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Abstract: Popular analytic methods for classification trees mainly 
focus on the inner information contained in tree nodes, while 
ignoring the integrative information implied in the tree structure. 
In order to describe and utilize the structural attributes of 
classification trees effectively, with three types of the leaf nodes in 
a classification tree defined, generalized propositions on the 
structure of a classification tree have been constituted, which have 
led to the normative definitions of the structural information of 
leaf nodes with a universal form. Then a comprehensive structural 
evaluation index (SEI) of classification trees has been formulated. 
Finally, the hierarchical SOM tree algorithm and IRIS data have 
been used to test the validity and performance of the presented 
evaluation method. The results have shown that the method could 
depict the discrimination ability and quality effectively. 
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I. INTRODUCTION 
The classification tree is a popular clustering method 

widely used in pattern recognition, knowledge discovery, 
decision support and machine learning, etc. It has shown 
satisfying performance in class discrimination, rule 
extraction, feature selection and syntax analysis. With a 
hierarchical structure, the classification tree can partition a 
complex pattern through the nodes and their connections 
into a series of simpler sub patterns, which is suitable for 
solving the problem of classifying complicated samples. [1, 

2]In order to depict and compare different classification 
trees generated with various algorithms, multiple methods 
have been introduced to evaluate their overall performance, 
The methods basing on information entropy, mutual 
information, node purity, misclassification rate, or the ratio 
of within-cluster scatter to between-cluster separation[3, 4], 
get the most popular use.  

Yet, most of the evaluation methods mentioned above 
only analyze the performance of each node itself, while 
ignoring the organization of the nodes in the target tree, i.e. 
the information hidden in the hierarchy of a tree. However, 
the inner information of nodes and the relationship between 
those nodes make up the two fundamental elements of a 
classification tree. So, the tree structure, viz. the 
relationship between nodes, should be granted sufficient 
importance as the local performance of nodes. The Number 
of Leaf Nodes [4] and the Minimal Description Length [5] can 
give an illustration of the tree structure, but the former is 
too simple while the latter is not explicit to embody. 

To solve the problem, a novel method named 
structural evaluation index (SEI) that utilizes both the 
inner property of the individual nodes and the structural 
information of the whole tree, has been introduced in this 
paper. In section 2, after the definition of three types, the 
pure, the lopsided and the confused, of leaf nodes, 
generalized propositions on the structure of a classification 

tree have been constituted. Then normative definitions of 
the structural information of different node types have been 
given, and the overall structural evaluation index TS  has 
been constructed. Section 3 shows how to constitute TS  
in detail. In section 4, hierarchical SOM trees have been 
used to analyze IRIS data sets, and the comparison of SEI 
with some other popular indices of these trees is given. 
Section 5 is the summary which has analyzed the 
extendibility and applicability of the novel evaluating 
method. 

II. EVALUATING THE STRUCTURE 
In substance, the classification tree is composed of 

nodes and their connections [1]. So, to take the inner status 
of nodes into account only, yet to ignore their hierarchical 
organization and global functionality, would neglect the 
other important essential attribute of classification trees. 
Meanwhile, most of the evaluation methods are embedded 
in the tree generating process, and different indices are 
always associated with different training algorithms 
respectively. Thus, there is an absence of a consentaneous 
post-processing analysis method. Therefore, it is necessary 
to catch the global property of tree structure so as to make 
more effective and more comprehensive evaluation of the 
classification tree. 

2.1 Leaf Node Types 
A classification tree consists of branching nodes, 

representing specific discrimination criteria, and leaf nodes, 
containing different training data. The nodes are organized 
in a specific hierarchy. According to the partition ability of 
leaf nodes, which is reflected by the training data contained 
in them, leaf nodes could be divided into three types. The 
pure leaf node (PLN) contains data from only one class, 
and samples falling into it are all recognized as this unique 
class. The lopsided leaf node (LLN) contains data from 
more than one class, but shows tendency to one class under 
specific criterion, and samples falling into it are recognized 
as this “distinctive class”. The confused leaf node (CLN) 
contains data from several classes, yet the applied 
discrimination criterion cannot divide them apart, so at 
recognition time it cannot determine which class the sample 
falling in belongs to. Fig. 1 shows an illustration of the 
three types of leaf nodes in a classification tree. 

