
Two-level Nonlinear Integer Programming Problem
through Genetic Algorithms for Obtaining

Stackelberg Solutions
Md. Abul Kalam Azad, Masatoshi Sakawa, Kosuke Kato & Hideki Katagiri

Department of Artificial Complex Systems Engineering, Graduate School of Engineering
Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527, Japan

(azad, sakawa, kato, katagiri)@msl.sys.hiroshima-u.ac.jp

Abstract- In the present paper, we focus on two-level
nonlinear integer programming problems (TLNLIPPs) in
which there exist a decision maker (the leader, DM1) with
integer decision variables at the upper level and another
decision maker (the follower, DM2) with integer decision
variables at the lower level. Various approaches for two-level
programming problems could exist according to situations,
which the DMs are placed in. Assuming the noncooperative
relationship between the DM at the upper level and one at
the lower level, in this paper, genetic algorithms for
TLNLIPPs is proposed to obtain Stackelberg solutions for
the DMs. Furthermore, the feasibility of the proposed
method is shown by applying it to illustrative numerical
examples.

I. INTRODUCTION

In this paper, we consider two-level nonlinear integer
programming problems (TLNLIPPs) for obtaining
Stackelberg solutions in which the decision makers control
integer decision variables at each level and do not have any
motivation to cooperate with each other. It is assumed that the
decision maker at the upper level (the leader, DM1) and the
decision maker at the lower level (the follower, DM2)
completely know their objective functions and the constraints
of the problem and they do not have any motivation to
cooperate with each other, and the leader first makes a
decision and then the follower specifies a decision so as to
optimize the objective function of itself with full knowledge
of the decision of the leader. On this assumption the leader
also makes a decision such that the objective function of the
leader is optimized. Then a solution defined as the above
mentioned procedure is called a Stackelberg (equilibrium)
solutions, which has been employed as a solution concept for
two-level mathematical programming problem [3, 4, 5, 6, 7].

W. F. Bialas and M. H. Karwan [5] proposed four
algorithms based on vertex enumeration and Kuhn-Tucker
approches to solve two-level linear programming problems
for obtaining Stackelberg solutions where two of them can

provide local optimal solutions, and remaining two yield
global optima. It is known that finding Stackelberg solutions
of the two-level programming problem is strongly NP-hard
[7] i.e. in proportion as scale of the problem, computational
time exceedingly increases. To reduce computational time,
Nishizaki et al. [3, 4] proposed computational methods
through genetic algorithms for obtaining Stackelberg
solutions to two-level zero-one and mixed zero-one linear
programming problems. But all the methods concern with
only linear programming problems. Jan et al. [6] proposed a
solution method for obtaining Stackelberg solutions to
nonlinear integer bilevel programming problems. They
consider linear constraints only.

Two-level nonlinear integer programming problems
(TLNLIPPs) can be formulated as large-scale mathematical
programming problems involving integer decision variables,
nonlinear objective functions and nonlinear constraint
functions. Since a general solution method does not exist for
nonlinear integer programming problems like the branch and
bound method for linear ones, a solution method peculiar to
each problem has been proposed. As a general-purpose
solution method for nonlinear integer programming problems,
we propose the usage of genetic algorithms with double
strings based on reference solution updating (GADSRSU) [1,
2]. Under these circumstances, in this paper, for obtaining
Stackelberg solutions in noncooperative relationship between
the DMs, solution method through proposed GADSRSU is
presented for two-level nonlinear integer programming
problems (TLNLIPPs). Furthermore, the feasibility of the
proposed method is shown through illustrative numerical
examples with different number of variables.

II. PROBLEM FORMULATION

A two-level nonlinear integer programming problem for
obtaining Stackelberg solutions is generally formulated as:

{ }

1

2

1 1 2 2
Leader (DM1)

2 1 2
Follower (DM2)

1 2

1 1 2 2

Upper level: minimize (,) where solves

Lower level: minimize (,)

subject to (,) 0, 1, ...,

0,1, ..., ,

1, 2, 1, ...,
,

i

lj lj

l

f

f

g i m

x

l j n
X X

ν

≤ =
∈

= =

∈ ∈

x

x

x x x

x x

x x

x x

 (1)

where 1 1X∈x is an n1 dimensional integer decision
variable column vector for the decision maker at the upper
level (leader), 2 2X∈x is an n2 dimensional integer decision
variable column vector for the decision maker at the lower
level (follower), and objective functions 1 2(,),lf x x

1, 2,l = constraint functions 1 2(,), 1, ...ig i m=x x are
real-valued functions. 1 1 2(,)f x x is the leader's objective
function and 2 1 2(,)f x x is the follower's objective function.

