
Neuroadaptive Combined Lateral and
Longitudinal Control of Vehicles for IVHS

Sisil Kumarawadu and Tsu-Tian Lee
Department of Electrical and Control Engineering

National Chiao-Tung University
1001 University Road, Hsinchu, Taiwan, 300

E-mail: sisilkuma@ieee.org, ttlee@cn.nctu.edu.tw

Abstract— A model-based neurocontrol approach for com-
bined lateral and longitudinal control of vehicles for Intelligent
Vehicle Highway Systems (IVHSs) is presented. The controller
is synthesized using a Proportional plus Derivative control
coupled with an online adaptive neural module that acts
as a dynamic compensator to counteract for inherent model
discrepancies, strong nonlinearities and coupling effects. The
controller is tested and verified via computer simulations.

I. INTRODUCTION

The problems of lateral control and longitudinal con-
trol have been investigated as separate problems in the
vast majority of research on control for automated vehicle
operation [1]–[3]. It is knows, however, that the vehicle
dynamics is not independent in both directions. The cou-
pling effects become increasingly significant as maneuvers
involve higher accelerations, larger tyre forces, or reduced
road friction [7]. Thus, several methods have been proposed
to merge the two control tasks into a single problem [4]–
[6]. Sliding-mode-control (SMC) has been widely used [2]–
[5]. SMC has its major inherent problem in control chatter
caused by the switching term in the control law. Robust
adaptive control by backstepping has been adopted in [6].
Most importantly, the yaw dynamics has been taken into
account. But, simulation tests have been confined to very
low operating speeds.

For high-performance control of a mechanical system
in terms of accuracy, stability, and robustness, it is of
paramount importance to consider its mechanical structures,
torques and forces acting upon it. Therefore, it is necessary
to have accurate dynamic models of the controlled system,
and controllers should be synthesized on the basis of mod-
elled dynamics. On the other hand, the dynamics of vehicle
systems are apparently of highly complex nature and are
difficult to be modelled accurately. Hence, the controllers
should also be able to online adapt to varying conditions and
environments, and to efficiently compensate for modelled
and unmodelled uncertainties, strong nonlinearities and cou-
pling effects.

A control approach blending the neural networks (NNs)
techniques with classical model-based control is presented
for combined lateral and longitudinal control for IVHS
applications. The neural module is designed to compensate

for model discrepancies and strong coupling effects due
to lateral and yaw motions. Weights are tuned completely
online with no learning phase needed, and stability is
guaranteed using a Lyapunov approach. Complex 3-DOF
dynamic model, in the sensor space, is derived for theSevrin
(Mitsubishi Motors–Taiwan) passenger wagon, which is
used for real world testing at the ITS Center, National
Chiao-Tung Univ., Taiwan. Controller design is based on a
simplified model that is obtained using small angle approx-
imation to the original model. Simulations are performed in
the presence of severe accelerations and model uncertainties
using the original complex model.

II. VEHICLE DYNAMICS

The vehicle system used in the analysis isSevrin
(Mitsubishi Motors–Taiwan) passenger wagon, which is a
FWD/FWS system with 100/0 brake torque distribution as
shown in Fig. 1.
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Fig. 1. Vehicle model.

The equations of motion are

mẍ = Fxr + Fxf cos δ − Fyf sin δ + mε̇ẏ − kDẋ2 (1)

mÿ = Fyr + Fxf sin δ + Fyf cos δ −mε̇ẋ (2)

Iz ε̈ = aFxf sin δ + aFyf cos δ − bFyr (3)

where ẋ, ẏ, and ε̇ respectively are longitudinal velocity,
lateral velocity, and yaw rate.Fxf andFxr are longitudinal



forces on front and rear wheels, andFyf and Fyr are tire
lateral forces.δ is the steering angle. Please refer Table 1
for complete terminology.

Assuming equal slip angles on the left and right wheels,
the front and rear slip angles can be approximated as

αf =
ẏ + aε̇

ẋ
− δ, αr =

ẏ − bε̇

ẋ
. (4)

Using a linear tire model, lateral forces are obtained as

Fyf = −Cfαf , Fyr = −Crαr (5)

where Cf and Cr respectively are the front and rear
cornering stiffnesses. Tire longitudinal forcesFxf andFxr

can be written as

Fxf = F − f
b

a + b
(mg − kLẋ2) (6)

Fxr = −f
a

a + b
(mg − kLẋ2) (7)

where F is the net force exerted on the wheels, i.e.,
Ftraction − Fbraking.

