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Abstract— The problem of optimal asset allocation is impor-
tant an investor who desires to maxmize the expected utility
concerning his consumption. Most conventional studies as-
sumed the non-arbitrage condition in the perfect and efficient
market and the period was only one. In this paper, we propose
the multi-period consumption investment model by multi-
agent system where agent’s actions are reflected in a price of
risk asset. And the agent learning is employed a reinforcement
learning which an agent can get the environment and decide
next action. By applying rational action of an investor to
the agent, we build a virtually market on a computer. We
statistically analyze the generated time series, compare to
actual one. Moreover, we discuss the result of the participation
of not only agent but also human being in artificial market.

I. INTRODUCTION

Finance engineering is the field which developed quickly
in recent years. It is supporting the deregulation and in-
ternationalization in a financial market from a theoretical
viewpoint. Furthermore, with the advance of information
technology, the finance theory has been applicable to the
investment strategy which many financial products and
assets management are incorporated into. As a result of this
movement, the situation which surround a financial market
has also been changing a lot [1]. A portfolio selection prob-
lem is one of the main subjects of finance engineering. This
problem is that each investor determines that redistribution
of his property will maximize the expected utility based on
his consumption in the market which has non-risk assets
and risk assets.

Many mathmatical models about the portfolio selection
problem in the conventional finance theory are aimed at one
period. However, it is desirable to assume that investment
period is multiple. The reason is that actual investment
needs periodical rebalance by change of a financial price,
since it produces inflow and outflow of funds. Generally, it
is difficult to search for the strict optimal portfolio strategy
in a multi-period portfolio selection. Therefore, the portfolio
strategy is formulated as the approximation model which
assumed the non-arbitrage condition in the perfect and
efficient market [2].

In the actual market, it is also difficult to confirm whether
these assumptions are always satisfied. Moreover, the in-
vestor can not always reflect to all information quickly and
appropriately. Then, many researches focus on the artificial
market by the multi-agent system which a financial price is
formed as a result of all investor’s actions [4].

Because changing environment and interaction between
investor’s actions, it is difficult for an investor to be able to
grasp the environment in detail and determine the optimal
action. Therefore, it is needed the techniques which acquire
the conduct code after much trial and error, and one of such
techniques is reinforcement learning. In this research, we
deal with the multi-period consumption investment model
by the multi-agent, and propose the construction of the
artificial market which an agent derives its portfolio strategy
using reinforcement learning [6]. In the artificial model,
we propose the decision making support system which
analyze the influence of the expected utility depending on
the financial price and consumption.

II. O   -  


In this section, we explain a conventional multi-period
consumption investment model (see Fig. 1) [3]. It is as-
sumed that the market is perfect, that is, prices and profits
are not affected. The amount of investment can take the
arbitrary real numbers and short selling is allowed. There
are cash and risk assets of J kinds. Concretely, asset 0
means a non-risk asset or call loan, and one from 1 to J
means risk assets. Moreover, the investment begins at time
0 and finishes at time T . One period from time (t − 1) to
t is called a period t. The investor decides redistribution of
his property, satisfying the following conditions.

The sum of the investment ratio wj0 of risk asset j, the
ratio c0 of cash (call loan), and the ratio Φ0 of consumption
satisfies the following formulas at time 0.

J∑
j=1

wj0 + c0 + Φ0 = 1 (1)



Fig. 1. Multi-period consumption investment model

By multiplying both sides by the initial property W0 and
using investment x j0 (≡ wj0W0) of risk asset j, (1) becomes
to

J∑
j=1

x j0 + v0 + φ0 = W0

where v0 (≡ c0W0) and φ0 (≡ Φ0W0) is initial cash and initial
consumption, respectively. Moreover, using the price ρ j0 of
the risk asset j and the amount of investment z j0 (≡ x j0

ρ j0
) of

risk asset j at time 0, we obtain

J∑
j=1

ρ j0z j0 + v0 + φ0 = W0. (2)

When a investor buys stocks z j0 of risk asset j at time
0, the value of risk asset j at time 1 is expressed as ρ j1z j0.
The investor’s wealth at time 1 is the sum of all risk assets,
employment (1 + r0)v0 of cash v0 and labor income b0. As
a result of the distribution at time 0, the wealth at time 1
is given by

W1 =

J∑
j=1

ρ j1z j0 + (1 + r0) v0 + b0.

where r0 is the interest rate of period 1. Similarly, based
on the distribution at time t − 1, the wealth Wt at time t is
expressed as

Wt =

J∑
j=1

(1 + µ jt)ρ j,t−1z j,t−1

+(1 + rt−1)vt−1 + bt−1

t = 1, . . . , T (3)

where µ jt is the rate of return on the investment of risk
asset j in period t, and rt−1 is the interest rate in period t.
The distribution which the investor determined at time t−1
satisfies the following equation.