 
 
 
 
 
 
 
 
 
The types of tree nodes are decided after the tree 

generating process. It is only concerned with the training 

Fig. 1  Illustration of Leaf Node Types in a classification tree
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result, and independent of the different tree construction 
algorithm. Then the evaluation of the performance of a 
classification tree is transformed into the analysis of the 
synthetic performance of each leaf nodes, which is defined 
as the structural information of leaf nodes. 

2.2 Propositions on the Structure of 
Classification Trees 

The propositions on tree structure below have been 
induced, basing on the analysis of the applications of 
classification trees. 

Proposition 1: As to a classification tree, if the pure 
leaf nodes and the lopsided leaf nodes are at higher 
hierarchy, i.e. nearer to the root node, their portion in all 
leaf nodes is greater, and the absolute and relative sample 
ratios for them are larger, it is more suitable for the 
classification use. Here the absolute ratio is the number of 
samples contained in one leaf node to the number of total 
training samples, and the relative ratio is the number of 
samples of each class in a node to the number of total 
samples of that corresponding class. 

Proposition 2: If the confused leaf nodes are at lower 
hierarchy, and their portion in all nodes is smaller and their 
sample ratios are lower, the tree is more suitable for 
classification. 

2.3 Structural Information of Leaf Nodes 
The structural information of a leaf node represents 

the leaf node’s overall classification performance within a 
specific tree structure. According to the propositions in 
Section 2.2, the structural information should consist of 
three components: the hierarchical level a leaf node belongs 
to, the ratio of the sample number it contained to the total 
sample number, and the functional measurement of the node 
itself. This can be represented as 

( ) ( ) ( )( ), , cS f W l R n A i= , where S  is the structural 
information of leaf nodes, ( )W l  is the level factor of the 
node, ( )R n  is the sample ratio factor, and ( )cA i  
represents the discrimination ability for a pure and a 
lopsided leaf nodes, or the confusion degree for a confused 
leaf node. The following form of ( )f ⋅  is applied in this 
paper: 

( ) ( ) ( )cS W l R n A i= × ×      （1） 
Define PTS ,  as the overall structural information of 

the pure leaf nodes in a classification tree, LTS ,  for the 
lopsided ones and CTS ,  for the confused ones. 

2.4 Structural Evaluation Index TS  
Based on the definitions of the overall structural 

information above, the structural evaluation index (SEI), 
TS , of a classification tree can be constituted: 

( ), , ,T P T L T CS S S
TS e e eα β γ⋅ ⋅ ⋅= +    （2） 

Here,α , β andγ are defined as the saliency factors for different 

nodes types. 

III. STRUCTURALEVALUATION INDEX 

3.1 Denotation 
The denotations to be used are defined here.  

TN - Total number of samples in a classification tree; 

TC - Total number of sample classes; 

,CT cN - Total number of samples in class c , 1, , Tc C= L ; 

lN - Total number of leaf nodes; 

,X lN - Number of X type leaf nodes, X=pure, lopsided, or confused; 

maxL - Max number of hierarchy level; 

,P kLN , ,L kLN  and ,C kLN - Numbers of the three different 

types of leaf nodes in level k  respectively; 

iL - Hierarchical level of leaf node i  (root node at level 0); 

iC - Number of classes of samples in node i ; 

,T iN - Total number of samples in leaf node i ; 

,i kN - Number of samples of class k  in node i , 1, , li N= L  

and 1, , ik C= L . 

3.2 Structural Information of PLN 
The effectual discrimination ability )(iAc  of pure 

leaf nodes is defined as the number of samples contained in 
it to the total number of samples of that corresponding class, 
which represents its ability to classify samples of this class 
correctly. ( )nR  is the number of samples in that node to 
the total sample number, and represents the node’s 
importance in the whole sample space and the influence it 
has. The level factor,  

2exp( ( ))( ) 0.11 exp( ( ))
lW l l

κ λ
κ λ

− −= ++ − −
， max,,1 Ll L= ,  

where κ  is the scale factor and λ  is the transition factor. 
We take 1=κ  and 1=λ  in this paper.  