A simplified model with small angle approximation is
used in the controller design. Using small angle approxima-
tion, cos δ ≈ 1 and sin δ ≈ δ, (1) through (3) are rewritten
as

M q̈ = h(q̇) + g(q̇, u) (8)

whereq̇ = [ẋ ẏ ε̇]T , andu = [F δ]T is the vector of control
inputs.M is the positive definite mass matrix, andh(q̇) and
g(q̇, u) are defined separating the terms that contain control
inputs from the rest, as follows

M = diag
(

m, m,
Iz

a

)
(9)

h(q̇) =




mẏε̇− f(mg − kLẋ2)− kDẋ2

−mẋε̇− Cr( ẏ−bε̇
ẋ )− Cf ( ẏ+aε̇

ẋ )
b
aCr( ẏ−bε̇

ẋ )− Cf ( ẏ+aε̇
ẋ )


 (10)

g(q̇, u) =




gx

gyε

gyε


 =




F − Fyfδ
Fxfδ + Cfδ
Fxfδ + Cfδ


 . (11)

The controlled terms,g(q̇,u), are determined by the
control method described in the following sections. Once
the entries ofg(q̇, u) are known, (11) will be solved using
(4) through (6) for the control vector,u.

A. Dynamics in Terms of Sensory Information

The dynamic equations (8) are in terms of distance of the
center of gravity (COG) from the road center-line. The sen-
sors that measure the lateral deviation is not normally fixed
on the vertical line through COG. Furthermore, feedback
based on error measured at COG leads to bad ride comfort
[2]. Hence, it is natural to describe the vehicle dynamics in
terms of lateral error at the sensor, sayys.

Assume that the sensor measuring the lateral error is
at the center of the front bumper of the vehicle. Letεr

be the angle between the road centerline and the vehicle

longitudinal axis inradians. The approximate relationship
betweeny, ys, andεr is

εr =
ys − y

ds
(12)

whereds is the horizontal distance to the sensor from COG.
Time differentiating (12), we get

ẏs = ẏ + dsε̇r, (13)

ÿs = ÿ + dsε̈r. (14)

Let εd be the yaw rotation of the road center-line w. r. t.
fixed earth frame, allowing us to write

ε = εr + εd. (15)

With ρ being the road curvature, it is a reasonable
assumption thaṫεd = ρẋ [2]. Time differentiating (15), we
get

ε̇ = ε̇r + ρẋ. (16)

Substituting for ÿ and ε̈r in (14), and replacingẏ by
ẏs using (13), we get longitudinal and lateral dynamics in
sensor space as

mẍ = m(ẏs − dsε̇ + ρdsẋ)ε̇ + (fkL − kD)ẋ2

−fmg + gx (17)
m

ξ0
ÿs = −m

ξ0
ẋε̇ +

ξ1

ξ0

ε̇

ẋ
− ξ2

ξ0
(
ẏs

ẋ
+ ρds) + gyε (18)

where ξ0 = (1 + mdsa
Iz

), ξ1 = [Cf (1 + mdsa
Iz

)(ds −
a) + Cr(1 − mdsb

Iz
)(ds + b)], and ξ2 = [(Cf + Cr) +

mds

Iz
(aCf − bCr)]. That ε̈d ≈ 0, and hencëε ≈ ε̈r, because

the road curvature is piecewise continuous has also been
used. Equations (17) and (18) can be rewritten as

mẍ = hsx(q̇s) + gx (19)
m

ξ0
ÿs = hsys

(q̇s) + gyε (20)

where q̇s = [ẋ ẏs ε̇]T and hs(q̇s) = [hsx(q̇s) hsys
(q̇s)]T

with entries defined suitably.

III. THE CONTROL APPROACH

The control objective is to simultaneously regulate the
spacing error between the vehicle and the preceding vehicle,
ex, and the lateral deviation of the center of the front
bumper from the road centerline,ey. These controller track-
ing error definitions are consistent with previous controller
designs [3]–[5]. In the sequel, subscriptd is used to denote
the desiredquantities.ex andey are defined as

ex = xd − x (21)

ey = ysd − ys (22)

where xd = xp − xspacing is the difference between
the longitudinal position of the preceding vehicle and the
desired inter-vehicular spacing andysd is the desired lateral
deviation. The relative spacing,xp − x, can be obtained
using radar sensors [1].