Problem (1) can be interpreted as follows: On the
assumption that the follower chooses a decision x2 with
respect to the leader's decision x1 such that the objective
function 2 1 2(,)f x x is minimized, the leader first chooses a
decision x1 so as to minimize the objective function

1 1 2(,)f x x . On this assumption the obtained solution is called
Stackelberg solutions.

For example a manufacturer has several plants and
warehouses located in the different parts of the country. The
manufacturer subcontracts to a forwarding agent in order to
transport products from factories to warehouses. The
manufacturer wants to minimize total cost on the other hand
the forwarding agent also wants to minimize transportation
cost. Here the manufacturer is a decision maker at the upper
level (leader, DM1) and the agent is a decision maker at the
lower level (follower, DM2) and they do not have any
motivation to cooperate with each other.

In the noncooperative relation between the DMs, Nishizaki
et al. proposed two-level genetic algorithms for two-level
linear zero-one and mixed zero-one programming problems
for obtaining Stackelberg solutions [3, 4].

In this paper, focusing on the case of noncooperative
relation between decision maker at the upper level (leader,
DM1) and decision maker at the lower level (follower, DM2),
we present the computational method through two-level
genetic algorithms [3, 4] with double strings based on
reference solution updating (GADSRSU) [1, 2] for obtaining
Stackelberg solutions of problem (1).

III. SOLUTION PROCEDURES

In problem (1), a set S(x1) of feasible decisions of the

follower for x1 specified by the leader is represented by:

{ }1 2 1 2 2 2ˆ() | (,) 0, 1, ..., ,iS g i m X= ≤ = ∈x x x x x (2)
and a set R(x1) of rational responses of the follower for x1 is
represented by:

2 1

1 2 2 2 1 2
()

() | arg min (,) ,
S

R f
∈

 = ∈
 x x

x x x x x (3)

where
2 1() 2 1 2arg min (,)S f∈x x x x denotes the set of

2 1()S∈x x minimizing the function 2 1 2(,)f x x . A set S(X1)

of feasible decisions of the leader is defined by:

{1 1() |S X = x There exists x2 such that 1 2(,) 0,ig ≤x x

}1 1 2 21, ..., , , .i m X X= ∈ ∈x x (4)

In the proposed method to obtain Stackelberg solutions the
leader first specifies his decision x1, then the follower's
rational response 2 1()R∈x x can be obtained through
genetic algorithms. We assume that, for any 1 1()S X∈x , the
set R(x1) of the follower's rational responses is a singleton.
Let x2(x1) denote a rational response, and then a pair (x1,
x2(x1)) becomes a Stackelberg solutions of problem (1). To
obtain x2(x1) the following problem (5) is solved to minimize
the follower's objective function under the assumption that
the leader specifies his decision x1.

{ }

2
2 1 2

Follower (DM2)

1 2

2 2

2

2 2

ˆLower level: minimize (,)

ˆsubject to (,) 0, 1, ...,

0,1, ..., ,

1, ...,

i

j j

f

g i m

x

j n
X

ν

≤ =
∈
=
∈

x
x x

x x

x

 (5)

IV. GENETIC ALGORITHMS WITH DOUBLE STRINGS

BASED ON REFERENCE SOLUTION UPDATING

To obtain Stackelberg solutions to the problem (1), a
solution procedure through two-level genetic algorithms is
proposed in which search procedures are based on the
mechanics of natural selection and natural genetics. It should
be noticed that genetic algorithms have received much
attention as a promising approximate computational method
for large scale optimization problems. In the proposed
method for obtaining Stackelberg solutions to two-level
nonlinear integer programming problem (1) through
two-level genetic algorithms, double strings representation [1,
2] of each individual is used. In two-level genetic algorithms
[3, 4], the upper level genetic algorithms search the best
individual for decision maker at the upper level (leader,
DM1) and the lower level genetic algorithms search the best

individual for decision maker at the lower level (follower,
DM2) corresponding to each individual specified by the
leader.

In this section, we mention genetic algorithms with double
strings based on reference solution updating (GADSRSU)
proposed as a general solution method for nonlinear integer
programming problem defined as (6).

