
Two-level Nonlinear Integer Programming Problem 
through Genetic Algorithms for Obtaining 

Stackelberg Solutions 
Md. Abul Kalam Azad, Masatoshi Sakawa, Kosuke Kato & Hideki Katagiri 

Department of Artificial Complex Systems Engineering, Graduate School of Engineering 
Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527, Japan 

(azad, sakawa, kato, katagiri)@msl.sys.hiroshima-u.ac.jp 
 

Abstract- In the present paper, we focus on two-level 
nonlinear integer programming problems (TLNLIPPs) in 
which there exist a decision maker (the leader, DM1) with 
integer decision variables at the upper level and another 
decision maker (the follower, DM2) with integer decision 
variables at the lower level. Various approaches for two-level 
programming problems could exist according to situations, 
which the DMs are placed in. Assuming the noncooperative 
relationship between the DM at the upper level and one at 
the lower level, in this paper, genetic algorithms for 
TLNLIPPs is proposed to obtain Stackelberg solutions for 
the DMs. Furthermore, the feasibility of the proposed 
method is shown by applying it to illustrative numerical 
examples. 

I.  INTRODUCTION 

In this paper, we consider two-level nonlinear integer 
programming problems (TLNLIPPs) for obtaining 
Stackelberg solutions in which the decision makers control 
integer decision variables at each level and do not have any 
motivation to cooperate with each other. It is assumed that the 
decision maker at the upper level (the leader, DM1) and the 
decision maker at the lower level (the follower, DM2) 
completely know their objective functions and the constraints 
of the problem and they do not have any motivation to 
cooperate with each other, and the leader first makes a 
decision and then the follower specifies a decision so as to 
optimize the objective function of itself with full knowledge 
of the decision of the leader. On this assumption the leader 
also makes a decision such that the objective function of the 
leader is optimized. Then a solution defined as the above 
mentioned procedure is called a Stackelberg (equilibrium) 
solutions, which has been employed as a solution concept for 
two-level mathematical programming problem [3, 4, 5, 6, 7]. 

W. F. Bialas and M. H. Karwan [5] proposed four 
algorithms based on vertex enumeration and Kuhn-Tucker 
approches to solve two-level linear programming problems 
for obtaining Stackelberg solutions where two of them can 

provide local optimal solutions, and remaining two yield 
global optima. It is known that finding Stackelberg solutions 
of the two-level programming problem is strongly NP-hard 
[7] i.e. in proportion as scale of the problem, computational 
time exceedingly increases. To reduce computational time, 
Nishizaki et al. [3, 4] proposed computational methods 
through genetic algorithms for obtaining Stackelberg 
solutions to two-level zero-one and mixed zero-one linear 
programming problems. But all the methods concern with 
only linear programming problems. Jan et al. [6] proposed a 
solution method for obtaining Stackelberg solutions to 
nonlinear integer bilevel programming problems. They 
consider linear constraints only.  

Two-level nonlinear integer programming problems 
(TLNLIPPs) can be formulated as large-scale mathematical 
programming problems involving integer decision variables, 
nonlinear objective functions and nonlinear constraint 
functions. Since a general solution method does not exist for 
nonlinear integer programming problems like the branch and 
bound method for linear ones, a solution method peculiar to 
each problem has been proposed. As a general-purpose 
solution method for nonlinear integer programming problems, 
we propose the usage of genetic algorithms with double 
strings based on reference solution updating (GADSRSU) [1, 
2]. Under these circumstances, in this paper, for obtaining 
Stackelberg solutions in noncooperative relationship between 
the DMs, solution method through proposed GADSRSU is 
presented for two-level nonlinear integer programming 
problems (TLNLIPPs). Furthermore, the feasibility of the 
proposed method is shown through illustrative numerical 
examples with different number of variables. 