Suppose pure node i  contains samples from class c  
only, then: 
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The structural information of pure node i  is:  

( ), , , ,( ) ( )i L P i i c T i cs W L R N A i= × ×    （6） 

Then the overall structural information of all pure leaf 
nodes is: 
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3.3 Structural Information of LLN 
The lopsided leaf nodes are different under variant 

judging methods. For instance, the lopsided nodes 
confirmed by the sample number ratio is different from 
those confirmed by the ratio of within-cluster scatter to 
between-cluster separation. But once they are specified, the 
meaning and the effect of the lopsided nodes are the same. 
The sample number ratio has been used to illustrate how to 



 

 

define the overall structural information of the lopsided leaf 
nodes, ,T LS . 

Firstly, a lopsided leaf node should been defined by the 
sample number ratio criterion. In a leaf node, once the 
number of samples of one class to the total number of 
samples in the node has reached the threshold )5.0( >RR , 
it can be confirmed as a lopsided node, i.e. if 

, ,max ( )i k T i
k

N N R≥ , it is a lopsided one. 
Let LLis ,,  denote the structural information of a 

lopsided leaf node. Because a lopsided node will judge all 
the samples falling in as one class, it will inevitably 
misclassify samples from other classes. The discrimination 
ability of that node and the overall performance of the tree 
are practically decreased. 

So for leaf node i  which is “lopsided to” class c , its 
effectual discrimination ability: 
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Note, when iTci NN ,, = , the lopsided node is just  
pure, and formula 7 can be transformed to formula 3.  

The sample proportional factor is 

,
, , ,( ) ( ) i c
i c i c i c

T

NR n R N N= =        （8） 

The level factor is the same as formula 5.  
Take formula 7, 8, and 5 into formula 1, and then the 

overall structural information of all the lopsided nodes will 
be gotten. 

3.4 Structural Information of CLN 
The confused leaf nodes cannot determine which class 

the samples falling in should belong to under their 
corresponding discrimination functions. As they do make 
negative influence to the classification tree, the structural 
information of confused nodes, CLis ,, , should represent the 
uncertainty they bring up in the tree.  

The information entropy can be used to show the 
uncertainty in a confused leaf node: 
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The sample proportional factor is 

,
, , ,( ) ( ) T i

i c i c T i
T

NR n R N N= =        （10） 

The level factor is the same as formula 5.  
Take formula 9, 10, and 5 into formula 1, and then the 

overall structural information of all the confused nodes will 
be gotten. 

At last, set the saliency factors for the three types of 
leaf nodes: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈==

∈==

∈==

∑

∑

∑

=

=

=

MaxL

i
iTdC

T

dC

MaxL

i
iTdL

T

dL

MaxL

i
iTdP

T

dP

CLNiNNN
N

LLNiNNN
N

PLNiNNN
N

1
,,

,

1
,,

,

1
,,

,

,,

,,

,,

γ

β

α

（11） 

Bring PTS , , LTS , , CTS ,  and formula 11 into 
equation 2, then we could get the overall structural 
evaluation index of the classification tree, TS . 

According to the construction process above, we could 
draw the conclusion that TS  is an incremental function of 
the classification performance, i.e., if the tree is more 

suitable for classification, then its structural information 
will be more, and TS  will get the higher value. 

IV. EXPERIMENTS 
Different data sets and HSOM[6,7] (Hierarchical SOM) 

training methods of classification trees have been used to 
compare the SEI with other indices. 

4.1. With IRIS Data 
The IRIS plant data set has been used as a standard 

data set in pattern recognition field[8]. The data set is 
composed of 150 samples, 50 for each of the three types of 
plants: setosa, versicolor, and virginica. Each sample 
features four attributes (petal length, petal width, sepal 
length, and sepal width). Data of each feature have a 
different confusion degree, so the clustering performance of 
different classification trees based on diverse combinations 
of features would differ greatly. 

