 of moves, such a taboo constraint is
applied if both from and to attribute in their moves are active.
Let Tfrom, Tto > 0 denote terms that such a taboo constraint
is active for from and to attribute, respectively. Fromk > n in
general CFLP, number of moves prevented by taboo constraint
of activation about from attribute is more than that of to
attribute. Then we setTfrom < Tto because of prevention for
making neighborhood small too far. In using the above taboo
constraints, the terms about activation for each attribute are
needed to memorize, called “recency memory”.
(ii) Taboo constraints about frequency An aim of this
type of taboo constraint is to prevent long-term circulation
of solutions chosen at taboo search. In using such taboo
constraints, the following penalty functions are defined for
from and to attribute.
Let yfrom(vj1 = p1), yto(vj1 = p2) denote frequencies of
from attributevj = p1 and to attributevj = p2 included in
all past chosen moves, respectively. Then, we define penalty
functions about from and to attribute for movevj = p1 →
p2 as gfrom(yfrom(vj1 = p1)) and gto(yto(vj1 = p2)),
respectively, where functionsgfrom, gto are non-increasing
for frequency of each attribute. We represent an estimate
function as the sum of objective function for problemPC

and these penalty functions. Then, in taboo search algorithm,
a now solution is transferred to the solution which maximizes
the estimate function in all solutions transferred by moves
non-taboo by their including active attributes. In using the
above taboo constraints, frequency for each attribute included



in all past chosen moves are needed to memorize, called
“frequency memory”.

As the end of this section, we summarize a procedure of taboo
search algorithm for problemPC . Let xbest be temporary
optimal solution in this algorithm. Letxnow be now solution
in this algorithm, andxnext be next solution which is chosen
in N(xnow).

Algorithm (Taboo search)

1) Based on Definition 1, findSj for any j ∈ J . Setxnow

by locating each facility on one of its candidate points
randomly, andxbest ← xnow.

2) Find xnext which maximizes the estimate function in
all solution transferred by moves non-taboo by their
including active attributes.

3) If f(xnext) > f(xbest), then setxbest ← xnext.
4) If an established terminal condition for taboo search

algorithm is satisfied, algorithm is terminated. Obtained
approximate optimal solution isxbest. Otherwise, up-
date recency memory and frequency memory for the
chosen move at the current Step 1, setxnow ← xnext,
and return to Step 1.

V. NUMERICAL EXPERIMENTS

In this section, we apply taboo search algorithm to some
examples of CFLP and verify its efficiency. For DPs, we set
their sites toui ∈ [0, 1] × [0, 1] randomly, and their BP to
wi ∈ {1, · · · , 10} randomly. For competitive facilities located
already, we also set their sites to points in[0, 1] × [0, 1]
randomly, and their quality value to{3, · · · , 12} randomly.
For new facilities located by the decision maker of CFLP, we
set their quality value to{1, · · · , 10} randomly and sort them
in order of size.
Next we give parameters about taboo search algorithm. For
activated terms, we setTfrom = n/2 and Tto = |S1|/10.
For penalty functions about frequency memory, we represent
gfrom(z) = gto(z) = z. We establish that terminal condition,
mentioned at the previous section, is true only ifxbest does
not update more than 100 times at the loop of Step 1 to 3 in
the above algorithm.
In this paper, we give five examples of CFLP setting
(k, m, n) = (20, 7, 3), (40, 10, 5), (60, 13, 7), (80, 18, 8),
(100, 20, 10), and for each example, we setR = 0.1, · · · , 0.8
and R → ∞. Results of implementation for taboo search
algorithm at 20 times is given in TABLE I to V. Here,
CPU times in these tables mean computational times for all
implementations of taboo search algorithm with using DELL
Optiplex GX260 (CPU: 2.33 GHz, RAM: 512MB).

First, we verify computational time for taboo search al-
gorithm. The numbers of CPs for examples of CFLP are
computed 94, 430, 1041, 1662, and 2430 in order of TABLE.
CPU time for computation of all CPs is less than 1 second
even by example of(k, m, n) = (100, 20, 10). This means
that most of CPU times is due to loops of Step 1 to 3 in the
above taboo search algorithm. Such CPU time is estimated
by product of the following three elements:

TABLE I

TABOO SEARCH FOR(k, m, n) = (20, 7, 3)