J∑
j=1

ρ j,t−1z j,t−1 + vt−1 = Wt−1 − φt−1

t = 1, . . . , T (4)

Here, by the dividends on common stock and dividend of
profit, the rate of return µ jt of risk asset j is expressed as

µ jt =
ρ jt − ρ j,t−1 + d jt

ρ j,t−1

=
ρ jt − ρ j,t−1

ρ j,t−1
+

d jt

ρ j,t−1
. (5)

where d jt is the dividend or interest of risk asset j in period
t. (3) is rewritten by (4) and (5)

Wt =

J∑
j=1

ρ jtz j,t−1 +

J∑
j=1

d jtz j,t−1

+ (1 + rt−1) vt−1 + bt−1.

t = 1, . . . , T − 1 (6)

Generally, the investor has to pay the brokerage com-
mission because of the difference between purchase price
and sale price. They bring together the transaction cost and
securities transaction tax produced for the fluidity of market,
and it is called the rate of the dealing cost. By the amount
y+jt of purchase and the amount y−jt of sale, the amount of
investment in risk asset j at time t is expressed as

z jt = z j,t−1 + y+jt − y−jt.
j = 1, . . . , J; t = 1, . . . , T − 1 (7)

If the rate of dealing cost takes a fixed value at all assets
and all times, the purchase price will be the value which
added dealing cost to the market price, and a sale price will
be the value which deducted dealing cost from the market
price. That is, when the rate of dealing cost is set to γ, the
purchase price of risk asset j at time 0 becomes (1+ γ)ρ j0.
Therefore, (2) which is the wealth at time 0 is rewritten by

J∑
j=1

(1 + γ)ρ j0z j0 + v0 + φ0 = W0.

Similarly, (4) is rewritten by

J∑
j=1

ρ j,t−1

{
z j,t−2 + (1 + γ) y+j,t−1 − (1 − γ) y−j,t−1

}

+vt−1 = Wt−1 − φt−1
J∑

j=1

ρ j,t−1

{
z j,t−1 + γ

(
y+j,t−1 + y−j,t−1

)}
+ vt−1

= Wt−1 − φt−1

j = 1, . . . , J; t = 1, . . . , T − 1 (8)

Each investor acts in order to maximize the following
utility.

U(φ1, . . . , φ∞) = u1(φ1) + α1u2(φ2) + . . .

+α1 . . . α∞u∞(φ∞)

where α is the discount rate for the future. Thus, the
investor’s purpose can be rewritten by

Max E[U(φ1, . . . , φT )]



for which the expected utility from a consumption series
is maximized under φt ≥ 0. The utility function U is a
monotonous increasing and concave. Also, it reflects the
investor’s preference

(a, b, φ3, . . . , φT) � (b, a, φ3, . . . , φT), (a > b)

where U ′t > 0, U ′′t > 0 and α < 1 about all t. One of utility
functions is

ut(φt) =
1
κ
φκt (κ < 1)

where κ represents the degree of his preference on the utility
function.

III. T     
    

A. The outline of an artificial market by multi-agent system

Here, we relax some conditions of a usual models and
describe the framework of the artificial market (see Fig. 2).
It assumes that it is a discrete-time modeling, and all agents
are noncooperative and rational. Non-risk asset ( j = 0) and
risk assets (1 ≤ j ≤ J) exist in a market. Furthermore,
there are N agents modeling investors. Each agent need not
behave uniformly.

Fig. 2. Multi-agent system

The amount of investment in risk asset j of agent n in
period t is described by z(n)

jt , and agent n’s consumption is

φ(n)
t . In this artificial market, the company pays dividend

d jt to the agent holding its stocks. Therefore, the agent n’s
wealth at time t is written by

Wt =

J∑
j=1

ρ jtz j,t−1 +

J∑
j=1

rdd jtz
(n)
j,t−1

+ (1 + rt−1) v(n)
t−1 + b(n)

t−1

+ (1 + γ)
J∑

j=1

z
′(n)
j,t−1ρ j,t−1 +

J∑
j=1

s(n)
jt .

where rd is a positive constant, z′njt is the repayment in the

case of dealings failure and b(n)
t−1 is the labor income which

agent n obtains in period t − 1. s(n)
jt is the amount of an

excess or a deficiency accompanying price fluctuation.

s(n)
jt =
(
ρ jt − ρ j,t−1

)
(z(n)

j,t−1 − z
′(n)
j,t−1)

×sign(y(n)−
jt − y(n)+

jt )

where sign(x) is given by

sign(x) =


1 x > 0
0 x = 0
−1 x < 0

And the rate of return µ jt is the same as (5). A dividend of
risk asset j is the colored noise of at discrete time and it
given by

log
d jt

d̄ jt
= εaj log

d j,t−1

d̄ jt
+ εbj ξ jt

where ξ jt(t) is the gaussian noise with an average 0 and
a variance σ2

j [4]. And they are positive parameters which

satisfy (εaj )
2 + (εbj )

2 = 1. log djt

d̄ jt
has an average 0 and a

variance σ2
j , its autocorrelation function decreases within

the correlation time τs = 1/ log(εaj ).
After the period is renewed, each agent changes its stocks

and begins consuming. Here, the agent redistributes under
the following condition that its property is fixed.

