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Abstract – There have been introduced lots of 
clustering algorithms. Among them, K-means and 
hierarchical clustering methods especially require 
an initial number of clusters to be determined. 
But this determination of cluster size is subjective 
and the accuracy of the clustering results depends 
on the initial cluster size. In this paper, we'll de-
termine the optimal number of clusters using 
fuzzy set from Bayesian learning based SOM (Self 
Organizing Maps). Unlike the general fuzzy logic 
approach, these membership functions of fuzzy set 
are not subjective but objective because of Bayes-
ian learning from given training data. This ap-
proach contributes to the performance of cluster-
ing results. We'll propose a Bayesian SOM based 
Fuzzy Clustering to explain this theory in this 
paper. 

 

I. INTRODUCTION 
 
We live in an age of uncertainty. The same issue 

can be explained differently by different points of 
view, and the same point of view can have different 
strengths. This kind of uncertainty is one of problems 
to be solved in artificial intelligence. We need a solu-

tion for the uncertainty that can't be proved either to 
be true or false. One of the trial to solve the uncer-
tainty is the fuzzy theory of Zadeh[9]. If X is a col-
lection of objects denoted generally by x, then a 
fuzzy set A in X is a set of x and its membership 
function. The membership function expresses value 
from 0 to 1 as degree of truth that maps X to A. But 
in this theory, we have a question how to determine 
the membership function. Currently, the answer is to 
decide the membership function subjectively. But it 
can make the problems more uncertain in the artifi-
cial intelligence area that should solve the uncertain 
problems. In this paper, we'll propose an objective 
method to determine the membership function with 
experience using Bayesian inference. In section 2, 
we'll introduce fuzzy logic for uncertainty and fuzzy 
clustering, and propose Bayesian SOM(Self Organiz-
ing Maps) based fuzzy system. In section 3, experi-
ments and some results for the proposed methods will 
be introduced. Finally, section 4 will give conclusion 
of this paper and the direction of future study. 

 

II. BAYESIAN SOM BASED FUZZY 
CLUSTERING 
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A. Clustering and number of cluster 
The cluster is a set of adjacent objects in training 

data. Objects in the same cluster have close similarity 
and objects in other clusters have dissimilarity. We 
use distance as a measure of similarity between ob-
jects. The first problem to consider in clustering is to 
determine the number of clusters. K-means method 
requires an initial number of clusters and hierarchical 
clustering technique also requires an optimal number 
of clusters for stopping clustering process. But it is 
hard to find any objective algorithm to determine the 
initial cluster size, and most of them are determined 
subjectively. So we'll propose a Bayesian SOM based 
Fuzzy Clustering algorithm to determine the optimal 
cluster size. 

B. Fuzzy Set and the  number of cluster 
Use Let X is a nonempty set and x is an element of 

X. A fuzzy set A is defined as follows. 
 

}|))(,{( XxxxA A ∈= µ                       (1) 
 
Where )(xAµ  is a membership function that ex-
presses a degree of inclusion x into A. In this paper, 
fuzzy set is used to determine the number of clusters 
in clustering. This membership function of fuzzy set 
for clustering is computed repeatedly by Bayesian 
SOM from given training data. That is, X becomes a 
set of all possible cluster sizes and A becomes a 
fuzzy set of appropriate cluster size. And )(xAµ  
becomes a membership function for each possible 
cluster size. Therefore the element with the largest 
membership function in fuzzy set A is determined as 
an optimal cluster size. 

C. Bayesian approach to SOM based fuzzy system 
SOM[3] is a clustering algorithm and unsupervised 

neural networks. SOM requires a size of feature maps 
though it does not determine the number of clustering 
as K-means and hierarchical clustering methods do. 
Each node of the output layer achieves clustering by 
competitive learning from training data. Each object 
crisply belongs to only one exclusive cluster after the 
last training. And the clustering result is only one 
type because the weights have fixed values in nodes 
of SOM after final training. This result is usually not 
optimal[1],[7],[8] and it is impossible to repeat the 
different experiments to determine membership func-
tion of fuzzy set. In this paper, we'll get a fuzzy set 
with repeated experiments by using Bayesian infer-
ence[2],[4] that consists of prior probability distribu-
tion, posterior probability distribution, and likelihood 
distribution to SOM. The proposed Bayesian SOM 
updates parameters of probability distribution with-
out having the fixed values of weights on each node 
of output layer. This strategy makes it possible to 
create the membership function by performing re-
peated experiments with same data to get different 