{ }

minimize ()
subject to () 0, 1, ...,

0,1, ..., , 1, ...,
i

j j

f
g i m

x j nν

≤ =
∈ =

x
x (6)

In (6) x is an n dimensional integer decision variable vector,
f(x), gi(x), i = 1,…, m are nonlinear functions.

A. Individual Representation

The individual representation by double strings shown in
Fig. 1 is adopted in GADSRSU.

Fig. 1 Double Strings Representation.

In the figure, each of s(j), j = 1,…, n is the index of an
element in a solution vector and each of { }() 0, 1, ...,s j jy ν∈ ,
j = 1,…, n is the value of the element, respectively.

B. Decoding Algorithm

Let N1 and N2 be the number of population (pop_size) of
the leader and the follower, respectively. The two sets of
individuals

1xS and
2xS with the dimensions n1 and n2

respectively are generated randomly. With each of the
individuals

1xS of the leader, the follower's rational response
R(x1) is determined by solving (5). Unfortunately, however,
since the direct mapping of the leader individuals can
generate infeasible solution x1 which yield problem (5)
without any feasible solutions x2. To eliminate such solutions,
as in [2], a decoding algorithm of double strings for nonlinear
integer programming problem using a reference solution (x1

0,
x2

0), which is a feasible solution of problem (1) and used as
the origin of decoding for the leader, is constructed as
follows.
Decoding algorithm for leader using reference solution

Let n1, N1 and (x1
0, x2

0) be the number of variables, the
number of individuals in the population of leader and the
reference solution, respectively.

Step 1: If the index of an individual to be decoded is in
{ }11, ..., / 2N , go to step 2. Otherwise, go to step 8.

Step 2: Let j := 1, x1 := {0, …, 0}, l := 1.
Step 3: Let x1S(j) := y1S(j).
Step 4: If 1 2(,) 0ig ≤x x , i = 1, …, m, let l := j, j := j+1,

and go to step 5. Otherwise, let j := j+1, and go to step 5.
Step 5: If 1j n≤ , go to step 3. Otherwise, go to step 6.
Step 6: l > 0, go to step 7. Otherwise, go to step 8.
Step 7: By substituting x1S(j) := y1S(j), 1 j l≤ ≤ and x1S(j) := 0,

1l j n< ≤ , we obtain a feasible solution x1 corresponding to
the individual

1
Sx and stop.

Step 8: Let j := 1, 0
1 1:=x x .

Step 9: Let x1S(j) := y1S(j). If 0
1 () 1 ()S j S jy x= , let j := j+1, and

go to step 11. If 0
1 () 1 ()S j S jy x≠ , go to step 10.

Step 10: If 1 2(,) 0ig ≤x x , i = 1, …, m, let j := j+1, and go
to step 11. Otherwise, let 0

1 () 1 ():S j S j=x x , j := j+1, and go to
step 11.

Step 11: If 1j n≤ , go to step 9. Otherwise, we obtain a
feasible solution x1 from the individual

1
Sx and stop.

For each decoded x1, to obtain follower's rational responses
x2(x1) the problem (5) is to be solved through genetic
algorithms. Since this direct mapping of individuals

2xS also
may generate infeasible solutions, a decoding algorithm using
reference solution is proposed for the follower.
Decoding algorithm for follower using reference solution

Let n2, N2 and (x1
0, x2

0) be the number of variables, the
number of individuals in the population of follower and the
reference solution, respectively.

Step 1: If the index of an individual to be decoded is in
{ }21, ..., / 2N , go to step 2. Otherwise, go to step 8.

Step 2: Let j := 1, x2 := {0, …, 0}, l := 1.
Step 3: Let x2S(j) := y2S(j).
Step 4: If 1 2ˆ(,) 0ig ≤x x , i = 1, …, m, let l := j, j := j+1,

and go to step 5. Otherwise, let j := j+1, and go to step 5.
Step 5: If 2j n≤ , go to step 3. Otherwise, go to step 6.
Step 6: l > 0, go to step 7. Otherwise, go to step 8.
Step 7: By substituting x2S(j) := y2S(j), 1 j l≤ ≤ and x2S(j) := 0,

2l j n< ≤ , we obtain a feasible solution x2 corresponding to
the individual

2
Sx and stop.

Step 8: Let j := 1, 0
2 2:=x x .

Step 9: Let x2S(j) := y2S(j). If 0
2 () 2 ()S j S jy x= , let j := j+1, and

go to step 11. If 0
2 () 2 ()S j S jy x≠ , go to step 10.