II. PROBLEM FORMULATION 

A two-level nonlinear integer programming problem for 
obtaining Stackelberg solutions is generally formulated as: 
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where 1 1X∈x  is an n1 dimensional integer decision 
variable column vector for the decision maker at the upper 
level (leader), 2 2X∈x  is an n2 dimensional integer decision 
variable column vector for the decision maker at the lower 
level (follower), and objective functions 1 2( , ),lf x x  

1, 2,l =  constraint functions 1 2( , ), 1, ...ig i m=x x are 
real-valued functions. 1 1 2( , )f x x is the leader's objective 
function and 2 1 2( , )f x x  is the follower's objective function. 

Problem (1) can be interpreted as follows: On the 
assumption that the follower chooses a decision x2 with 
respect to the leader's decision x1 such that the objective 
function 2 1 2( , )f x x  is minimized, the leader first chooses a 
decision x1 so as to minimize the objective function 

1 1 2( , )f x x . On this assumption the obtained solution is called 
Stackelberg solutions. 

For example a manufacturer has several plants and 
warehouses located in the different parts of the country. The 
manufacturer subcontracts to a forwarding agent in order to 
transport products from factories to warehouses. The 
manufacturer wants to minimize total cost on the other hand 
the forwarding agent also wants to minimize transportation 
cost. Here the manufacturer is a decision maker at the upper 
level (leader, DM1) and the agent is a decision maker at the 
lower level (follower, DM2) and they do not have any 
motivation to cooperate with each other. 

In the noncooperative relation between the DMs, Nishizaki 
et al. proposed two-level genetic algorithms for two-level 
linear zero-one and mixed zero-one programming problems 
for obtaining Stackelberg solutions [3, 4]. 

In this paper, focusing on the case of noncooperative 
relation between decision maker at the upper level (leader, 
DM1) and decision maker at the lower level (follower, DM2), 
we present the computational method through two-level 
genetic algorithms [3, 4] with double strings based on 
reference solution updating (GADSRSU) [1, 2] for obtaining 
Stackelberg solutions of problem (1). 

III. SOLUTION PROCEDURES 

In problem (1), a set S(x1) of feasible decisions of the 

follower for x1 specified by the leader is represented by: 

{ }1 2 1 2 2 2ˆ( ) | ( , ) 0, 1, ..., ,iS g i m X= ≤ = ∈x x x x x       (2) 
and a set R(x1) of rational responses of the follower for x1 is 
represented by: 
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where 
2 1( ) 2 1 2arg min ( , )S f∈x x x x denotes the set of 

2 1( )S∈x x minimizing the function 2 1 2( , )f x x . A set S(X1) 

of feasible decisions of the leader is defined by: 

{1 1( ) |S X = x  There exists x2 such that 1 2( , ) 0,ig ≤x x  

}1 1 2 21, ..., , , .i m X X= ∈ ∈x x  (4) 

In the proposed method to obtain Stackelberg solutions the 
leader first specifies his decision x1, then the follower's 
rational response 2 1( )R∈x x  can be obtained through 
genetic algorithms. We assume that, for any 1 1( )S X∈x , the 
set R(x1) of the follower's rational responses is a singleton. 
Let x2(x1) denote a rational response, and then a pair (x1, 
x2(x1)) becomes a Stackelberg solutions of problem (1). To 
obtain x2(x1) the following problem (5) is solved to minimize 
the follower's objective function under the assumption that 
the leader specifies his decision x1. 
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IV. GENETIC ALGORITHMS WITH DOUBLE STRINGS       

BASED ON REFERENCE SOLUTION UPDATING 

To obtain Stackelberg solutions to the problem (1), a 
solution procedure through two-level genetic algorithms is 
proposed in which search procedures are based on the 
mechanics of natural selection and natural genetics. It should 
be noticed that genetic algorithms have received much 
attention as a promising approximate computational method 
for large scale optimization problems. In the proposed 
method for obtaining Stackelberg solutions to two-level 
nonlinear integer programming problem (1) through 
two-level genetic algorithms, double strings representation [1, 
2] of each individual is used. In two-level genetic algorithms 
[3, 4], the upper level genetic algorithms search the best 
individual for decision maker at the upper level (leader, 
DM1) and the lower level genetic algorithms search the best 



individual for decision maker at the lower level (follower, 
DM2) corresponding to each individual specified by the 
leader.  