The control laws are based on a Proportional plus Deriva-
tive (PD) control scheme as

gx = m̂{ẍp + kvxėx + kpxex + ν̂x} − ĥsx
(q̇s) (23)

gyε =
m̂

ξ̂0

{ÿsd + kvy ėy + kpyey + ν̂y} − ĥsys
(q̇s) (24)

where(̂·) denotes the calculated (nominal) value of(·) and
ν̂x, ν̂y are signals from the neural networks to counteract for
modelled and unmodelled uncertainties.kvx, kpx, kvy and
kpy are constant positive gains to be chosen by the designer.

The error rate,̇ex = (ẋp− ẋ)− ẋspacing can be obtained
using relative speed,̇xp − ẋ, from radar sensors [1], and
ẋspacing that may be calculated using backward difference
approximations. Understandably,ẍp, is the preceding accel-
eration. One simple approach to obtainẍp will be to apply
a finite difference approximation (and preferably a low-pass
filter) using ẋp that is calculated at each sampling instant
as the sum of relative velocity and vehicle’s velocity.

Using (19) and (23) we get

m̂{ẍp + kvxėx + kpxex + ν̂x} − ĥsx
(q̇s) = mẍ− hsx

(q̇s)

or

m̂{ẍp − ẍ + kvxėx + kpxex + ν̂x} − ĥsx(q̇s)
= (m− m̂)ẍ− hsx(q̇s)

allowing us to write

ëx + kvxėx + kpxex = (
m

m̂
− 1)ẍ− 1

m̂
{ĥsx(q̇s)

−hsx(q̇s)} − ν̂x

= (νx + εx)− ν̂x

= ν̃x. (25)

Likewise, using (20) and (24) we get

ëy + kvy ėy + kpyey = (
mξ̂0

m̂ξ0
− 1)ÿs − ξ̂0

m̂
{ĥsys

(q̇s)

−hsys
(q̇s)} − ν̂y

= (νy + εy)− ν̂y

= ν̃y. (26)

In (25) and (26),νx andνy are the NN output signals that
correspond to the ideal weights, andεx andεy with practical
bounds given by|εx| < εxN , |εy| < εyN represent the NN
approximation errors.

Ideally, the goal of the neural network is to cancel off
the terms in the right-hand-sides of (25) and (26) so that
the errors,ex, and ey can asymptotically be brought to
zero. Neural network is designed as separatesubnets: viz.
x-subnetandy-subnet, to separately take care of the longitu-
dinal and lateral control problems respectively. This allows
one to differently initialize the weights and independently
select the design parameters to optimize the solutions to
these two distinct control problems. As (25) suggests, the
function to be learnt by the longitudinal subnet is a complex
function ofẍ, ẋ, ẏs, andε̇ that are hence chosen as the inputs

to the x-subnet. Likewise,̈ys, ẋ, ẏs, andε̇ become the inputs
to the y-subnet.

A. RBF Neural Networks

The construction of radial basis function neural networks
(RBF NNs) involves three different layers:input layer that
consists of input nodes,hidden layerwhere each neuron
computes its activation using a radial basis function, and
output layer that builds a linear weighted sum of hidden
layer activations to output the response of the network. The
analytic expression of the activation of a RBF with different
widths that we adopt in this work can be written as

ψi(z) = exp


−

f∑

j=1

(zj − cij)2

2σ2
ij


 , i = 1, 2, · · · , N

(27)
where z = [z1, z2, · · · , zf ]T is the input vector.cij =
[ci1, ci2, · · · , cif ]T and σij = [σi1, σi2, · · · , σif ]T are the
center state and standard deviations of Gaussians associated
with each element of input vector, respectively.N is the
number of hidden-layer neurons.

B. Connection Weight Updates for Guaranteed Control
Performance

We give here the NN connecting weight tuning algorithm
for neural subnets in a generalized framework valid for both
subnets. Subscripts are omitted for brevity. In the sequel, the
notation‖ · ‖ denotes Euclidean norm of a matrix vector.