Step 10: If 1 2ˆ(,) 0ig ≤x x , i = 1, …, m, let j := j+1, and go
to step 11. Otherwise, let 0

2 () 2 ():S j S j=x x , j := j+1, and go to
step 11.

Step 11: If 2j n≤ , go to step 9. Otherwise, we obtain a
feasible solution x2 from the individual

2
Sx and stop.

These decoding algorithms enable us to decode each of the

individuals represented by the double strings to the
corresponding feasible solution. However, the diversity of the
solution x1 and x2 greatly depend on the reference solution,
because solutions obtained by the decoding algorithms using
reference solution tend to concentrate around the reference
solution. To overcome such situations, the reference solution
updating procedure [1, 2] is adopted here.

C. Fitness Function

Nature obeys the principle of Darwinian “survival of
fittest’’, the individuals with high fitness values will, on
average, reproduce more often than those low fitness values.
For obtaining Stackelberg solutions to two-level nonlinear
integer programming problem (1) through GADSRSU, the
objective function value is used as the fitness value f of an
individual S for the leader and the follower. When the
variance of fitness in a population is small, it is often
observed that the ordinary roulette wheel selection does not
work well because there is little difference between the
probability of a good individual surviving and that of a bad
one surviving [1, 2]. In order to overcome this problem, the
linear scaling [1, 2] is adopted here. The fitness F1(S) of the
leader and the fitness F2(S) of the follower are obtained by
using the following linear scaling

Fl(S) = al fl(S) + bl
where fl(S), l = 1, 2 are the fitness values of the leader and the
follower with respect to each decoded individual S.

D. Genetic Operators

For obtaining Stackelberg solutions to two-level nonlinear
integer programming problem (1) through GADSRSU, three
genetic operators such as reproduction, partially matched
crossover (PMX) and mutation are adopted for the leader and
the follower.
i. Reproduction

As a reproduction operator the elitist expected value
selection is adopted here. The elitist expected value selection
is a combination of elitist preserving selection and expected
value selection.
Elitist preserving selection: One or more individuals with the
largest fitness up to the current population is unconditionally
preserved in the next generation.
Expected value selection: Let N denote the number of
individuals in the population. The expected value of the
number of the ith individual Si in the next population is
calculated as [1, 2]:

1

()

()

i
i N

i
i

f
N N

f
=

= ×

∑
S

S
 (7)

In the expected value selection, the integral part of
()i iN N= denotes the definite number of individuals Si

preserved in the next population. While, using the fractional
part of (),i i iN N N= − the probability to preserve Si, in the
next population is determined by

1

()

i i
N

i i
i

N N

N N
=

−

− ∑
 (8)

ii. Crossover

It is well recognized that the main distinguishing feature of
genetic algorithms is the use of crossover. Crossover, also
called recombination, is an operator which creates new
individuals from the current population. The main role of this
operator is to combine together pieces of information coming
from different individuals in the population. Actually, it
recombines genetic material of two parent individuals to
create offspring for the next generation. In GADSRSU,
partially matched crossover (PMX) [1, 2] is used.

Partially Matched Crossover (PMX) for double strings

Step 0: Let i := 1.
Step 1: Choose X and Y as parent individuals from the

current population. Then, make copies X ′ and Y ′of X and Y,
respectively.

Step 2: If a random number rand() in [0,1] is less than or
equal to the probability of crossover pc, go to step 3.
Otherwise, go to step 8.

Step 3: Choose two crossover points h and k (h < k) from
{1, 2,…, n} at random. Let j := h.

Step 4: Find j′ such that () ().X YS j S j′ ′ = Then,
interchange ()()(),

X

T

X S jS j y
′′ with ()()(),

X

T

X S jS j y
′′ ′′ and let

j := j+1.
Step 5: If j > k, go to step 6. Otherwise, return to step 4.
Step 6: For every j from h to k, let () ():

X YS j S jy y
′

= and go to
step 7.

Step 7: Carry out the same operations as steps 4, 5, 6 for
Y ′ and X.

Step 8: Preserve X ′ and Y ′ as offspring of X and Y
respectively, and let i := i+1.

Step 9: If i > N, go to step 10. Otherwise, return to step 1.
Step 10: Choose N G⋅ individuals randomly from 2 N⋅

offspring preserved by step 9 and substitute those for N G⋅
individuals in the current population, where G denotes the
generation gap.

iii. Mutation

It is considered that mutation plays the role of local
random search in genetic algorithms. In GADSRSU, two

mutation operators (bit-reverse type and inversion) are used.
The procedures of mutation of bit-reverse type and inversion
[1, 2] are summarized as follows.