In this section, we mention genetic algorithms with double 
strings based on reference solution updating (GADSRSU) 
proposed as a general solution method for nonlinear integer 
programming problem defined as (6). 
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In (6) x is an n dimensional integer decision variable vector, 
f(x), gi(x), i = 1,…, m are nonlinear functions. 

A. Individual Representation 

The individual representation by double strings shown in 
Fig. 1 is adopted in GADSRSU. 

 

Fig. 1  Double Strings Representation. 

In the figure, each of s(j), j = 1,…, n is the index of an 
element in a solution vector and each of { }( ) 0, 1, ...,s j jy ν∈ , 
j = 1,…, n is the value of the element, respectively. 

B. Decoding Algorithm 

Let N1 and N2 be the number of population (pop_size) of 
the leader and the follower, respectively. The two sets of 
individuals 

1xS and 
2xS with the dimensions n1 and n2 

respectively are generated randomly. With each of the 
individuals 

1xS of the leader, the follower's rational response 
R(x1) is determined by solving (5). Unfortunately, however, 
since the direct mapping of the leader individuals can 
generate infeasible solution x1 which yield problem (5) 
without any feasible solutions x2. To eliminate such solutions, 
as in [2], a decoding algorithm of double strings for nonlinear 
integer programming problem using a reference solution (x1

0, 
x2

0), which is a feasible solution of problem (1) and used as 
the origin of decoding for the leader, is constructed as 
follows. 
Decoding algorithm for leader using reference solution 

Let n1, N1 and (x1
0, x2

0) be the number of variables, the 
number of individuals in the population of leader and the 
reference solution, respectively. 

Step 1: If the index of an individual to be decoded is in 
{ }11, ..., / 2N   , go to step 2. Otherwise, go to step 8. 

Step 2: Let j := 1, x1 := {0, …, 0}, l := 1.  
Step 3: Let x1S(j) := y1S(j).  
Step 4: If 1 2( , ) 0ig ≤x x , i = 1, …, m, let l := j, j := j+1, 

and go to step 5. Otherwise, let j := j+1, and go to step 5.  
Step 5: If 1j n≤ , go to step 3. Otherwise, go to step 6. 
Step 6: l > 0, go to step 7. Otherwise, go to step 8. 
Step 7: By substituting x1S(j) := y1S(j), 1 j l≤ ≤ and x1S(j) := 0, 

1l j n< ≤ , we obtain a feasible solution x1 corresponding to 
the individual 

1
Sx and stop.  

Step 8: Let j := 1, 0
1 1:=x x . 

Step 9: Let x1S(j) := y1S(j). If 0
1 ( ) 1 ( )S j S jy x= , let j := j+1, and 

go to step 11. If 0
1 ( ) 1 ( )S j S jy x≠ , go to step 10.  

Step 10: If 1 2( , ) 0ig ≤x x , i = 1, …, m, let j := j+1, and go 
to step 11. Otherwise, let 0

1 ( ) 1 ( ):S j S j=x x , j := j+1, and go to 
step 11. 

Step 11: If 1j n≤ , go to step 9. Otherwise, we obtain a 
feasible solution x1 from the individual 

1
Sx and stop. 

For each decoded x1, to obtain follower's rational responses 
x2(x1) the problem (5) is to be solved through genetic 
algorithms. Since this direct mapping of individuals 

2xS also 
may generate infeasible solutions, a decoding algorithm using 
reference solution is proposed for the follower. 
Decoding algorithm for follower using reference solution 

Let n2, N2 and (x1
0, x2

0) be the number of variables, the 
number of individuals in the population of follower and the 
reference solution, respectively. 

Step 1: If the index of an individual to be decoded is in 
{ }21, ..., / 2N   , go to step 2. Otherwise, go to step 8. 