15 training sample sets have been obtained by 
selecting 4 single features, 6 combinations of 2 features, 4 
combinations of 3 features, and all 4 features together. 
Training these 15 data sets with the HSOM has yielded 15 
classification trees. Besides SEI, the average error rate and 
the information gain [9] have also been applied to assess 
their performance. Table 1 gives the comparison of the three 
indices.  
Table 1. Comparison of Indices of Classification Trees 

Evaluation
Index

Feature 
Set 

Leaf 
Node 
Quan.

Ave. 
Error 
Rate 
(%) 

Infor- 
mation 
Gain 

Structural
Evaluation

Index  

1d 10 64.7 0.7451 1.0772 
2d 9 70.7 0.4043 0.3800 
3d 11 26 1.3434 2.8417 
4d 11 6 1.4151 3.1669 

1-2d 10 67.3 0.9507 1.0142 
1-3d 15 10.7 1.3743 2.6538 
1-4d 17 8.7 1.4294 3.1762 
2-3d 18 10.7 1.3766 2.4794 
2-4d 21 9.3 1.4237 2.5373 
3-4d 13 6 1.4301 4.6603 

1-2-3d 17 4 1.3357 2.8356 
1-2-4d 17 10 1.4032 2.7644 
1-3-4d 15 6.7 1.4527 3.1982 
2-3-4d 13 9.3 1.4819 4.3426 

1-2-3-4d 18 6 1.4826 4.1732 
As shown in Table 1, the three indices can all represent 

the discrimination performance of the trees from various 
aspects. The average error rate is the simplest and the most 
intuitive, but is somehow unilateral. For example, feature 
combination [1-2-3d] has the lowest average error rate of 
4%, but the classification tree is over-fitted [3] substantially. 
The tree is ill-formed with a lot of “sick nodes” that 
contains few samples. It is over branched with many 
redundant nodes, and its ability to generalize is poor. 

The compositions of leaf nodes in HSOM trees for 
feature set [1-2-3d] and for feature set [4d], which has both 
fine classification performance and tidy structure, have 
been shown in Fig. 2. The vertical coordinate is the order of 
the leaf node, and the horizontal coordinate is the number of 
samples contained in each nodes. Each bar stands for a leaf 
node. The numbers at the right are the quantity of samples it 



 

 

contained, of the three classes respectively. A leaf node 
containing less than 5 samples is classified as the “sick” 
node, and its composition is marked by italic bold fonts. It 
can be found that the HSOM tree in figure 2a has 7 sick 
nodes, while the tree in figure 2b has only one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The information gain has integrated multiple factors, 

so its performance is better than the average error rate; but 
it does not take into account the information implicated in 
the tree structure, and cannot depict the over-fit 
phenomenon. For instance, combinations [2-3-4d] and 
[1-2-3-4d] have the greatest information gain, but 
combination [2-3-4d] has a high error rate and [1-2-3-4d] 
generates too many redundant “sick nodes”. 

The structural evaluation index has generally solved 
the aforementioned problem. The combination chosen by it, 
[3-4d], has relatively low error rate, high information gain 
and a condensed tree structure at the same time. This 
accords with the fact that the combination of feature [3-4d] 
has the highest separability. Meanwhile, combination [3-4d] 
is the minimal combination of the optimal features [2]. 
Though its information gain is a little lower than the top one, 
combination [1-2-3-4d], but it’s still among the highest 
ones.  

The IRIS data have also been divided into two parts 
for training and testing respectively. The results also show 
that the classification tree generated by feature combination 
[3-4d] has the best ability. 

4.2. With Radar Target Data 
Radar echoes from multiple vessel types have also 

been used to testify the proposed index. Table 2 has shown 
the sample sets used for training and test. Each sample 
consists of 23 features extracted from various aspects, 
including 1d-FFT and 2d-FFT, time-frequency 
transformation, radar waveform visual features, etc[11].  
Table 2. Radar Target Data 

 Set  A B C D E F G H Total

Traini
ng 1162 2905 1015 1795 1070 696 409 510 9562

Test 150 476 361 527 317 136 102 94 2163
Two HSOM trees have been trained with the 

information gain and the structural evaluation index as their 
branching criteria respectively. The recognition rates of the 

training set and the test set have been shown in Table 3. It 
can be seen that the recognition rates in the HSOM with the 
SEI are significantly higher than the ones with the 
information gain, which has approved the performance of 
the SEI. 
Table 3. Recognition Rate 