Mutation of bit-reverse type for double strings

Step 0: Let i := 1.
Step 1: Let j := 1.
Step 2: If a random number rand() in [0,1] is less than or

equal to the probability of mutation pm, go to step 3.
Otherwise go to step 4.

Step 3: Determine yS(j) randomly according to the uniform
distribution in [0, ν j], and go to step 4.

Step 4: If j < n, let j := j+1 and return to step 2. Otherwise,
go to step 5.

Step 5: If i < N, let i := i+1 and return to step 1. Otherwise,
stop.

Inversion for double strings

Step 0: Let i := 1.
Step 1: If a random number rand() in [0,1] is less than or

equal to the probability of inversion pi, go to step 2.
Otherwise, go to step 5.

Step 2: After choosing two inversion points h and k (h < k)
form {1, 2,…, n}, let j := h.

Step 3: Interchange ()()(),
T

S jS j y with
()(())(()),

T

S k j hS k j h y − −− − and let j := j+1.
Step 4: If (1) / 2 ,j h k h< + − + return to step 3.

Otherwise, go to step 5.
Step 5: If i < N, let i := i+1 and return to step 1. Otherwise,

stop.

V. PROPOSED ALGORITHM THROUGH
TWO-LEVEL GADSRSU

To obtain Stackelberg solutions of problem (1), the leader
first specifies his decision

1xS of individuals after decoded
from N1 individuals, then for each decoded individual of the
leader, the follower's rational response 2 1()R∈x x can be
obtained by solving problem (5) through GADSRSU. Let
x2(x1) denote a rational response. After some predefined
generations a pair (x1

*, x2
*(x1

*)) is obtained which becomes a
Stackelberg solutions of problem (1). The proposed solution
procedures through two-level GADSRSU are summarized as
follows.

Step 0: Determine values of the parameters used in
two-level GADSRSU: the population size N1 and N2 for the
leader and the follower respectively, the generation gap G, the
probability of crossover pc, the probability of mutation pm, the
probability of inversion pi, the scaling constant cmult, the
parameter for feasible solution θ, the parameter for reference

solution updating η and the maximal search generation M1
and M2 for the leader and the follower respectively. Also
determine the upper bound of the decision variables ν for the
leader and the follower.

Step 1: Find the feasible solution (x1
0, x2

0) of (1) through
GADSRSU without considering decoding algorithm.

Step 2: For the leader's decision variable x1, generate N1
individuals

1xS at random and form an initial population.
Step 3: For each individual

1
Sx , after it is decoded from

1
Sx to x1, the following procedure is repeated.

Step 3-1: Generate N2 initial individuals
2xS for the

decision variable x2 of the follower at random.
Step 3-2: After each individual

2
Sx with decoded x1 is

decoded from (x1, 2
Sx) to (x1, x2), the follower's fitness of

(x1, 2
Sx) is computed through a decoded (x1, x2).
Step 3-3: Go to step 4 if the procedure of steps 3-1 to 3-4

for each x1 is repeated M2 times, which is the maximal
number of generations specified in advance.

Step 3-4: Apply a reproduction operator, and thereafter
apply crossover and mutation operators to

2xS according to
the probabilities of crossover and mutation. Return to step
3-2.

Step 4: The leader's fitness of each individual
1

Sx is
computed through a decoded (x1, x2(x1)).

Step 5: The algorithm stops if the procedure of steps 3 to 6
is repeated M1 times, which is the maximal number of
generations specified in advance, and then a pair (x1

*,
x2

*(x1
*)) corresponding to an individual with the maximal

fitness of the leader is an approximate Stackelberg solutions
to the problem (1).

Step 6: Apply a reproduction operator, and thereafter apply
crossover and mutation operators to

1xS according to the
probabilities of crossover and mutation. Return to step 3.