J∑
j=1

ρ jt

{
z(n)

jt + γ
(
y(n)+

jt + y(n)−
jt

)}
+ v(n)

t

= W (n)
t − φ(n)

t

And, it is assumued that the total amount of the risk asset
j (= 1, . . . , J) in the artificial market is fixed.

N∑
n=1

z(n)
jt = Zj

Each agent desires to maximize the following utility.

U(φn
1, . . . , φ

(n)
∞ ) = u1(φ(n)

1 ) + α1u2(φ(n)
2 ) + . . .

+α1 . . . α∞u∞(φ(n)
∞ )

By the way, each agent cannot always invest its stocks
as requested. Here, agent n wants to buy y(n)+

jt or sell y(n)−
jt

risk asset j, then the total amount of buying and selling at
time t are derived by

Bjt =

N∑
n=1

y(n)+
jt ,

Ojt =

N∑
n=1

y(n)−
jt .

Therefore, in an only case of Bjt = Ojt, all agents can
buy and sell stocks at the desire of them. On the other hand,



in case of Bjt � Ojt, the amount of risk asset j which is
actually moved is given by

z(n)
jt = z(n)

j,t−1 +
Vjt

B jt
y(n)+

jt −
Vjt

O jt
y(n)−

jt

where Vjt ≡ min(Bjt,Ojt). That is, the repayment z′(n)
jt in

case of dealings failure is set to

z′(n)
jt =

{
(1 − Vjt

B jt
)y(n)+

jt − (1 − Vjt

O jt
)y(n)−

jt

}

The price ρ jt of risk asset j is determined based on the
dealings of all agents. Under such a situation, price ρ j,t+1 is
given as follows.

ρ j,t+1 =
2ρ jt

1 + exp{−U jt/T j}
U jt = log

Bjt

O jt

where T j is a positive constant and represents the sensitivity
of risk asset j. When T j is small value, agents are sensitive
to the difference between demand and supply. Otherwise
they are not sensitive to these values.

B. The portfolio selection by reinforcement learning

In an artificial market, agent n makes a decision based
on the following reward

Vn
t =

∞∑
k=0

(αn)kφt+k(φ
n
t+k)

under finite property at time t. In this study, we propose
the searching algorithm for the portfolio strategy by a
reinforcement learning using neural networks. We apply the
neural network [7] that realizes an actor-critic model [6] to
a reinforcement learning.

First, agent n observes a state xn
t about the environment.

And, the actor model generates a control output by

qn
jt = f


NA∑
i=1

wAn
i jtg

An
i (xn

t ) + n jt


gAn

i (xn
t ) = exp

{
−1

2
(xn

t − mAn
i )TCA−1

n
i

×(xn
t − mAn

i )
}

where gA
i is the i-th radial basis function, NA is the number

of radial basis functions, wAn
i jt is the weight, and n jt is

standardized gaussian noise. f is sigmoid function

f (x) =
gmax

i

1 + exp{−x/T A
n }

gmax
i is the maximum about output i, and T A

n is the sensitivity
of agent n.

In the actor model, agent desire to trade risk asset j by

y(n)+
jt =

q′njt W (n)
t

(1 + γ)ρ jt
− z(n)

j,t−1

(q′njt W (n)
t ≥ (1 + γ)ρ jtz

(n)
i,t−1)

y(n)−
jt = z(n)

i,t−1 −
q′njt W (n)

t

(1 + γ)ρ jt

(q′njt W (n)
t < (1 + γ)ρ jtz

(n)
i,t−1)

from a control output.
Next, the critic model generates the evaluation value

Vn
π (x

n
t ) =

NC∑
i=1

wCn
it gCn

i (xn
t )

where NC is the number of radial basis functions of the
critic model. As a result of the agent’s action, the critic
model receives reward

Rn
t = ut(φ

(n)
t )

from environment, and observes a state xn
t+1

after transition.
The expected utility is given by

E[ut(φ
n
t )] = Vn

π (x
n
t ) − αnVn

π (x
n
t+1)

Then the TD error which means a reinforcement signal is
defined by the difference between the actual utility and the
expected utility as follows.