The output signal,̂ν, from a three-layered RBF NN can
be written as

ν̂ = ŵT ·ψ(z) (28)

whereψ, ŵ ∈ <N are the vector of activations of hidden-
layer neurons and the vector of current values of connecting
weights between the hidden-layer and the single (in this
example) output node, respectively. Expanding (28) into a
Taylor series yields

ν − ν̂ = (w − ŵ)T ·ψ + ζ (29)

whereζ (|ζ| < ζN ) represents neglected higher order terms.
Combining (25) (or (26)) and (29), we have

ν̃ = w̃T ψ + ε + ζ (30)

wherew̃ = w − ŵ is the weight estimation error withw
(‖w‖ ≤ wmax) being ideal weights.

Rewriting the terms in equation (25) (or (26)), yields

ė = A e + B ν̃ (31)

where

e =
[

e
ė

]
, A =

[
0 1
−kp −kv

]
, B =

[
0
1

]
.



Note that, if the desired spacing,xspacing, is a constant,
ėx(= ẋp − ẋ) turns out to be the velocity error. Define the
error signal to the NN,r, as

r = e + ė = C e (32)

whereC = [1 1]. Equations (31) and (32) give the state-
space representation of error dynamics. Lets be the Laplace
operator. Simple computations prove that wheneverkv ≥ 1,
Re T (s−%) of the transfer function of error dynamicsT (s)
is non-negative, for a real% > 0, if the following condition
holds

σ − % > −
[
(kv + 1)(σ − %)2 + (kv − 1)ω2 + kp

(σ − %)2 + ω2 + kv + kp

]
.

This confirms thatT (s−%) is positive real for some real
% > 0, and henceT (s) is strictly positive real.

Let the NN weight tuning be provided by

˙̂w = ηrψ − κ‖e‖ŵ (33)

whereη > 0 is any constant scalar parameter andκ > 0
a design parameter. Then, the error and error rate,e, is
bounded and the NN weight convergence is guaranteed with
practical bounds.

In order to prove the above results, define the Lyapunov
function candidate as

L(e, w̃) = eT Pe +
1
η

w̃T w̃ (34)

where P is a positive definite solution of the Lyapunov
equationAT P + PA + Q = 0, for any positive definite
matrix Q. Differentiating (34) yields

L̇ = ėT Pe + eT P ė +
2
η

˙̃w
T
w̃.

Substitution forė from (31) and rearranging yields

L̇ = eT (AT P + PA)e + 2eT (PB)ν̃ +
2
η

˙̃w
T
w̃.

From Kalman-Yakubovich-Popov (KYP) lemma [8],
when the transfer function is made strictly positive real,
for the system described by (31) and (32) there exist two
positive-definite symmetric matricesP and Q, satisfying
KYP system

AT P + PA + Q = 0, PB = CT .

Now

L̇ = −eT Qe + 2eT CT ν̃ +
2
η

˙̃w
T
w̃.

Substitution forν̃ from (30) gives

L̇ = −eT Qe + 2(Ce)T (w̃T ψ + ε + ζ) +
2
η

˙̃w
T
w̃

= −eT Qe + 2rw̃T ψ + 2(Ce)T (ε + ζ) +
2
η

˙̃w
T
w̃.

Using the propertyw̃T ψ = ψT w̃ for w̃,ψ ∈ <N and
shuffling the terms, we get

L̇ = −eT Qe + 2(Ce)T (ε + ζ) +
2
η

˙̃w
T
w̃ + 2rψT w̃.

Since ˙̃w = − ˙̂w, with tuning rule (33)

L̇ = −eT Qe + 2(Ce)T (ε + ζ)

+2
κ

η
‖e‖ŵT (w − ŵ).

SinceaT (b − a) ≤ ‖a‖‖b‖ − ‖a‖2 for any a, b ∈ <n,
it follows that

ŵT (w − ŵ) ≤ ‖ŵ‖‖w‖ − ‖ŵ‖2. (35)

And also

−eT Qe + 2(Ce)T (ε + ζ)
≤ −Qmin‖e‖2 + 2

√
2(εN + ζN )‖e‖

(36)

whereQmin is the minimum singular value ofQ. Because
of the inequalities (35) and (36), there results

L̇ ≤ −Qmin‖e‖2 + 2
κ

η
‖e‖‖ŵ‖(wmax − ‖ŵ‖)

+2
√

2(εN + ζN )‖e‖
= −‖e‖[Qmin‖e‖+ 2

κ

η
‖ŵ‖(‖ŵ‖ − wmax)

−2
√

2(εN + ζN )]

which is negative if the term within braces (TWB) is
positive. We can write

TWB = 2
κ

η
(‖ŵ‖ − wmax/2)2 − κw2

max/2η

+Qmin‖e‖ − 2
√

2(εN + ζN )

which is guaranteed to be positive as long as either

‖e‖ >
κw2

max/2η + 2
√

2(εN + ζN )
Qmin

or

‖ŵ‖ > wmax/2 +
√

w2
max/4 +

√
2η(εN + ζN )/κ .