VI. NUMERICAL EXAMPLE

1

2

1 1 2 2DM1: 1

2 1 2DM2: 1

2
1 1 2

1

2 1 2
1

maximize (,) 1 (1) where solves

minimize (,) exp
4

subject to (,) 0

(,) exp 0
4

{1, 2, ...,10}, 1, ...

j
n

x
j

j

n
j

j j
j

n

j j
j

n
j

j j
j

lj

f r

x
f q x

g p x P

x
g w x W

x j

=

=

=

=

 = − −

= +

= − ≤

= − ≤

= =

∏

∑

∑

∑

x

x

x x x

x x

x x

x x

, , 1,2n l

=

 (9)

For obtaining Stackelberg solutions to two-level nonlinear

integer programming problems, we have considered the
above two-level nonlinear integer programming problem to
test the proposed algorithm.
A. Result and Discussion

The numerical experiments were performed on a personal
computer (processor: Intel 1 MHz, memory: 512 MB, OS:
Windows 2000) using Visual C/C++ compiler (version 6.0).
The parameter values used in two-level GADSRSU for
solving two-level nonlinear integer programming problem (9)
for obtaining Stackelberg solutions were set as follows: N1 =
50, N2 = 30, M1 = 500, M2 = 200, θ = 5.0, cmult = 1.8, η = 0.1,
pc = 0.9, G = 0.9, pm = 0.05, pi = 0.03 and ν = 10. Several
problems with different number of variables were considered
to test the proposed algorithm for solving (9). The data were
generated randomly. The results are summarized in Table 1
after 10 trails.

Table 1 Simulation results of problem (9)

Upper level DM Lower level DM Prob.
No. Varia. Obj. Varia. Obj.

Time
(sec.)

1 4 0.79 4 2986.80 332.81

2 5 0.84 5 3285.10 454.02

3 8 0.96 7 4706.99 692.80

4 10 0.78 10 6480.43 1023.53

5 15 0.49 15 10855.20 1819.12

Considering the second problem where the decision maker
at the upper level (leader, DM1) controls 5 integer variables
and the decision maker at the lower level (follower, DM2)
controls other 5 integer variables. By using upper level
genetic algorithms, the leader first specifies his decisions. For
each decision of the leader, by using lower level genetic
algorithms the follower’s rational responses are obtained.
After maximal search generations of the follower, the
follower’s objective is found and it is 3285.10. Then the
leader’s objective is also found after maximal search
generations of the leader and it is 0.84.

0

500

1000

1500

2000

5 10 15 20 25 30
Total Number of Variables

Pr
oc

es
si

ng
 T

im
e

(S
ec

.)

Fig. 2 Computational Time of Problem (9).

Fig. 2 shows the computational time of problem (9) with
different total number of variables. From the figure it seems
that the computational time increases almost polynomially
with increasing the number of variables in the test problem.

VII. CONCLUSION

In this paper, focusing on two-level nonlinear integer
programming problems (TLNLIPPs) in which there exist a
decision maker (the leader, DM1) with integer decision
variables at the upper level and another decision maker (the
follower, DM2) with integer decision variables at the lower
level, solution procedures through two-level genetic
algorithms with double strings based on reference solution
updating (GADSRSU) are presented for obtaining
Stackelberg solutions. Furthermore, the feasibility of the
proposed method is shown by applying it to illustrative
numerical examples.

REFERENCES

[1] M. Sakawa, Genetic Algorithms and Fuzzy Multiobjective
Optimization, Kluwer Academic Publishers, Boston, USA,
2002.

[2] M. Sakawa, K. Kato, Genetic Algorithms with double
strings for 0-1 programming problems, European Journal of
Operational Research, vol. 144, pp. 581-597, 2003.

[3] I. Nishizaki, M. Sakawa and K. Kato, Computational
methods through Genetic Algorithms for obtaining
Stackelberg solutions to Two-level Zero-One Programming
Problems, Proceedings of 2000 IEEE International
Conference on Industrial Electronics, Control and
Instrumentation, pp. 2750-2755, 2000.

[4] I. Nishizaki and M. Sakawa, Computational Methods
through Genetic Algorithms for obtaining Stackelberg
solutions to Two-Level Mixed Zero-One Programming
Problems, Cybernetics and Systems: An International Journal,
Vol. 31, pp. 203-221, 2000.

[5] W. F. Bialas and M. H. Karwan, Two-Level Linear
Programming, Management Science, vol. 30, no. 8, pp.
1004-1020, 1984.

[6] R. Jan and M. Chern, Nonlinear Integer Bilevel
Programming, European Journal of Operational Research,
vol. 72, pp. 574-587, 1994.

[7] K. Shimizu, Y. Ishizuka and J.F. Bard, Nondifferentiable
and Two-Level Mathematical Programming, Kluwer
Academic Publishers, Boston, USA, 1997.