Step 2: Let j := 1, x2 := {0, …, 0}, l := 1.  
Step 3: Let x2S(j) := y2S(j).  
Step 4: If 1 2ˆ( , ) 0ig ≤x x , i = 1, …, m, let l := j, j := j+1, 

and go to step 5. Otherwise, let j := j+1, and go to step 5.  
Step 5: If 2j n≤ , go to step 3. Otherwise, go to step 6. 
Step 6: l > 0, go to step 7. Otherwise, go to step 8. 
Step 7: By substituting x2S(j) := y2S(j), 1 j l≤ ≤ and x2S(j) := 0, 

2l j n< ≤ , we obtain a feasible solution x2 corresponding to 
the individual 

2
Sx and stop.  

Step 8: Let j := 1, 0
2 2:=x x . 

Step 9: Let x2S(j) := y2S(j). If 0
2 ( ) 2 ( )S j S jy x= , let j := j+1, and 

go to step 11. If 0
2 ( ) 2 ( )S j S jy x≠ , go to step 10.  

Step 10: If 1 2ˆ( , ) 0ig ≤x x , i = 1, …, m, let j := j+1, and go 
to step 11. Otherwise, let 0

2 ( ) 2 ( ):S j S j=x x , j := j+1, and go to 
step 11. 

Step 11: If 2j n≤ , go to step 9. Otherwise, we obtain a 
feasible solution x2 from the individual 

2
Sx and stop. 

These decoding algorithms enable us to decode each of the 



individuals represented by the double strings to the 
corresponding feasible solution. However, the diversity of the 
solution x1 and x2 greatly depend on the reference solution, 
because solutions obtained by the decoding algorithms using 
reference solution tend to concentrate around the reference 
solution. To overcome such situations, the reference solution 
updating procedure [1, 2] is adopted here. 

C. Fitness Function 

Nature obeys the principle of Darwinian “survival of 
fittest’’, the individuals with high fitness values will, on 
average, reproduce more often than those low fitness values. 
For obtaining Stackelberg solutions to two-level nonlinear 
integer programming problem (1) through GADSRSU, the 
objective function value is used as the fitness value f of an 
individual S for the leader and the follower. When the 
variance of fitness in a population is small, it is often 
observed that the ordinary roulette wheel selection does not 
work well because there is little difference between the 
probability of a good individual surviving and that of a bad 
one surviving [1, 2]. In order to overcome this problem, the 
linear scaling [1, 2] is adopted here. The fitness F1(S) of the 
leader and the fitness F2(S) of the follower are obtained by 
using the following linear scaling 

Fl(S) = al fl(S) + bl 
where fl(S), l = 1, 2 are the fitness values of the leader and the 
follower with respect to each decoded individual S. 

D. Genetic Operators 

For obtaining Stackelberg solutions to two-level nonlinear 
integer programming problem (1) through GADSRSU, three 
genetic operators such as reproduction, partially matched 
crossover (PMX) and mutation are adopted for the leader and 
the follower. 
i. Reproduction 

As a reproduction operator the elitist expected value 
selection is adopted here. The elitist expected value selection 
is a combination of elitist preserving selection and expected 
value selection. 
Elitist preserving selection: One or more individuals with the 
largest fitness up to the current population is unconditionally 
preserved in the next generation. 
Expected value selection: Let N denote the number of 
individuals in the population. The expected value of the 
number of the ith individual Si in the next population is 
calculated as [1, 2]: 
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In the expected value selection, the integral part of 
( )i iN N=    denotes the definite number of individuals Si 

preserved in the next population. While, using the fractional 
part of ( ),i i iN N N= −    the probability to preserve Si, in the 
next population is determined by  
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ii. Crossover 

It is well recognized that the main distinguishing feature of 
genetic algorithms is the use of crossover. Crossover, also 
called recombination, is an operator which creates new 
individuals from the current population. The main role of this 
operator is to combine together pieces of information coming 
from different individuals in the population. Actually, it 
recombines genetic material of two parent individuals to 
create offspring for the next generation. In GADSRSU, 
partially matched crossover (PMX) [1, 2] is used. 

Partially Matched Crossover (PMX) for double strings 

Step 0: Let i := 1. 
Step 1: Choose X and Y as parent individuals from the 

current population. Then, make copies X ′ and Y ′of X and Y, 
respectively. 