R CPU time(s) Best value Mean value Worst value
0.1 0.05 77.00 53.35 33.00
0.2 - 77.00 61.00 54.00
0.3 0.05 77.00 74.20 67.00
0.4 0.10 77.00 75.40 73.00
0.5 0.10 77.00 77.00 77.00
0.6 0.10 77.00 77.00 77.00
0.7 0.15 77.00 77.00 77.00
0.8 0.15 77.00 77.00 77.00
∞ 0.15 77.00 77.00 77.00

TABLE II

TABOO SEARCH FOR(k, m, n) = (40, 10, 5)

R CPU time(s) Best value Mean value Worst value
0.1 0.75 140.00 120.25 80.00
0.2 1.05 148.00 131.70 102.00
0.3 1.85 148.00 144.75 135.00
0.4 2.25 148.00 144.70 140.00
0.5 3.35 148.00 147.50 140.00
0.6 4.00 148.00 148.00 148.00
0.7 3.90 148.00 147.60 140.00
0.8 4.20 148.00 148.00 148.00
∞ 5.25 148.00 148.00 148.00

• number of facilities located by the decision maker of
CFLP,

• mean value to numbers of move for each facility, and
• number of such loops going through.

The third element is dependent on both numbers of facilities
and CPs, so in cases that these numbers are larger than these
examples, we need to have terminal conditions based upon
upper of CPU time. For some examples, it is shown such
cases that some initial points chosen randomly at Step 0
require CPU time which is more than two times as large
as mean CPU time. There is not tendency that taboo search
from such initial points can be found better solution. This
means necessity that various initial points are used in taboo
search algorithm. Moreover, taboo search is known as one
of the methods which can be applied parallel computing [7].
We think that to taboo search algorithm to CFLP, parallel
computing for several initial points also makes more efficient
algorithm possible.
Secondly, we verify accuracy for taboo search algorithm. For
the above five examples, all best solutions forR → ∞ in
TABLE I to V are consistent with strictly optimal solutions
found by enumeration of all feasible solutions. Moreover,R =
0.4 in TABLE I, II, IV, R = 0.5 in TABLE III, and R = 0.5
in TABLE V, can obtain sufficiently good objective values.
We think that by setting0.4 ≤ R ≤ 0.6, sufficiently wide
neighborhood about taboo search algorithm can be obtained.
Moreover, setting0.4 ≤ R ≤ 0.6 has the advantage of CPU
time for another value ofR > 0.6. These mean that taboo
search algorithm by setting0.4 ≤ R ≤ 0.6 can be expected
for finding an accurate solution for problemPC by a limited
CPU time.



TABLE III

TABOO SEARCH FOR(k, m, n) = (60, 13, 7)

R CPU time(s) Best value Mean value Worst value
0.1 4.05 210.00 183.70 155.00
0.2 8.50 215.00 204.45 177.00
0.3 14.60 224.00 214.70 204.00
0.4 21.90 224.00 216.80 201.00
0.5 23.95 224.00 220.35 215.00
0.6 27.60 221.00 218.25 212.00
0.7 36.25 224.00 217.05 203.00
0.8 42.75 224.00 218.95 213.00
∞ 40.95 224.00 218.35 213.00

TABLE IV

TABOO SEARCH FOR(k, m, n) = (80, 18, 8)

R CPU time(s) Best value Mean value Worst value
0.1 10.85 242.00 196.85 159.00
0.2 24.60 252.00 215.65 202.00
0.3 36.40 245.00 233.05 219.00
0.4 59.45 249.00 237.75 223.00
0.5 64.70 252.00 241.30 232.00
0.6 78.95 252.00 241.85 233.00
0.7 85.15 249.00 240.95 232.00
0.8 94.65 250.00 241.35 235.00
∞ 117.05 252.00 242.65 234.00

VI. CONCLUSION

In this paper, we have considered a location model of several
facilities in an environment that there are competitive facilities
whose quality levels vary. For a formulated optimal location
problem, we proposed that

• we define ”candidate point” in order to reformulate a
continuous optimization location problem to a discrete
optimization location problem, and

• for the discrete optimization location problem, we sug-
gest applying taboo search algorithm to the problem
and show its efficiency by solving several examples of
location problem.

In the future of this study, we think that CFLP can be
applied in the case of various decisions making in competitive
environments. In cases that strategies in Game’s theory can
be regarded as location onR2, we can use the above solving
method to a problem formulated as CFLP. However, in such
cases except facility location, feasible set for problems are
often represented as that of multi-dimensional. Construction
of solving algorithm to CFLP on multi-dimensional space is
an interesting future study.
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