results. The proposed method doesn’ t always offer 
same results for the same training data because it uses 
a random number from the last updated distribution 
for clustering. The membership function of fuzzy set 
is determined by Bayesian learning[5] based SOM 
that computes a posterior by combining prior and 
likelihood. The proposed algorithm in this paper is 
composed of four phases. The first one is an initial 
phase. In this phase, standardization for the input 
data is performed to use the Euclidean distance that 
computes distance input data and weights which can 
be used as a measurement to determine winner node. 
Generally SOM is normalized from 0 to 1 while the 
proposed algorithm changes the input data to the 
standardized data that follow the Gaussian distribu-
tion of mean 0 and variance 1 to combine proposed 
distribution. And the size of feature maps is decided 
in this phase. This decision can be subjective. But it 
is relatively objective compared to the K-means or 
hierarchical clustering that requires an initial number 
of clusters in advance. For example, if the size of the 
feature maps is determined as 5×5, the results of 
clusters are from 1 to 25 optimally. Of course if the 
size of feature maps grows, the number of the opti-
mal cluster can grows accordingly. But the advantage 
of SOM is that it allows objective clustering without 
exact information on clustering. And we determine 
prior probability distribution of the weights of the 
nodes in feature maps. A Gaussian distribution with 
mean 0 and variance 1 is used because input data are 
standardized and we use an Euclidean distance as a 
similarity measure. In second phase, the distance 
between input data and weights is measured and the 
winner node is determined as minimum distance node. 
Next phase is the parameters updating step of weights 
distribution. Yet the parameters update of weights 
distribution is limited to the winner node. This learn-
ing is repeated until the given stopping rules are 
satisfied. Generally the given sopping rules are de-
termined by the number of iteration of learning data 
and the tolerance that has update range for the pa-
rameters of weights distribution. In the last phase, we 
find fuzzy set about optimal number of clusters 
through repeated experiments using the final updated 
weights distribution of feature maps. We summa-
rized the proposed algorithm in this paper as 
follows. 

 
(Bayesian SOM based Fuzzy System  

algorithm) 

Phase1: Initialize, (n: data size) 

1.1 Normalization of input vectors 
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2.3 Determine winner node 

kw  is winner node,  

if  ),(),( jk wxdistwxdist <

Phase3: Update distribution of weights 

3.1 Compute posterior of winner node 
using Bayes’ rule 

3.2 Replace current posterior with new 
prior 

Repeat phase2 and phase3 until given 
conditions are satisfied 

Phase4: Extract Fuzzy Set for number of 
Clusters 

4.1 Repeat experiments until given num-
ber 

4.2 Determine the membership function of 
fuzzy set 

III. THE DESIGN AND RESULTS OF 
EXPERIMENTS 

 
We performed the Bayesian SOM based Fuzzy 

Clustering with the existing popular data for cluster-

ing and discrimination. We used Microsoft Visual 
C++ 6.0 as a compiler in Microsoft Windows 98 on 
P-II 350Mhz 1 CPU. 

 

A. Design of experiments 
Use The prior probability distribution for each out-

put node is Gaussian distribution as (2). 
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Mean, µ  and variance,  are 0 and 1 respectively. 
We used them to match the scale of input data and 
weights because the proposed algorithm computes 
and uses the Euclidean distance between each weight 
from this distribution and standardized input data. 
The likelihood distribution of input value, x is a ran-
dom sample from Gaussian distribution as (3). 
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Mean and variance in (3) are 0 and 1 because input 
data are standardized in advance. We compute a 
posterior probability distribution as (4) using 
Bayes’  rule. Also weights of output node are gener-
ated from current posterior probability distribu ion. t
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The posterior probability distribution is used in re-
peat training as an updated prior distribution. We get 
the final updated distribution by repeating such 
Bayesian learning. 