Step 2: If a random number rand() in [0,1] is less than or 
equal to the probability of crossover pc, go to step 3. 
Otherwise, go to step 8. 

Step 3: Choose two crossover points h and k (h < k) from 
{1, 2,…, n} at random. Let j := h. 

Step 4: Find j′ such that ( ) ( ).X YS j S j′ ′ = Then, 
interchange ( )( )( ),

X

T

X S jS j y
′′ with ( )( )( ),

X

T

X S jS j y
′′ ′′  and let 

j := j+1. 
Step 5: If j > k, go to step 6. Otherwise, return to step 4. 
Step 6: For every j from h to k, let ( ) ( ):

X YS j S jy y
′

= and go to 
step 7. 

Step 7: Carry out the same operations as steps 4, 5, 6 for 
Y ′ and X. 

Step 8: Preserve X ′ and Y ′ as offspring of X and Y 
respectively, and let i := i+1. 

Step 9: If i > N, go to step 10. Otherwise, return to step 1. 
Step 10: Choose N G⋅ individuals randomly from 2 N⋅  

offspring preserved by step 9 and substitute those for N G⋅  
individuals in the current population, where G denotes the 
generation gap. 

iii. Mutation 

It is considered that mutation plays the role of local 
random search in genetic algorithms. In GADSRSU, two 



mutation operators (bit-reverse type and inversion) are used. 
The procedures of mutation of bit-reverse type and inversion 
[1, 2] are summarized as follows. 

Mutation of bit-reverse type for double strings 

Step 0: Let i := 1. 
Step 1: Let j := 1. 
Step 2: If a random number rand() in [0,1] is less than or 

equal to the probability of mutation pm, go to step 3. 
Otherwise go to step 4. 

Step 3: Determine yS(j) randomly according to the uniform 
distribution in [0, ν j], and go to step 4. 

Step 4: If j < n, let j := j+1 and return to step 2. Otherwise, 
go to step 5. 

Step 5: If i < N, let i := i+1 and return to step 1. Otherwise, 
stop. 

Inversion for double strings 

Step 0: Let i := 1. 
Step 1: If a random number rand() in [0,1] is less than or 

equal to the probability of inversion pi, go to step 2. 
Otherwise, go to step 5. 

Step 2: After choosing two inversion points h and k (h < k) 
form {1, 2,…, n}, let j := h. 

Step 3: Interchange ( )( )( ),
T

S jS j y with 
( )( ( ))( ( )),

T

S k j hS k j h y − −− − and let j := j+1. 
Step 4: If ( 1) / 2 ,j h k h< + − +    return to step 3. 

Otherwise, go to step 5. 
Step 5: If i < N, let i := i+1 and return to step 1. Otherwise, 

stop. 

V. PROPOSED ALGORITHM THROUGH  
TWO-LEVEL GADSRSU 

To obtain Stackelberg solutions of problem (1), the leader 
first specifies his decision 

1xS of individuals after decoded 
from N1 individuals, then for each decoded individual of the 
leader, the follower's rational response 2 1( )R∈x x can be 
obtained by solving problem (5) through GADSRSU. Let 
x2(x1) denote a rational response. After some predefined 
generations a pair (x1

*, x2
*(x1

*)) is obtained which becomes a 
Stackelberg solutions of problem (1). The proposed solution 
procedures through two-level GADSRSU are summarized as 
follows. 

Step 0: Determine values of the parameters used in 
two-level GADSRSU: the population size N1 and N2 for the 
leader and the follower respectively, the generation gap G, the 
probability of crossover pc, the probability of mutation pm, the 
probability of inversion pi, the scaling constant cmult, the 
parameter for feasible solution θ, the parameter for reference 

solution updating η and the maximal search generation M1 
and M2 for the leader and the follower respectively. Also 
determine the upper bound of the decision variables ν for the 
leader and the follower. 

Step 1: Find the feasible solution (x1
0, x2

0) of (1) through 
GADSRSU without considering decoding algorithm. 