δt ≡ ut(φn
t ) − E[ut(cn

t )]

= ut(φ
n
t ) + αnVn

π (x
n
t+1) − Vn

π (x
n
t )

After it is sent to the actor model, the past record of activity

en
it = λee

n
i,t−1 + gCn

i (xn
t )

is calculated. And, the weight is updated by

wCn
it = wCn

i,t−1 + ηCδte
n
it

In the actor model, the weight is also updated by

wAn
i jt = wAn

i j,t−1 + ηAδtg
An
i (xn

t )n jt

where ηA, ηC are the learning rates and λe is reduction.

IV. S   

In this section, we show results that the reinforcement
learning using neural networks apply to the portfolio strat-
egy. Note that it is difficult to apply this artificial market
to usual dynamic programming method. The values of
simulation results are the average of 5 trials. It is assumed
that one trial is 1224 steps, and last 1024 steps are observed.

First, we treat the artificial market which there are 20
agents, a non risk asset and risk assets of 3 kinds in. The
sensitivity of each price is set to T1 = 900, T2 = 750, T3 =

600. And the sensitivity of the agent is set to all Tn =

240 (n = 1, 2, . . . , 20). The initial values of risk assets which
the agent has at time 0 are given by 1000000+50σ, and the
initial prices of risk assets are given by 1000+5σ. Where, σ



TABLE I

T       

Parameter Simulation’s Value
ηA 0.01
ηC 0.01
λe 0.7
rt 0.01
α 0.3
κ 0.5
γ 0.0001

is the uniform random number within −1 ∼ 1. Moreover, it
is shown in Table I that the values of the other parameters.

Fig. 3 and Fig. 4 show the dynamics of the prices of risk
assets and the dynamics of the values of utility function for
several agents in certain trial, respectively. In Fig. 4, the
black line shows the value of agent whose number is 1, the
right grey shows agent 10, and the dark grey shows agent
20.

Fig. 3. One of the sample dynamics of the prices of risk assets

Fig. 4. One of the sample dynamics of the value of utility function for
a certain agent

TABLE II

R   

statistics simulation result
Mean −0.0001
Standard Deviation 0.00039
Skewness −0.34
Kurtosis 1.76
First Order Autocorrelation −0.524
Kolmogorov-Smirnov statistic 1.67
Jarque-Bera statistic 85.33
Box-Ljung statistic 280.953

A. The comparison with the actual market

It is known that in actual stock markets the logarithm of
rate of return does not follow the normal distribution. In
order to indicate whether the proposed artificial market has
the same properties as actual stock markets, we investigate
the logarithm of rate of return. And, the result is shown in
Table II
From Table II, it is observed that the logarithm of rate of
return generated by proposed artificial market has rejected
the hypothesis of following a normal distribution by the
significance level of 5% . Moreover, by the Box-Ljung test
it implies that the first order autocorrelation exists in this
model. Therefore, it is thought that the artificial market
which we proposed has the properties similar to the actual
stock markets [8].

B. The Effect of the parameters on the agent’s trading
volume

Next, we investigate what impact the number of agents
in the artificial market has on agent’s trading volume. We
change the number of agents from 10 to 50, and simulate
in each case. The averages � and standard deviations of
the agent’s trading volume are shown in Fig. 5. Other
parameters except the number of agents are the same values
as previous simulation. Moreover, the value of each average
is calculated per capita the trading volume at 1 step.
In Fig. 5, it is seen that the standard deviation decreases with
increasing the number of agents, and trading volume hardly
changes. When the number of agents is small, the system
dynamics are strongly influenced by an agent’s action than
the case that many agents exist in the system. Therefore,
we think that the trading volume becomes stable according
to the increase in the number of agents.

Finally, we examine what effect the change of the rate of
dealing cost γ has on the trading volume. After the trading
volumes are calculated per risk asset at 1 step, its averages



Fig. 5. The average of trading volume in which an agent trades at one
step

and standard deviations about three trials are shown in Fig.
6. The number of agents is 20. And we use the same
parameters as previous simulation.

Fig. 6. The average of trading volume of a risk asset at one step

As shown this figure, the averages and standard deviations
decrease as the rate of dealing cost increases. The reason is
that it is hard for the agents to trade the risk assets, when
the rate of dealing cost is high.

V. CONCLUSION

This study dealt with the situation where the interaction
between investor’s actions is complicated and their ac-
tions affect the environment. We proposed the multi-period
consumption investment model by multi-agent system, in
which each investor determines his action based on the
information on the environment. Therefore, their actions are
not uniform.

Then, we realized rational action of the investor on the
computer virtually by applying the reinforcement learning
to the agent whose action is modeled on the investor’s one.

Furthermore, we analyze that the number of agents and
the rate of dealing cost influence to the trading volume.
By refining the proposal technique, we hope that it can be
useful for a development of a portfolio support system.
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