 

B. Membership function determination using re-
peated experiments: Experiments and results using 
Class Identification data 

Use Glass Identification[10] data by German for 
the proposed algorithm are composed of 214 items. 
Input variables are composed of 1 refractive index 
variable and 8 natural disposition variables (Sodium, 
Magnesium, Aluminum, Silicon, Potassium, Calcium, 
Barium and Iron). 1 target variable represents 6 class 
types. The dimension of feature maps is determined 
as 9×5 considering the 9 input variables. We created 
fuzzy set by 10 and 100 repeated experiments in final 



model and compared the convergence of membership 
function according to the number of repetition. Table 
1 shows initial weights from prior probability distri-
bution of equation (2). 

 

Table 1. Initial weights of each node in 9×5 feature maps 

Node wi1 wi2
wi

3

wi

4

wi

5

wi

6
1 1.2635 1.1588 1.3018 1.6172 0.2551 1.4735 
2 0.0486 0.0199 0.5069 0.8673 0.1423 0.7257 
3 1.1491 1.3966 1.1179 0.5209 0.4254 0.2286 
… … … … … … … 
43 0.5203 0.2377 0.3195 0.6826 1.1466 2.7261 
44 1.3180 0.3247 0.7505 1.5026 0.1939 2.0893 
45 1.0545 0.1036 0.3307 0.5557 0.2043 0.6425 

 
Table 2 shows the mean and variance of Guassian 

distribution that each of the final node updated by 
Bayesian SOM-based Fuzzy Clustering belongs to. 
The repeated experiments perform clustering by 
generating weight of each node from this distribution. 
We get a different result from each experiment be-
cause each experiment uses different weights from 
distribution. The fuzzy set is generated with the dif-
ferent result of each experiment heuristically. 

Table 2. Final updated distribution of each node in 9×5 
feature maps (mean(M), variance(V)) 

Node  wi1 wi2 wi3 wi4 wi5

1 M 
V 

0.18 
0.23 

0.96
0.57

0.53 
0.11 

0.53 
0.11 

0.30
0.18

2 M 
V 

0.79 
0.06 

0.98
0.03

0.84 
0.05 

0.11 
0.25 

0.21
0.22

3 M 
V 

0.09 
0.33 

0.30
0.19

1.03 
0.03 

0.70 
0.53 

0.03
0.29

  … … … … … 

43 M 
V 

0.25 
0.20 

0.12
0.35

0.13 
0.35 

0.68 
0.52 

0.60
0.50

44 M 
V 

0.60 
0.09 

0.51
0.48

0.53 
0.11 

0.49 
0.48 

0.16
0.24

45 M 
V 

0.35 
0.43 

1.11
0.02

0.20 
0.38 

1.01 
0.57 

0.84
0.05

 
The result of 10 repeated experiments using proposed 
algorithm in final updated model is shown in Table 3 
and Fig. 1. Cluster numbers of 5, 6 and 8 have 20%, 
the highest percentage. 

Table 3. Result of 10 repeated experiments in 9×5 feature 

No. of  
clusters 

No. of  
results Percentage

4 1 10 
5 2 20 
6 2 20 
7 1 10 
8 2 20 

10 1 10 
11 1 10 
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Fig. 1. Result of 10 repeated experiments in 9×5 

feature maps  
 
The fuzzy set of 10 repeated experiments can be 

represented for the collection of objects, 
X={1,2,3,…} as follows. 

 
)}1.0,11(),1.0,10(),2.0,8(),1.0,7(),2.0,6(),2.0,5(),1.0,4{(=A

 
 
According to the above fuzzy set, the membership 
functions are determined as 1.0)4( =Aµ , 

2.0)5( =Aµ , 2.0)6( =Aµ , 1.0)7( =Aµ , 
2.0)8( =Aµ , 1.0)10( =Aµ , and 1.0)11( =Aµ . The 

possibility of optimal cluster size using membership 
function in training data is found in 5, 6, and 8 with 
the highest value of 20%. Therefore the optimal num-
bers of clusters through 10 repeated experiments 
using proposed algorithm are 5, 6, and 8. Table 4 and 
Fig. 2 show the clustering results by 100 repeated 
experiments. The highest percentage of the cluster 
size is found in number 6 with 21% from the experi-
mental results. 