Step 2: For the leader's decision variable x1, generate N1 
individuals 

1xS at random and form an initial population. 
Step 3: For each individual 

1
Sx , after it is decoded from 

1
Sx to x1, the following procedure is repeated. 

Step 3-1: Generate N2 initial individuals 
2xS for the 

decision variable x2 of the follower at random. 
Step 3-2: After each individual 

2
Sx with decoded x1 is 

decoded from (x1, 2
Sx ) to (x1, x2), the follower's fitness of 

(x1, 2
Sx ) is computed through a decoded (x1, x2). 
Step 3-3: Go to step 4 if the procedure of steps 3-1 to 3-4 

for each x1 is repeated M2 times, which is the maximal 
number of generations specified in advance. 

Step 3-4: Apply a reproduction operator, and thereafter 
apply crossover and mutation operators to 

2xS according to 
the probabilities of crossover and mutation. Return to step 
3-2. 

Step 4: The leader's fitness of each individual 
1

Sx is 
computed through a decoded (x1, x2(x1)). 

Step 5: The algorithm stops if the procedure of steps 3 to 6 
is repeated M1 times, which is the maximal number of 
generations specified in advance, and then a pair (x1

*, 
x2

*(x1
*)) corresponding to an individual with the maximal 

fitness of the leader is an approximate Stackelberg solutions 
to the problem (1). 

Step 6: Apply a reproduction operator, and thereafter apply 
crossover and mutation operators to 

1xS according to the 
probabilities of crossover and mutation. Return to step 3. 

VI. NUMERICAL EXAMPLE 
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For obtaining Stackelberg solutions to two-level nonlinear 



integer programming problems, we have considered the 
above two-level nonlinear integer programming problem to 
test the proposed algorithm. 
A. Result and Discussion 

The numerical experiments were performed on a personal 
computer (processor: Intel 1 MHz, memory: 512 MB, OS: 
Windows 2000) using Visual C/C++ compiler (version 6.0). 
The parameter values used in two-level GADSRSU for 
solving two-level nonlinear integer programming problem (9) 
for obtaining Stackelberg solutions were set as follows: N1 = 
50, N2 = 30, M1 = 500, M2 = 200, θ = 5.0, cmult = 1.8, η = 0.1, 
pc = 0.9, G = 0.9, pm = 0.05, pi = 0.03 and ν = 10. Several 
problems with different number of variables were considered 
to test the proposed algorithm for solving (9). The data were 
generated randomly. The results are summarized in Table 1 
after 10 trails.  

Table 1 Simulation results of problem (9) 

Upper level DM Lower level DM Prob. 
No. Varia. Obj. Varia. Obj. 

Time 
(sec.) 

1 4 0.79 4 2986.80 332.81

2 5 0.84 5 3285.10 454.02

3 8 0.96 7 4706.99 692.80

4 10 0.78 10 6480.43 1023.53

5 15 0.49 15 10855.20 1819.12

Considering the second problem where the decision maker 
at the upper level (leader, DM1) controls 5 integer variables 
and the decision maker at the lower level (follower, DM2) 
controls other 5 integer variables. By using upper level 
genetic algorithms, the leader first specifies his decisions. For 
each decision of the leader, by using lower level genetic 
algorithms the follower’s rational responses are obtained. 
After maximal search generations of the follower, the 
follower’s objective is found and it is 3285.10. Then the 
leader’s objective is also found after maximal search 
generations of the leader and it is 0.84. 
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Fig. 2  Computational Time of Problem (9). 

Fig. 2 shows the computational time of problem (9) with 
different total number of variables. From the figure it seems 
that the computational time increases almost polynomially 
with increasing the number of variables in the test problem. 

VII. CONCLUSION 

In this paper, focusing on two-level nonlinear integer 
programming problems (TLNLIPPs) in which there exist a 
decision maker (the leader, DM1) with integer decision 
variables at the upper level and another decision maker (the 
follower, DM2) with integer decision variables at the lower 
level, solution procedures through two-level genetic 
algorithms with double strings based on reference solution 
updating (GADSRSU) are presented for obtaining 
Stackelberg solutions. Furthermore, the feasibility of the 
proposed method is shown by applying it to illustrative 
numerical examples. 
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