Therefore, L̇ is negative outside a compact set, and
weight and error convergence is guaranteed.

C. Calculatingu = [F δ]T

According to (11), it follows that

gx = F + Ĉfβ1δ (37)

gyε = (F − β2)δ + Ĉfδ (38)

where β1 = ẏ+âε̇
ẋ and β2 = f̂ b̂

â+b̂
(m̂g − k̂Lẋ2). It was

assumed thatδ2 = 0. Recall that(̂·) denotes the nominal
value of (·) and thatâ + b̂ is vehicle’s wheel-base.

From (37) and (38) we get

gyε = (gx − Ĉfβ1δ)δ + (Ĉf − β2)δ
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Fig. 2. Simulation results.

or

a0δ
2 + b0δ + c0 = 0

wherea0 = Ĉfβ1, b0 = β2 − gx − Ĉf , andc0 = gyε. This
gives

δ =

{
−b0−

√
b20−4a0c0

2a0
if a0 6= 0

− c0
b0

if a0 = 0
(39)

Net force,F , is now obtained using (37) and (39).

IV. SIMULATIONS

Simulation tests are performed using the original un-
simplified model.xspacing is chosen to be constant, and
ysd = ẏsd = ÿsd = 0. Total mass of the vehicle,m, is
taken to bem = m̂ + 300 kg for 4×75 kg passengers on
board. Coherently,Iz = m

m̂ Îz. The cornering stiffnesses are
Cf = 0.75 Ĉf , Cr = 0.75 Ĉr; position of center-of-gravity,
a = 1.1 â; aerodynamic parameters,kD = 1.1 k̂D, kL =
1.1 k̂L; rolling resistance,f = 0.9 f̂ .

The practical bounds for acceleration capability of the
vehicle is assumed to be given by110250.0/mẋ ms−2 for
ẋ ≥ 12.5 ms−1 (maximum engine power of 150PS) and
3 ms−2 otherwise. PD control law parameters are selected
askvx = kvy = 10, kpx = kpy = 15.

Input vectors to the longitudinal–x and lateral–y neural
subnets respectively arezx = [ẍ ẋ ẏs ε̇]T and zy =
[ÿs ẋ ẏs ε̇]T . Except forci2’s, which associate with longi-
tudinal velocity,ẋ, center states are set in the range[−2, 2]
for both subnets.ci2’s are set in the range[5, 30]. For
the same reason,σi2’s are differently set at8/

√
2 while

other standard deviations are set at2/
√

2. Adaptation law
parameters are selected asηx = 5, ηy = 50, κx = κy =
0.001. Each subnet has 7 hidden neurons and the connecting
weights are all initialized at zero.

Controller performance and control inputs are depicted
in Fig. 2. Fig. 3 gives the simulation profiles.

V. CONCLUSIONS

This paper has presented a novel control approach for
combined longitudinal and lateral vehicle control for IVHS.
The controller has also been tested and verified via com-
puter simulations under severe acceleration conditions and
model uncertainties using a dynamic model that has strong
nonlinearity and coupling terms. Weights of the neural
modules can simply be initialized at zero and be adapted
completely online without needing any off-line training
phase. Stability has been guaranteed based on a Lyapunov
approach.
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TABLE I

PARAMETERS (NOMINAL ) OF THE VEHICLE SYSTEM

Description Value

m̂ Total mass of the vehicle 1760kg

Îz Yaw inertia 3332kgm2

f̂ Rolling friction coefficient 0.02

â Distance–front wheel to CG 1.193m

L Wheel-base (̂a + b̂) 2.78m

d̂s Distance–front bumper to CG 2.103m

Ĉf Cornering Stiffness–front 131391N/rad

Ĉr Cornering Stiffness–rear 115669N/rad

k̂L Aerodynamics–lift parameter 0.008Ns2m−2

k̂D Aerodynamics–drag parameter 0.49Ns2m−2
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