Table 4. Result of 100 repeated experiments in 9×5 feature 
maps 

No. of clusters No.  of results Percentage 
2 1 1.0 
3 4 4.0 
4 6 6.0 
5 18 18.0 
6 21 21.0 
7 16 16.0 
8 16 16.0 
10 10 10.0 
11 5 5.0 
12 1 1.0 
13 2 2.0 
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Fig. 2. Result of 100 repeated experiments in 9×5 

feature maps  
 

The fuzzy set of 100 repeated experiments can be 
represented for the collection of objects, 
X={1,2,3,…} as follows, 

 

)}02.0,12(),01.0,12(),05.0,11(),1.0,10(),16.0,8(
),16.0,7(),21.0,6(),18.0,5(),06.0,4(),04.0,3(),01.0,2{(=B

 
According to the above fuzzy set, the membership 

functions are determined as ,01.0)2( =Bµ  
,04.0)3( =Bµ ,06.0)4( =Bµ ,18.0)5( =Bµ  
,21.0)6( =Bµ ,16.0)7( =Bµ ,16.0)8( =Bµ  
,1.0)10( =Bµ  ,05.0)11( =Bµ ,01.0)12( =Bµ and 

02.0)13( =Bµ .  
The possibility of optimal cluster size using mem-

bership function in training data is found in 6 with 
the highest value of 21%. Therefore the optimal 
number of cluster for Glass Identification data is 6. In 
conclusion, the larger the number of repeated ex-
periments is, the easier the determination of fuzzy 
membership function is. 

C. Membership function determination using re-
peated experiments: Experiments and results using 
Iris data 

We used Iris data[10] by Fisher for another ex-
periment. These data are composed of 4 input vari-
ables with sepal length, sepal width, petal length and 
petal width for an external shape of flower and 1 
target variable with setosa, versicolor and virginica 
for class label. 100 samples from 150 training data 
using re-sampling technique were used for repeated 
experiments. We made different fuzzy sets with dif-
ferent feature map sizes and compare them each other. 
100 repeated experiments were performed in total. 
Table 3.5 shows the results of 100 repeated experi-
ments in 4×10 feature maps size. The Cluster number 
of 3 has 34%, the highest percentage. 

Table 5. The result of 4×10 feature maps 

No. of clusters No. of results Percentage(%)

2 20 20.0 
3 34 34.0 
4 17 17.0 
5 16 16.0 

6 9 9.0 
7 3 3.0 
8 1 1.0 
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Fig. 3. The result of 4×10 feature maps 

 
The fuzzy set of 100 repeated experiments can be 

represented for the collection of objects, 
X={1,2,3,…} as follows: 

 

)}01.0,8(),03.0,7(
),09.0,6(),16.0,5(),17.0,4(),34.0,3(),2.0,2{(=C

 

 
The initial number of clustering for Iris data is de-
termined as 3 that has the largest membership func-
tion of 0.34. The experimental results of 4×20 feature 
maps size with the same training data are shown in 
Table 6 and Fig. 4. 

Table 6. The result of 100 repeated experiments by 100 
samples in 4×20 Maps 

No. of  
clusters No. of results Percentage(%)

2 9 9.0 
3 28 28.0 
4 24 24.0 
5 19 19.0 
6 14 14.0 
7 2 2.0 
8 3 3.0 
9 1 1.0 
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Fig. 4. The result of 100 repeated experiments by 

100 samples in 4×20 Maps 
 

The fuzzy set of 100 repeated experiments can be 
represented for the collection of objects, 
X={1,2,3,…} as follows. 
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The initial number of clustering for Iris data is de-
termined as 3 that has the largest membership func-
tion value of 0.28. We can find that the proportion of 
cluster numbers of more than 4 have increased more 
than 2s or 3s comparing with 4×10 feature maps size. 
That is, the larger the dimension of feature maps is, 
the more the number of clusters in final updated 
model increases. But we find that the order of opti-
mal number of clusters is maintained. 
  

IV. CONCLUSION AND FUTURE WORK 
 
This paper proposed to determine initial number of 

clusters in clustering using fuzzy system. We pro-
posed objective method of membership function 
determination of fuzzy set using Bayesian learning 
unlike other previous subjective methods. This heu-
ristic membership function is used to determine op-
timal number of clusters. In this paper, we used 
Bayesian inference using conjugate prior probability 
distribution. But Bayesian inference with 
MCMC(Markov Chain Monte Carlo) can be used for 
complex domain to get more exact results. Comput-
ing time needs to be considered in that situation. This 
is future work. 
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