Information 

Gain 

Structural 

Evaluation Index 
 

Training 
Result(%)

Test 
Result(%) 

Training 
Result(%) 

Test 
Result(%)

A 81.3 73.2 90.3 87.3 
B 84.2 60.4 92.4 88.6 
C 63.5 37.9 97.7 92.5 
D 33.2 20.5 88.6 85.8 
E 20.8 12.8 100 92.1 
F 13.4 0 93.7 89.2 
G 27.5 10.2 95.0 90.4 
H 2.5 0 96.3 94.7 

V. SUMMARY 
According to the theoretical analysis and the synthetic 

experiment, we could get the conclusion as follows: 
1. The SEI method is a kind of result-oriented, 

post-process analysis of classification trees, so it could 
represent the overall performance of them effectively.  

2. SEI could be directly extended and applied in fields 
of pattern recognition and artificial intelligence, such as 
classifier selection /combination [10], machine learning and 
decision support [9], etc. Especially, it owns excellent 
performance in feature selection, and it is hopeful to avoid 
redundant features with it. 

3. SEI can be integrated with existing generation and 
evaluation indices to improve traditional generation 
algorithms for classification trees. The resulting trees will 
satisfy specific requirements and have fine overall structural 
performance as well. 

Acknowledgements 
The authors sincerely acknowledge Master Hua Yu for 

his help in experiments. 

References 
[ 1 ] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, 
Classification and Regression Trees. Wadsworth, 1984. 
[ 2 ] A. K. Jain, R. P. W. Duin and J. Mao , “Statistical Pattern 
Recognition: A Riview,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol.22, no.1, pp.4-37, 2000. 
[ 3 ] J. R. Quinlan, C4.5: Programs for Machine Learning. Wadsworth, 
1993. 
[ 4 ] T. S. Lim, W. Y. Loh, Y. S. Shih, An Empirical Comparison of 
Decision Trees and Other Classification Method.  University of 
Wisconsin-Madison, Technique Report 979, Jun, 1997. 
[ 5 ] A. Barron, J. Rissanen, B. Yu, “The Minimum Description Length 
Principle in Coding and Modeling,” IEEE Trans. Information Theory, 
vol.44, no.6, pp.2743-2760, 1998. 
[ 6 ] B. Ripley, Pattern Recognition and Neural Networks. Cambridge 
University Press, 1996. 
[ 7 ] Z. J. Tu, G. S. Liu, “A Self-Organizing Neural Network Tree Based 
on Entropy,” Chinese J. Computers, vol.23, no,11, pp.1226-1229, 2000. 
[ 8 ] Http://www.ics.uci.edu/pub/machine-learning-databas.  
[ 9 ] W. W. Chen, Intelligent Decision Making. Beijing: Publishing 
House of Electronics Industry, 1998. 
[ 10 ] R. Song, J. Zhang, S. P. Xia, W. X. Yu, “An Adaptive Classification 
Method of BP-NN Group Based Classification System and its 
Application,” Electronica Sinica, vol.29, no.12A, pp.1950-1953, 2001. 
[ 11 ] J. Zhang, R. Song, W. X. Yu, etc. Visual Effects Based Feature 
Extraction for Dynamic Radar Target Echo Series. ICSP 04, 2004. 

0 20 40

1

3

5

7

9

11

[9,0,0]
[7,0,0]

[0,10,0] [34,0,0]

[0,0,23]
[0,0,6]

[0,3,1]
[0,10,2]
[0,2,12]
[0,25,1]
[0,0,5]

Class I 

Class III 
Class II 

[x,y,z] sick node

(2b) On Feature Set [4d]
0 10 20 30

1

3

5

7

9

11

13

15

17

[16,0,0] 
[7,0,0] 
[0,3,0] 
[10,0,0] 
[17,0,0] 
[0,2,0] 
[0,0,23] 
[0,0,4] 
[0,1,0] 
[0,0,2] 
[0,6,0] 
[0,0,7] 

[0,1,3] 
[0,1,10] 
[0,22,1] 
[0,4,0] 
[0,10,0] 

(2a) On Feature Set [1-2-3d] 
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